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I. Introduction. In this paper I develop several mathematical models for population
flow within a region containing two or more distinct cultural groups. My main purpose
is to pinpoint mathematically those mechanisms which give rise to segregation. For
this reason the models presented are quite simple, both from a sociological and from
a mathematical viewpoint.

The first model is the simplest: people are allowed to flow into and out of the region,
and population change due to birth and death is included; population flow within the
region, however, is not considered. For two groups that repel each other I establish the
existence of a number A, called the tipping ratio,1 with the following property: if fh and
n2 are the initial populations of the two groups, then

(i) when nx/n2 < A, the population of group 1 tends to zero in a finite time;
(ii) when njn2 > A, the population of group 2 tends to zero in a finite time;

(iii) when n,i/n2 = A, both populations remain positive for all time.
In the second model I allow for population flow within the region. At a given point x

this flow is governed by the population densities in an arbitrarily small neighborhood
of x; in fact, the population flux at x (for each cultural group) is assumed to be a linear
function of the density gradients at x. For two groups that repel each other this theory
leads to the "backward heat equation" for the difference in population densities, and
this, in turn, leads to the conclusion that population differences grow without bound.

This second model bears some similarity to classical mixture theory. The similarity,
however, ends with the form of the basic equations. Whereas in mixture theory the
flow tends to equilibrium, in the present theory the repulsion of one group toward
another leads to unstable behavior, and ultimately to separation of the species.

Models of the second type are probably appropriate for the study of areas in which
population flow is local in nature. The third model I consider allows for long-range

* Received December 8, 1972.
1 The phenomenon of neighborhood tipping is discussed in detail by Grodzins [1] and Schelling [2].

According to Schelling [2], "tipping is said to occur when a recognizable new minority enters a neigh-
borhood in sufficient numbers to cause the earlier residents to begin evacuating."
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population movement; it should be applicable, e.g., to situations in which people move
from a rural area to a distant urban area. I prove under certain simplifying assumptions
that such a model again leads to segregation whenever the groups repel each other.

The theories presented here are continuum theories. (A completely different approach
is taken by Schelling [2].) They confine themselves to relations among phenomenological
variables such as population density, population flux, and rate of population supply,
and neglect behavior on a small scale. It is hoped that the recent advances in modern
continuum physics can ultimately be brought to bear on the difficult problems of popu-
lation dynamics; this paper is a modest start in that direction.

II. Spatially-independent theory. 1-. Basic equations. Consider a given region R
occupied by m distinct cultural groups a = 1, • • • , m. At any given time t, let n a(t)
be the number of people of group a living in R, and let sa (t) denote the number of people
of group a entering (or leaving) R per unit time, e.g., by births and deaths, and by
movement to and from areas outside of R. For each group the rate of population increase
must equal the number of people entering the region per unit time; therefore, for each a,

(1.1)
where the superposed dot denotes differentiation with respect to t.

We assume that each supply sa is a function of the populations n.

S« = fain,! , ■ ■ ■ , nm); (1.2)

thus

na = ]a(ni , ■ ■ ■ , nm). (1.3)

The basic problem of population dynamics, within this context, is to find na(t) for
t > 0 given the population na of each a at the initial time t = 0.

In general, the functions /„ will be nonlinear. However, in order to gain at least a
qualitative understanding of the subject, we assume that

/«(«i , • • ■ , nm) = a-nnf > (1-4)
0-i

where the aaf, are constants. In (1.4) terms of the form aaana represent the rate of
increase of a due only to the presence of a, e.g., by births and deaths. On the other hand,
ttapttp (a ^ /3) represents the rate of increase of a due to the presence of (3. For situations
in which the groups a and /3 repel each other, the constant a aSi will be negative.

In view of (1.4), the dynamical system (1.3) takes the form

m

»a = 2 a«i>ni> ■ (1-5)
ti-i

In the next section we will study solutions of (1.5) for the special case of two cultural
groups.

2. Two cultural groups. For two cultural groups (1.5) takes the form2

2 Models such as this have a long history. Keyfitz ([3], pp. 271-284) discusses physical situations
described by the system (2.1). In particular, on p. 278 he gives a detailed description of the phase tra-
jectories for the case in which au > 0, a22 > 0, and (2.2) hold (his competition model).
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nx = Bum, + al2n2 , n2 = a2inl + a22n2 . (2.1)

We wish to study situations in which the two groups repel each other; thus we assume
that

al2 < 0, a2l < 0. (2.2)

With this assumption the system (2.1) has the solution

n^t) = eX'j~ (ai2n2 + ftn^ sinh ut + cosh wt

n2{t) = ex'|~ (a2ini — ftn2) sinh tot + n2 cosh cot

(2.3)

where

ft ~ ^(^11 a22), X = 2(^11 "I" ^22 )j 0} = (ft ~i~ GSl2^2l) 1 Til ~ ^x(0)j tl2 = 712(0).

A careful study of (2.3) leads to the conclusion that %(<) —> 0 in a finite time if and only if
ni/n2 < A; n2(t) —* 0 in a finite time if and only if ni/n2 > A, where

A = (2.4)
— a21 u + ft

Thus we have the following result: if the differential equations (2.1), subject to (2.2),
model the behavior of two groups living in a region R, then R will become segregated in
a finite time for all choices of the initial populations except those satisfying

ni/n2 = A. (2.5)

We call A the tipping ratio: If nx/n2 < A the region will eventually be populated only
by group 2; if n1(/n2 > A the region will eventually contain only group 1.

If (2.5) holds, then nt(t) > 0 and n2(t) > 0 for all time t. Further, when X < u (respec-
tively, X > «) both nt(t) and n2(t) tend to zero (respectively, infinity) as t —> ; when
X = 03, ny and n2 remain constant for all time.

The time T at which, say, n^T) = 0'' (when nl/n2 < A) is called the segregation
time and, by (2.3)! , is given by

T = - tanh-1 ( —^  ) , a = An2/na > 1.
co \ac0 4" (<* — ljp/

For co and ft fixed, T is infinite when a = 1 and decreases monotonically to zero as a
increases to infinity. Thus the closer nx/n2 is to the tipping ratio A, the longer it will
take for to vanish.

It is clear from the preceding analysis that to avoid segregation the initial populations
should have a ratio equal to A. When this condition is not satisfied, the closer this ratio
is to A, the longer it will take for segregation to occur. The implications of this result
are easier to interpret in situations for which

e — @  (flu a22)
a\2a2\ 4{Zj2^2i

' The theory is not valid for t > T, since for those times it generally predicts negative values for n\.
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is small; i.e., situations in which population movement due to group repulsion is large
compared to population increases due to natural causes. In this instance

A = (a12/a21)'/2 + 0(e),

T = 7 ^172 tanh"1 I"?1 (—J' 2] + 0(e)
(fll2^2l) \J^2 \0> 12/ J

as « —* 0, so that segregation will be prolonged as long as {njn2f is close to al2/a2, .
It is interesting to note that if au = a22, then /3 = 0 and (2.6) holds with the 0(e) terms
zero, so that the tipping ratio A and the segregation time T are independent of au = a22 .

Our analysis can be applied, at least roughly, to interactions between blacks and
whites. Let b = and w = n2 denote, respectively, the initial black and white popula-
tions of a neighborhood, and let a12 = abw = the rate at which whites repel blacks,
a2l — awb = the rate at which blacks repel whites. A study by Duncan and Duncan [4]
found no instance between 1940 and 1950 of a mixed neighborhood (25%—75% white)
in which succession from white to black was arrested or reversed. Grodzins [2] estimates
that whites begin to evacuate a neighborhood when it becomes 20% black. Using
Grodzins' figure to estimate the tipping ratio, we find that A = j, and that b/w > \
results in an all-black neighborhood. Taking the estimate (2.6) for A as exact, we see that
o-wb/dbv, — 16, so that the rate at which blacks repel whites is sixteen times the rate at
which whites repel blacks.

A case of interest not included in (2.2) is that for which, say, a12 = 0. In this instance
the population of group 1 will increase exponentially, but the population of group 2,
which is repelled by group 1, will eventually vanish.

III. Theory with local population transport. 3. Basic equations. We now gener-
alize our theory to allow for population movement in one space dimension. Thus the
underlying flow region is assumed to be a closed interval [0, L] of the real line. At any
given point x in [0, L) and time t, let na(x, t) denote the density of group a, let ha(x, t)
denote the population flux of a, and let sa(x, t) denote the population supply of a. The
density na(x, t) is the number of people, per unit length, of group a at x. The population
flux ha(x, t) is the number of people of group a that pass the point x per unit time;
ha > 0 (respectively, ha < 0) signifies that the flow is in the direction of increasing
(respectively, decreasing) x. The population supply sa(x, t) represents the number of
people, per unit length and time, of group a supplied directly at x, e.g., by births and
deaths, and by movement from areas outside of [0, L], We postulate the following law
of population balance:

i r»b

— J na(x, t) dx = ha(a, t) — ha{b, t) + J sa(x, t) dx. (3.1)

In words, (3.1) asserts that the rate at which the population of a in [a, 6] is changing is
equal to the number of people of a that enter [a, 6] per unit time. Eq. (3.1) is assumed
to hold for every such interval [a, 6], for every group a, and for every time t. If the fields
na , ha , and sa are sufficiently well behaved, then (1) is equivalent to the following
partial differential equation:

n» = — (dha/dx) + sa , (3-2)
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where the superposed dot denotes partial differentiation with respect to time t holding
the point x fixed.

We now assume that the population flux at z is a function of the density variation
in the immediate vicinity of x. The simplest hypothesis consistent with this assumption
is that for each group a the population flux h a is a linear function of the density gradients
drii/dx, dn2/dx, ■ • • , dnm/dx. Thus we assume that

ha = (3.3)4

where the cafl are constants, and where the negative sign is chosen for convenience.
The term — cap drip/dx gives the population flux of group a due to the presence of /3.
If, e.g., cal> is positive, then this term leads to a flow of group « in the direction of de-
creasing 0; thus c> 0 (a ft) models situations in which group /3 repels group a.

We assume that the population flux sa is given by (1.2) and (1.4); therefore by (3.2)
and (3.3) we have the following system of partial differential equations:

m n2 m

na = S «««% • (3.4)
0-1 ox 0_i

The boundary-initial-value problem associated with this equation can be stated as
follows: given the flow region [0, L], the matrices |\aa/i\| and ||cniJ|| , an initial density
distribution na(x) (for each a), and the population flux ha(t) and Tia(t) at the boundary
points 0 and L (for each a); find a solution na(x, t) (a = 1, 2, ■ • • , m) of (3.4) for 0 <
x < L and t > 0 that satisfies the initial conditions

na(x, 0) = n„(x) (0 < x < L) (3.5)

and the boundary conditions

ha(0, t) = ha(t), ha(L, t) = ha(t) (t > 0), (3.6)

with ha given by (3.3).
For the case in which the transport matrix ||ca(J|| is symmetric and positive definite,

the system (3.4) is parabolic, and the above problem is well-posed (i.e., the solution
exists, is unique, and depends continuously on the data). Unfortunately, however, for
most problems of interest ||ca^|| will not have these properties.

The above theory is easily generalized to two space dimensions. Indeed, in this case
ha is a vector in R2, and (3.2) and (3.3) have the forms:

na = —div ha + sa , (3.7)
m

ha = — X CepViif, , (3.8)

where div and V are, respectively, the divergence and gradient operators in R2. In
writing (3.8) the assumption of isotropy is tacit. If the population flow is anisotropic
(different in different directions), then (3.8) still holds, but with the cafi interpreted as
linear transformations from R2 to Ii\

4 Constitutive equations of this type were first proposed by Kerner [5], who gives a detailed physical
argument for their validity, at least in studies concerning populations of animals, plants, bacteria, etc.
In this connection see also Skellam [6].
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4. Two cultural groups. In this instance (3.3) reduces to

, dni dn2 drii dn2 ..
hl ~ _Cn dx ~ Cl2 dx 'l2 ~~ ~°21 dx ~~ °22 dx ' (4-1}

For convenience, we restrict our attention to situations in which:
(i) the population flux of each group depends only on the density gradient of the

other group, i.e.

Cn = c2 2 = Oj (4.2)

(ii) the population flux of each group always lies in the direction of decreasing
density of the other group, i.e.

C12 > 0, c21 > 0. (4.3)

In addition, we suppose, for convenience, that

Ci2 = c21 = c, Ila«/i|| = 0. (4.4)

Then (3.4) takes the form

Mi = c(d2n2/dx2), ri2 = c(d2rii/dx2). (4.5)

We assume further that the flow region is isolated in the sense that h„ = h„ = 0 (a =
1, 2), or equivalently that

dn.i/dx = dn2/dx = 0 (x = 0, L; t > 0). (4.6)

Since, by (4.4)3 , s„ =0, this condition implies that the total population of each group
remains constant in time.

If we define the total density n and the density difference u through the relations
n = nx + n2 , u = nt — n2 , then the problem (4.5), (4.6), and (3.5) is equivalent to
the following pair of problems:

n = c(d2?i/dx2),

dn/dx = 0 (x = 0, L; t > 0), (4.7)

n(x, 0) = n(x) (0 < x < L).

u = —c(d2u/dx2),

du/dx = 0 (x = 0, L) t > 0), (4.8)

u(x, 0) = u(x) (0 < x < L).

As is well known, the problem (4.7) for the total density n is "well-posed". Further,
the solution is stable, and the total density n tends to a constant C:

n(x, t) —> C as t —> «>, (4.9)
with

rL
C = v= y f n(x) dx. (4.10)

J-J J 0

On the other hand, the density difference u obeys the "backward heat equation"
(4.8)i ; consequently, the problem (4.8) is not well-posed (see, e.g., Friedman [7], pp.
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172-178). Indeed, this problem is quite unstable: any initial fluctuation in the density
distribution will grow without bound. For example, consider the initial data

u{x) = t cos (kwx/L) (4.11)

with k an odd integer. A solution of (4.8), (4.11) is

u(x, t) = <&(z)eXl, X = ^ > 0. (4.12)

Thus no matter how small«is, \u(x, t) \ —■> °° as t —* °° for every x with u(x) ^ 0. More-
over, the sharper the initial fluctuation, i.e. the larger the value of k, the faster the
approach to infinity. Thus if (4.2) and (4.3) hold, then differences in density grow without
bourid. By (4.9) this means that for every x with u(x) 0 either nx or n2 will eventually
vanish. Of course, the theory becomes invalid after the first such vanishing, since for
larger times it predicts negative densities. Further, neither nor n2 can vanish every-
where, since the total population of each group remains constant in time.

IV. Theory with long-range population transport. 5. Basic equations-, a simple
solution. In the model discussed in the preceding two sections the flow of population
within the region under study is described by the flux ha ; at a given point x, h „ is in-
fluenced only by the population density in an arbitrarily small neighborhood of x. We
will now discuss a model in which people are allowed to flow between any two points,
instantaneously.

Let Ga(x, y, t) denote the number of people of group a, per unit lengths at x and y,
and per unit time, flowing from y to x at time t. Then

Ga(x, y, t) = —Ga(y, x, t), (5.1)

since the number of people entering x from y must equal the number of people leaving
y for x. The total number of people of group a, per unit length and time, entering x
from all other points in [0, L\ is obtained by integrating Ga(x, y, t) over all y in [0, L}\

ga(x, t) = f Ga(x, y, t) dy, (5.2)

then by (5.1), as would be expected,
(%L

ga(x, t) dx = 0. (5.3)/Jo

The total supply sa(x, t) of group a at a; is assumed to be the sum of two terms:

s« = ga + 1a , (5.4)

where 1 a(x, t) is the number of people of group a, per unit length and time, supplied
directly at x by births, deaths, and movement from areas outside of [0, L], As before,
we assume that

u = Yi a«f>np ■ (5-5)
^-l

For convenience, let us assume that ga is the only mechanism for population transport
within the region; then ha = 0, and (3.2) and (5.4) yield
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na = ga + fa ■ (5.6)
Let

Na(t) = f na(x, t) dx; (5.7)
Jo

then Na is the total population of a. By (5.3), (5.5), and (5.6),

Na = X a«pNp , (5.8)
0-1

so that Ni , • • • , Nm obey the system (1.5) discussed at length in Sec. 1.
We now limit our discussion to two cultural groups. We assume that G„(x, y, t) is

proportional to the density difference (y, t) — n${x, t) (/3 ^ a):

Ga(x, y, t) = <pa(x, y)My, t) - nf(x, t)] (/3 9* a). (5.9)

The functions <p„ are assumed known a priori; they play a role similar to that played
by the matrix ||ca^|| discussed in Sec. 3. We suppose that

<t>a(x, y) = <Pa(.y, x), <Pa(x, 2/) > 0. (5.10)

The first of these insures that (5.1) is satisfied; the second implies that people of group a
flow from y to x whenever n^(y, t) > n^(x, t) (fi ^ a). Thus here, as in the last section,
we restrict our attention to situations in which the two groups repel each other.

If we substitute (5.2) and (5.5) into (5.6), and use (5.9), we arrive at the following
system of equations:

ni(x, t) = / Vi(x, y)[n2(y, t) - n2(x, t)] dy + a^n^x, t) + a12n2(x, t),
J 0

n2(x, t) = / v2(x, y)[nx{y, t) — n,(x, <)] dy + a^n^x, t) + a22n2(x, t).
J 0

(5.11)

Let

k12(x) = / Vl(x, y) dy — a12 , fc21(x) = / <p2(x, y) dy — a21 ; (5.12)
J 0 J 0

then (5.11) takes the form

n^x, t) = a^rhix, t) — kl2(x)n2(x, t) + / Vl{x, y)n2(y, t) dy,

n2(x, t) = a22n2(x, t) - k^xjn^x, t) + / <p2(x, yja^y, t) dy.
Jo

(5.13)

A systematic study of this system of integral-differential equations is beyond the
scope of the present paper. However, if the constants aag obey the assumptions made
in Sec. 2, and if i^i/i^2 is not equal to the tipping ratio A, then (5.8) and the results of
Section 2 imply that the total population of one of the groups will tend to zero, i.e.
the region under consideration will become segregated. We now consider a simple case in
which the assumptions of Sec. 2 are violated. We suppose that the region is isolated;
then the supplies f a are affected only by births and deaths; hence

di2 ' a21 == 0. (5.14)

For convenience, we also assume that the two groups have the same characteristics,
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and that the functions <pa are constant. Then

k
au = a22 = a > 0, <px(x, y) = <p2(x, y) = 0, (5.15)

and, in view of (5.7), the equations (5.8) and (5.13) reduce to

Ni = aNt , N2 = aN2 , (5.16)
and

k k
n! = anx — kn2 + j^N2 , n2 = an2 — k^ + — Nj . (5.17)

Each of (5.16) is the usual population growth equation for a single cultural group;
clearly,

Na(t) = fiaeat, (5.18)

where Na is the initial total population of a. If we substitute (5.18) into (5.17), we arrive
at a system of ordinary differential equations for na ; this system has the solution

na{t) = e-'jl [na + n, - \ (fia + ^)]e"w + | [n„ - n, - ± (Na - N^ekt + ,

(5.19)
where fi ^ a. Note that we have suppressed the argument x in (5.19); actually, na =
na(x) and na(t) = n„(x, t).

It is clear from (5.19) that na(x, t) —» 0 in a finite time at a particular point x if and
only if the coefficient of eki is negative:

n^x) ~Y> ~ if' (5-2°)

Thus at points for which the initial density difference happens to be the same as the
average initial density difference, i.e.

Uiix) — n2{x) = (Ari — N2)/L, (5.21)

the density of each group will remain positive for all time. On the other hand, at points
for which (5.21) is not satisfied, the population of one of the groups will tend to zero.
Thus if the initial conditions are such that (5.21) is not satisfied at every point, then
at least one point of the region will become segregated.
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