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Summary. The two-dimensional, transient temperature field in a composite semi-
space resulting from an incident heat input is constructed using operational techniques.
Examples of the temperature field are presented with general conclusions that allow
a qualitative assessment of the temperature distribution given the heat input and thermal
properties of the constituent materials.

1. Introduction. In the past decade considerable attention has been given to the
study of the phenomenology of composite material behavior in many areas of engineering
application. Undoubtedly this attention has been motivated by the ever-increasing
sophistication of design concepts in which the engineer must seek to recast individual
constituents, each not completely suited for the proposed application, and "create"
in concert a composite configuration that possesses the desired engineering properties.
In his quest for a viable composite configuration the engineer must rely on analyses
to guide him, and consequently solutions to problems involving composite geometries
in all aspects of engineering application are vital.

The subject of this paper concerns itself with the determination of the transient
two-dimensional temperature field in the simplest of all composite configurations—a
semi-space of two distinct materials. The solution to the problem presented herein is
fundamental to the understanding of heat transfer in composite solids of a more com-
plicated nature. Furthermore, the evaluation of thermal stresses is almost always
preceded by a determination of the temperature field and hence the results that follow
are directly applicable to this form of analysis.

Solutions to problems involving the conduction of heat in two distinct materials
for heat flow described by a single spatial dimension have been extensively treated for
both planar and cylindrical geometries, [1], Thiruvenkatachar and Ramakushna [2]
appear to be the first to consider the transient temperature field in two space dimensions
in the case of a cylindrical composite. Kumar and Thiruvenkatachar [3], in their attempt

* Received October IS, 1972. This work has been performed under U. S. Army Contract DATIC60-
71-C0005.
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to improve the response of thermocouples and hot-wire anemometers, investigated
the response of a finite composite cylinder to both radial and axial heat flow in the
presence of harmonic variation of surface temperature. Kumar [4] considered the heat
flow in a finite composite cylinder subjected to a temperature boundary condition used
to simulate liquid-fuel rocket environments. Olcer, in a series of papers [5-7], considers
the problem of heat flow in a finite composite hollow circular cylinder. Solutions are
obtained in a very general form for all conceivable boundary and initial conditions,
although no solutions are explicitly constructed.

This paper is divided in the following manner: In Sees. 2 and 3 the problem is formu-
lated and the solution obtained. The temperature at the contact surface point is recorded
in terms of tabulated functions in Sec. 4, and in Sec. 5 some observations on the nature
of the solution at this point are made. Some illustrative examples and qualitative assess-
ment of the temperature field appear in Sec. 6; fiinally, conclusions are given in Sec. 7.

2. Formulation of the problem. Consider a half-space composed of two distinct
materials (Fig. 1), one of which occupies the quarter-plane x > 0, y > 0 and the other
the quarter-plane x > 0, y < 0. The surface of contact between the two materials is
the plane y = 0 and the physical contact is assumed perfect. When the surface x = 0
is suddenly subjected to a heat input at a reference time t = 0 a transient two-dimensional
temperature field will be established. It is assumed that this temperature field is governed
by the Fourier heat conduction equations and therefore satisfies the following system
of partial differential equations, boundary and initial conditions:

KlV27\ = dTJdt, x > 0, y < 0, t > 0, (la)

k2V2T2 = dTJdt, x > 0, y > 0, t > 0, (lb)

kl d7\(0, y, t)/dx = — Qi(y, t), y < 0, t > 0, (2a)

k2 dT2(0, y, t)/dx = — Q2(y, t), y > 0, t > 0, (2b)1

lim Ti(x, y, t) = lim T2(x, y, t) = 0, t > 0, (3)
x—♦» X—>co

T,ix, 0, t) = T2(x, 0, t), x > 0, t > 0, (4)

kl dTi{x, 0, t)/dy = fc2 dT2{x, 0, t)/dy, x > 0, t > 0, (5)

lim T^x, y, t) finite, lim T2(x, y, t) finite, (6)
V * co j/—♦ oo

7\(x, y, 0) = T2(x, y, 0) = 0, x > 0, \y\ > 0, (7)

where V" = d2/dx2 + d*/dy2, T(x, y, t) is the temperature, k is the diffusivity, k is the
conductivity and Q(y, t) is the heat input. In addition, the quantities peculiar to region 1
(x > 0, y < 0) and region 2 (x > 0, y > 0) are distinguished by the appropriate sub-
script.

3. Method of solution. The solution to the problem formulated above is best
pursued by the introduction of "dual transforms", i.e. the application of a Fourier-

1 The introduction of a different functional dependence on the heat input is included for the sake
of generality. Its physical significance can be envisioned when different surface absorption characteristics
are admitted.
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Fig. 1. Composite semi-space.

cosine transform on the spatial coordinate x followed by a Laplace transform made
with respect to the time variable t.

The Fourier-cosine transform and Laplace transform of, say, T(x, y, t) are defined
as follows:

Tc(y, t] w) = / T(x, y, t) cos cox dx; TL(x,y,p)= / T(x, y, t) exp (-pt) dt.
Jo ^0

The dual transform of a function will be denoted by a double subscript: TCL(y, co; p),
indicating that a Fourier-cosine and a Laplace transform have been made. Conversely,
the inversion of a dual transform function will be denoted by the symbol:

{Tcl(v; co; v)}cl~1 = T(x, y, t).
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Applying these integral transforms successively to Eqs. (l)-(7) results in the following
system of equations:

(y,<»;p) - ("2 + p/ici)T1CL(y;o>]p) = —Qi/k,p, y < 0, (8)

(y><»'>p) - + p/K2)T2CL(y, «;p) = -Q2/k2p, y > 0, (9)

T2cl(0; o>; p) = J\cl(0; o>; p), (10)

and

k, ^ (0; a-; p) = k2 (0; co; p), (11)

where in Eqs. (8) and (9) the assumption has been made that the heat inputs Qi and Q2
are constant" both spatially and temporally though in general unequal. The solution
of the system of Eqs. (8)-(ll) can be immediately given as:

f = exp [y(co2 + pAQ172] / Q2k,(oj2 + p/nQ — Q,k2(w + p/k2)
1CL kM" + pAi)3/2(w2 + p/k2)°2 ll + (&2/fc.)[(« + p/k2)/(u + p/Kl)f

+ QJktpiu + pIK\), y < 0, (12)
and in region 2

exP [~j/(^2 + p/k2)U2} / Qafei((0- + p/ki) — Q,k2(o}Z + PA2)
2CL k2k,p(co2 + pA2)(w~ + pAi) ll + (^2//ti)[(w~ + p/k2)/(^ + pAi)]I/2.

+ Q2/k2p(co2 + PA2), 2/ > 0. (13)

The first expression on the right-hand side of (12) or (13) represents the two-dimen-
sionality of the solution, whereas the second term is solely one-dimensional. The latter
can be inverted once and for all without difficulty, using the inversion tables appearing
in [8], to yield:

Tsl,.nm = 2Qi{Kkf~ler(c [*/2M)1/2L j = 1, 2, (14)

where the subscript j is introduced to indicate the region of applicability, ferfc(:c) =
Jj" erfc(w) du with erfc(.r) = 2/y/ir J," exp( —it2) du, commonly referred to as the
complementary error function, while the superscript is employed to indicate the dimen-
sionality of the solution.3 This solution is nothing other than the temperature in the
region x > 0 (semi-space) due to a constant heat input Qj applied to the surface x — 0.
To effect a dual inversion of the two-dimensional part of the temperature solution in
the form given by (12) and (13) is extremely difficult. The form of these equations
does, however, suggest some simplification providing we make the temporary restriction
(ultimately to be relaxed):

2 The case of arbitrary time-dependent heat inputs is accessible through the additional use of
Duhamel's theorem [1].

3 Clearly the complete solution, using this notation, could be written as Tj(x, y, t) = TV1'(x, t) +
y, <), j = 1, 2.
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(/c2/fci)j |(co" + p/n2)/(u>~ + p/ki)| < 1, (15)

for then (12) and (13) can be recast in the form of a convergent series:

exp [y{w + pAi)1/2][Q2fci(co2 + p/k,) - Q,k2(u + pM]
kx'p{of + p/kxY'2^' + p/k2)w1

■ S [ — (h/k^Ku' + p/k2)/(co" + pAi)]172]", V < 0, (16)
n = 0

and
™ <2> exp [-y(co2 + pA2)'/2j[QA(^2 + pA,) - Q^^o)2 + p/k2)]

fc2fc,p(co2 + pA2)("2 + pAi)

• £ [~(k2/k,)[(^ + pAa)/(«2 + pMV/2]n, y > o. (17)
n = 0

Each and every term of the series (16) and (17) satisfies the differential Eqs. (S) and (9)
and also the energy balance boundary condition (11), while the continuity of tem-
perature, boundary condition (10), is satisfied when every term is accounted for.

Let us first concentrate for the moment on the inversion of T2CLW. The generic
expressions to be inverted in (17) are:

(o,2 + pA2)"/2 exp [~y{co2 + pA2)'/21 (co2 + pA.)'"72'"* exp [-y(u2 + pA2)'/2]
p(co2 + pA0"/2+1 ' p(" + pAi)"/2

n = 0, 1, 2, ••• . (18)

The appearance of both «i and k2 in these expressions precludes the direct use of inver-
sion tables and hence resort must be had to a dual convolution integral to effect the
inversion. The dual convolution integral, for example, applied to the transformed
function {FG\CIj can be written as:

\FG\cl~x = \ [ [' &> + £>* - f) + /(I* - Sl>1 - *")} di; dt (19)
- «-'o ^ 0

where f(x, t) and g(x, t) are the dual inversions of FCL and GCL respectively. Having
this procedure in mind, the first of (18) can be separated into two parts, one containing
only the parameter k2 :

p"1^2 + p/k2)"/2 exp [-//(u>2 + pA'2)1/2] (20a)

and the other containing ki :
(<o2 + pA,)-^2"1. (20b)

With the aid of the tables of [8], the inverse of (20a) and (20b) can be given as:

{p"V + pA2)"/2 exp [-ytf + pA.nU-1

= 2(kJ)1/2A f („/4K2t)W2) + ,Hn+i[,j(v/^jy/2) exp [ t](x2 + if)/^2t\ 4?sJ i ij

ij > 0: n = 0, 1, 2, , (21a)

4 This restriction is necessary since at y = 0 the expression on the left of (21a) has no definable
inverse. We will see later on that this constraint disappears when the inverses of (20) are convolved.
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and

{(CO2 + p/kiy-n/2)-1}cL-1 = <c1("+1,/2(/)<"-1,/2 exp [-x2/4Klt]/T1/2T((n/2) + 1)

n = 0, 1, 2, ••• , (21b)

where the function Hn(x) is the Hermite polynomial and r(a;) is the gamma function.
Convolving Eqs. (21) in accordance with (19) permits us to write the inverse of

the first of (18) as

{p"V + pA2)n/V + pAi)<_n/2)"1 exp [~y{J + p/k2)U2]\cl~1

(n+l)/2 ft p<°
-i  fery/2(t - f)<n-i,/2

Jo Jo
~i/2 r((n/2) + 1)

{" (v/^Yn/2)+lHn+Mv/^2f)1/2] ---^3/t ?/2)/4k-] C?77

•[exp [-(x + ?)2/4k,(/ - f)] + exp [-{x - £)74k,(* - f)]]

V > o, » = 0, 1, 2, ••• . (22)
Eq. (22) represents the inverse of the generic term (the term multiplied by the coefficient
Qik2) appearing in the infinite series of (17). The resulting series is capable of being
expressed in closed form by first making the substitution

l/r((n/2) + 1) = [2n+2/ir1/2(n + 1)!] [ un+2 exp (-u2) du, n = 0, 1, 2, • • • (23)

and then noticing that the sum is now of the form [9]:

it, (~1 )"xnH„{y)/n\ = exp [2xy - x2] (24)
n = 0

which yields the desired closed-form expression. Performing the integrations with
respect to the variables of integration u, £ completes the inversion of the first of (18).
The inversion of the second of (18) follows exactly the same procedure.

After first introducing the notation:

»(*, X, 7) ^ (2/t)

• f f exp [~nY\e + 1) - X2V(? + 1)/(„S + l)]/[„(f + l)3/2(^2 + 1)1/2] dV,
J i J0

(25a)

8(*, k, X, Y) - (2/x1/2) f f exp [-vY\e + 1) - X2^2 + l)/(„f + 1)]
Jl Jq

•exp [{Ykr]£f(g + 1 )/(fc2?j£2 + l)]ierfc

• { Yr,m\e + 1 )/(fc2„f + l)]I/2|/[„(f + l)3/2(fc2^2 + l)(^2 + 1)1/2] dt dr, (25b)

and the identities5

5 Eqs. (26) follow from the equivalence of a "direct" inversion of a dual transformed function and
the same function inverted using the dual convolution integral.
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£>(°°, X, 7) = f exp (—nX2) erfc (Yy/v)v~3'2 dv, (26a)

£(»,*;, X, 7) = (1 + fcr'aX-, X, 7), (26b)
we are then finally able to present the temperature in region 2 as:

k2rU2T2(X, Y, 0/4Q2M)i/2

= -»(«., X, 7)/4 + [k121/2(Q12 + 1)/4(*12 + l)]3D(a», XK211/2, 7k211/2)

- k21/2(fc21 - Q12)/4] S(k12 , fc21 , X, 7)

+ [ki21/2Qi2/4]2D(k12 , XK211/2, Yk211/2) + ir1/2terfc (X)/2, X > 0, 7 > 0 (27)

where in (27) the following nondimensional quantities have been introduced:

X2 = x2/4k2/; 72 = y2/4:K2t; Ql2 = Q./Q, ;

^12 — ki/k2 j ki2 — Ki/k2 j k2i = k2/k\ j /c2i — k2/ki .

The temperature in region 1 is derived from that of region 2 by simply noting that the
solution is invariant to material interchange, i.e. region 1 <-* region 2. The solution
applicable to region 1 then follows immediately from (27) after permuting the indices
and is given as:

k2Tr1/2TI(X, Y, t)/iQ2(K2t)U2

= -(Qi.W'VW®, x«211/2, | 7| K211/2) + [(Q19 + l)/4(fc12 + 1)]3D(», X, | 7|)

- [(Q12 - fc21)/4]S(K21 , kl2 , X, | 7|) - (k2l/4)D(k21 , X, | 7|)

+ Q12fc21(™12)I/2rerfc (Xk211/2)/2, X > 0, 7 < 0. (28)

It is to be noted here that the methodology employed does not require the satisfaction
of inequality (15) as a necessary ingredient. For if this were violated the denominator
of Eqs. (12) and (13) could have been put into the form:

1 + (ki/k2)[(ui2 + p/ki)/(ui2 + p/k2)]u".

Expanding in a manner similar to that used and performing the inversions as outlined
above would yield the same solution as that given by Eqs. (27) and (28).

4. Temperature at the surface contact point X = 7 = 0. At the point X = 7 = 0
the integrals appearing in Eqs. (27) and (28) can be evaluated in terms of tabulated
functions. The temperature at this point is interesting in itself and is therefore recorded
below. Note that in what follows:

?„ = k2TT1/2T(0, 0, 0/4Q2M1/2;

ic 12 = (l — «12)1/2; k2 1 = (l — k2i)1/2;

Pi = [(l - fc122)(i - k21&122)]~1/2; p2 = [(l - k122)(K21kl22 - i)r1/2;

P3 = p122 - l)0<21fc122 - 1)]~1/2; P4 = [(fc122 - 1)(1 - K21fc122)]"1/2;

ft = sin"1 (k12K2lU2); ft = sin"1 [(1 - kl2)/{\ - k12)]1/2;

P3 = sin [/c2i(l k12 )/(l — k12 k21)] ; ft = sin [(1 — K2lk12 )/(l k2i)] ;

ft = sin \_{k12 k21 1)/k2i(&i2 1)] j ft = sin k12 ;
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A0(/3, k) is Heuman's lambda function and is tabulated in [10] and [11]; Z(fi, k) is the
Jacobian zeta function and is tabulated in [10] and [12]; K(k) and E(k) are the complete
elliptic integrals of the first and second kind, respectively and these are tabulated in
[9-12],

*21 > 1, k 21 > 1

(1) *2i k^x :

to = (Q\2K\2U"/ir)K(Kl2) + [p,(l — Q12fc,2)/2][1 — A0(/3, , ki2)]. (29)

(2) «21 > fc21 '■

To = (Qi2Ki2U2/tt)K(k,2) + [p2(l — Q\2ki2)/ir]Z(^2 , ic 12). (30)

(3) k2i = k'2\ :

to = Wi2K,21/2A)/v(k,2) + [(1 - Ql2K121/2)/TRi22][E(K,2) - Kl2K(ic12)]. (31)

k2i > 1, k21 ^ 1

(1) k21 = 1:

T„ = (Q,2k12U2/t)K(k12) + [(1 - QuW/2/^22][K(h12) - E(aia)]. (32)

(2) k2l < 1:

T0 = (Q12/c121/2A)^(^2)

+ [(1 — Ql2fcl2)Kl21/2/ir'M2][^(Kl2)/(l — k2I~Kl2) — xp3 A0(183 , Ki2)/2/i,2K2,,/"]. (33)

*2i 1) k2i <Z 1

(1) k2i <C Jc2i :

t0 = (Qi2/V)A'(k2i) + [p4(l — k,2Ql2)/ir]K(i<2l)Z(l3i , a21). (34)

(2) k21 > k21 :

t0 = (Qi2/tt)K(k2i)

+ [(1 — QM/*kit][K(gn)/Qc„2 — 1) — 7rp;iAo(|85 , *21)/2/' 12]■ (35)

(3) k2i = /c2i :

to = (Q,,/*)«■(*„) + [(1 - Q,2/c,2)M,2«2i2][Afei) - E(/c21)]• (36)

*21 1) k21 1

(1) A'21 = 1:

To = (Q„/x)X(«2i) - [(1 - Q.2)/7r*2,2][*2,/v(*2i) - ^(«2i)]. (37)

(2) /C21 > 1:

To = (Q,2/tt)K(k2]) + [p,(1 — Qi2/i'i2)][l — A0(|8r, , *21)]■ (38)

*21 = 1, A'21 arbitrary

T„ = (1 + Qi2)/2(1 + fcJ2). (39)
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5. Observations on the nature of the solution at the surface contact point A' = F = 0.
Numerical evaluation of the temperature at the contact point, X = F = 0, exploiting
Eqs. (29-39) for particular choices of the parameters Q12 , kl2 , and k12 , implies that
this temperature is bounded by the temperature at A' = 0 and | Y\ —> °=, the one-dimen-
sional half-space solution. Although this property of the solution can be rigorously
proven only for the choice of parameters given by (39), it does not appear to be un-
reasonable when extended to include all possible parametric variations; besides, ad hoc
verification is always available through Eqs. (29-39). In terms of the parameters of the
formulation this condition can be mathematically stated as:

[*, Q12fc21K121/2/2]rain < k2ir1/2T(0, 0, 0/4Q2MI/2 < ft, Q12A'2lK,21/2/2]raa,c (40a)

and for the special case Qi2k2yKl2'~ = 1 the above would be replaced by the inequality:

kW/2T(0, 0, 0/4QsM1/s < 5. (40b)

Let us now examine the transfer of heat at this point. To this end, we can express the
heat flow from either Eqs. (27) or (28) in the ^-direction as:

WQ2) ~ (0, o, t)
oy

= lim 7T.—TTri {(Qi2^2i - l)[ln (F2) + 7] - k21(Q12 + 1) In (k21)}
y_0 V'^21 I l)

- tt1/2[k12i/2(lc2l - Q12)/2]ay- (k12 , fc21 , 0, 0) + 0(F2) (41)

where y = .577215 • • • is Euler's constant. The transfer of heat between regions 1 and 2
at the point X =7 = 0 is seen to be logarithmically singular except for the special
case of proportional heating, Qi2k2l = 1. The direction of this singular heat transfer
rate is determined only by the parametric combination Q2lk2l and immediately three
situations can be distinguished:

1. Qi2/c2i > 1: k2dT2(0, 0, t)/dy = — co; (42a)

2. Ql2k2l < I: k2dT2(0,0,t)/dy = co, (42b)

3. Q12k21 = 1: (xk2/Q2) ^ (0, 0, t) = [(Q12 + l)/(fc12 + 1)] In (k21)

- 7r1/2[Kl21/2(&12 - Q13)/2] H (k12 , k21 , 0, 0). (42c)

6. Qualitative assessment of the temperature field with some examples. Let us
now examine the temperature distribution and how it is influenced by the parameters
of the problem. Several cases can be delineated toward this end:

(1) Qi2k2l > 1, Q\2k2lK\2/2 > 1. The first condition, from (42a), implies
dTi(0, 0, t)/dy = — o°, while the second states that on X = 0 the far-field temperature
(|F| —> 00) in region 1 is larger than that in region 2. As stated in (40), the temperature
at A = Y = 0 is bounded by the far-field temperature and hence it would appear that
a smooth transition from this point to the far-field can be accomplished with a monotonic
increasing gradient. Consequently, nowhere on the surface A" = 0 can the temperature
fall outside the bounds provided by the far-field. Fig. 2 presents the temperature for
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J7T k2
[ T ( x, y, t) — T ( x,o ,t)]

Fig. 2. Temperature profiles for Qi2 = 1, k21 = 2 and &2i2ki2 = 8.

parameters Q,2 = 1, lc21 = 2 and Ki2 = 2. It is immediately apparent that all the prop-
erties of the solution cited above are substantiated. These properties, however, may or
may not be fulfilled when X > 0. It will be seen in what follows that the temperature
profile for X > 0 is influenced by the diffusivity ratio k12 .

The second inequality that distinguishes this case permits k12 to be either greater
than or less than unity; let us assume the latter condition, i.e. k!2 < 1- Now, writing
the difference in the far-field temperature in region 1 and region 2, we have

[k2irl/2/4:Q2(K2t)1/2][Ti(X, -»,*) - T,(X, ®,f)]

= |[Qi2/c2iKi21/2terfc (Xk211/2) - ierfc (X)]. (43)

It can be shown that there exists an X* > 0 such that, for 0 < X < X*, Eq. (43) gives
Tl(x, — oo, j) > T2(x, t)] however, when X becomes sufficiently large, the functions
i erfc (Xk211/2) and i erfc (X) dominate with the former becoming smaller to the extent
that for X > X*, we find T, (x, - co t t) < T2(x, oo, t). We would therefore expect,
based on the previous discussion for X = 0, that the temperature profile in the neighbor-
hood of X = X* will differ markedly from that already observed for X = 0. Drawing
attention to Table 1, where T{x, 0, t), fc,- dT,(x, 0, t)/dy, and T,(.r, ± oo, t) are given
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for Ql2 = 1, k2l = 6, and kI2 = 1/2, we sec that the far-field temperature in regions 1
and 2 are equal at approximately A' = 1. Also notice that the temperature on the inter-
face Y = 0 is bounded by the far-field except in the range 1 < A < 1.3 where the tem-
perature is seen to exceed the far-field, whereas the gradient passes through zero and
and subsequently undergoes a sign change at approximately A' = .75. We would then
anticipate that within the range .75 < A < 1.3 there will be a "transition zone" in
which the temperature distribution goes from one generic shape to another. Fig. 3
confirms this hypothesis. There the temperature distribution is displayed for several
values of A and we note that a transition zone appears located with the range .75 <
X < 1.3 and within it the shape of the temperature profile assumes what we shall call,
for lack of a better descriptive word, a "wiggle". This can be generically characterized
by the attainment of a zero gradient at some finite value of Y. Outside this zone it
appears that the temperature in region 1 approaches its far-field value in a monotonic
fashion. On the other hand, in region 2 a slight wiggle persists to a value A = 2.5,
the point at which calculations ceased.

TABLE 1

Temperature and gradient at the contact surface Y = 0 and far-field temperature for
Q12 = 1, k21= 6 and k2i = 2.

VTk2T[X,0,t)
4 0 2 /C2 t

tt k2 aT2(x,o,t)
q2 ay

Jtt k2 T| (Xroo ,t)
40 2 -J K2 t

yv k2 T2(x,°o,t)
40 2 *yk%t

0.0 0 765 2.121 0.500

0. 10 0.624 - 2 115 I .631 0.416

0.20 0.496 - I. 178 1.225 0.342

0.30 0.393 - 0.684 0 896 0.278

0 40 0 306 ■0.385 0 639 0.223

0.50 0.235 - 0.1 98 0 443 0. 176

0.60 0.177 •0.816 X 10'.-I 0. 298 0. 138

0 70 0.132 0.145 X 10"' 0.194 0.106

0 80 0.21 I X 10 ' 0. 123 0.808 X 10"

0.90 0.699 X 10" 0.369X 10

1.00 0.497 X 10"' 0 407 X 10" 0.45 I X 10"' 0.445 X 10i-l

I.I 0 0.348 X 10,-l 0.379 X 10,-l 0.259X10" 0.323 X 10'ri

I 20 0.240 X 10',-i 0.3 22 X 10 ' 0. I44X 10"' 0. 230 X 10"'

1.30 0 163 X 10"' 0.257 X 10"' 0.778X I0"2 0.I62X 10"'

1.40 0.109 X 10"' 0 195 X 10"' 0.404 X I0"2 0. I I 2 X 10'

1.50 0.722 X I0"2 0.143 X I O"1 0.203 X I0"2 0.764 X I0"2
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When k,2 > 1 Eq. (43) is always greater than zero and hence Tt(x, — t)
> T2(x, oo, t) for all values of X. It is therefore to be expected that the temperature
profile for X > 0 will be of a similar nature. To illustrate this, Figure 2 gives the tem-
perature distribution for various values of A" for Q,2 = 1, k21 = 2, and k12 = 2.
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(2) Qi2k21 < 1; Qi2fc2iKi21/2 < 1. This condition can be simply arrived at by taking
the reciprocal of the Case (1) parameters, yielding the mirror-image of the temperature
obtained in case (1). Clearly, with only obvious modifications, all observations made
for case (1) are equally valid here.

(3) Qi2&2i < 1; Qi2k2iKi21/2 > 1. From (42b) the first inequality implies that
dTi/dv{0, 0, t) = + <*>, while the second condition states that the far-field temperature
on the surface X = 0 in region 1 is equal to or greater than that in region 2. Eqs. (40)
with the above properties imply that a smooth transition from the contact point X =
Y = 0 to the far-field can be effected only if the temperature, as in the previous case,
has a wiggle profile. Unlike case (1) and case (2), however, this combination of pa-
rameters permits no a priori bounds on the surface temperature for \ Y\ >0. To illustrate
this case we chose the following combination of parameters: Q12 = 1, fc2i = 1/2 and
fc2iKi21/2 = 101/2/2. The results of the numerical calculations are plotted in Fig. 4. On
X — 0 the maximum temperature in region 2 exceeds the far-field temperature by about
20% and is realized, as seen in Fig. 4, at Y ~ .005. The wiggle temperature profile
persists to about X = .04°, beyond which it degenerates to one similar to case (1) (with
K\2 ^ 1).

(4) Qi2^2i > 1; Qi2^2iKi21/2 < 1- This selection of parameters creates on X = 0
a temperature that is also characterized by a wiggle, the mirror-image of that given
by case (3) since the parameters are the reciprocal of the case (3) parameters. With
only obvious modifications the general comments made for case (3) are also valid here.

7. Conclusions. A solution for the temperature field in a composite semi-space
has been obtained. This solution is expressed in terms of integrals which can be evaluated
as shown by the illustrative cases presented. In particular, at the contact surface point
X = Y = 0 the temperature is explicitly given in terms of tabulated functions.

From the illustrative problems presented, it appears that the following generalization
can be made: the temperature distribution on the surface X = 0 can be characterized
in a qualitative sense by the parametric combinations Qi2k21 and Qi2fc21Ki21/2. Further-
more, the temperature does not, in general, retain the same shape for all X > 0 but
instead goes through a finite transition zone in which the temperature experiences
what we have previously described as a wiggle profile. Beyond this zone the temperature
field assumes a shape that remains unaltered. Although, as cited above, only two pa-
rametric combinations affect the temperature profile on X = 0, a third quantity, namely
the diffusivity ratio k12 , strongly influences the profile for X > 0. In fact it is to be
expected that the combinations:

Q 12^21 lj Ql2^2llil2 lj Kl2 <C 1

or (44)

Q12^21 ^ 1; Ql2k2lKl2 ^ lj *12 1

will be the only families of parameters which result in a temperature profile devoid of
a wiggle or transition zone. Whenever one of the inequalities defined in (44) is violated,
a transitional zone can be anticipated. In particular, when either Ql2k2l < 1 and
Qi2fc2iKi2l/2 > 1, or Ql2k2l > 1 and < 1, a wiggle temperature distribution

6 This value at which the temperature profile undergoes a change in shape can be ascertained as
the value of X at which the gradient goes through zero.
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is initiated on the top surface X = 0 and extends into the body, the actual distance
being dependent on the numerical values of the parameters. On the other hand, for
the case Qi2^2i ^ 1 and 12 ^ 1, or Q 12^21 ^ 1, Q12&21K12 ^ 1 and
K12 < 1, the surface X = 0 will not experience a wiggle profile. Nevertheless, a transition
zone will be established within the body, the location being a priori estimated7 to be

' This estimate is based on the results of the example presented. The precise location at which
this profile can be expected to originate is given by the value of X that satisfies dT(x, 0, t)/dy = 0.
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in the vicinity of the value of X that equalizes the far-field temperature in regions 1
and 2.

In conclusion, it is worthy of note that the solutions presented herein for the com-
posite semi-space can be extended to include the geometry of a composite slab, i.e. one
with finite thickness with the back surface thermally insulated, by making use of the
well-known method of images [1],
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