AN INITIAL-VALUE PROBLEM IN SHOCK STABILITY

by G. W. SWAN (Washington State University)

A study of the stability of normal shock waves in fluids with viscosity and heat conduction is presented by Morduchow and Paullay [1]. In dealing with the structure for a continuous weak shock the following equation, their (41), is obtained:

$$
\begin{equation*}
\frac{\partial \bar{u}}{\partial t}+\left(u_{s}-\frac{1+\alpha}{2}\right) \Gamma \frac{\partial \bar{u}}{\partial x}+\Gamma u_{s}^{\prime} \bar{u}=\frac{1}{2} \delta \frac{\partial^{2} \bar{u}}{\partial x^{2}} \tag{1}
\end{equation*}
$$

($-\infty<x<\infty, t>0$), where $\bar{u}(x, t)$ is a small perturbation on the steady-state velocity:

$$
\begin{equation*}
u_{s}(x)=\frac{1}{2}\left[1+\alpha-(1-\alpha) \tanh \frac{1}{2} \delta^{-1} \Gamma(1-\alpha) x\right] \tag{2}
\end{equation*}
$$

and $\alpha, \delta(>0)$ and Γ are constants. The boundary conditions are

$$
\begin{equation*}
x \rightarrow-\infty, \quad \bar{u} \rightarrow 0, \quad u_{s} \rightarrow 1, \quad x \rightarrow+\infty, \quad \bar{u} \rightarrow 0, \quad u_{s} \rightarrow \alpha \tag{3}
\end{equation*}
$$

In [1] only the nature of the continuous eigenvalue spectrum is investigated. The complete formulation of the above problem requires that the initial form of the perturbation $\bar{u}(x, 0)$ be specified:

$$
\begin{equation*}
\bar{u}(x, 0)=A(x) \tag{4}
\end{equation*}
$$

say.
The purpose of this note is to illustrate how one can obtain an explicit solution to the initial- and boundary-value problem posed by (1)-(4).

The coefficients of \bar{u}_{x} and \bar{u} in (1) are complicated hyperbolic functions. By introduction of a change of variables it is possible to arrange for these coefficients to be algebraic in nature. This may be achieved as follows. Introduce X, t as the new independent variables, with $X=\left(1-u_{s}\right) /(1-\alpha)$. With $\Omega(X, t)$ denoting $\bar{u}\left(x\left(u_{s}(X)\right), t\right)$ the problem (1)-(4) is now formulated as

$$
\begin{gather*}
\left(X-X^{2}\right)^{2}\left(\partial^{2} \Omega / \partial X^{2}\right)+2\left(X-X^{2}\right) \Omega=k(\partial \Omega / \partial t) \tag{5}\\
\Omega(0, t)=\Omega(1, t)=0, \quad \Omega(X, 0)=F(X) \tag{6}
\end{gather*}
$$

where $k=2 \delta /(1-\alpha)^{2} \Gamma^{2}>0$, and, for convenience, the initial form of the perturbation $A\left(x\left(u_{s}(X)\right)\right)$ is replaced by $F(X)$.

Eq. (5) is linear and this suggests the use of integral transform techniques. Introduce the Laplace transform of $\Omega(X, t)$:

$$
\begin{equation*}
\Phi(X, p)=\int_{0}^{\infty} \Omega(X, t) \exp (-p t) d t \tag{7}
\end{equation*}
$$

[^0]Direct application of this transform to (5) gives

$$
\begin{equation*}
\Phi^{\prime \prime}+\left[2\left(X-X^{2}\right)^{-1}+\lambda\left(X-X^{2}\right)^{-2}\right] \Phi=f(X) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=-k p, \Phi=\Phi\left(X,-\lambda k^{-1}\right), \quad f(X)=-k \Omega(X, 0)\left(X-X^{2}\right)^{-2} \tag{9}
\end{equation*}
$$

and $\Omega(X, 0)$ represents the initial form of the perturbation. Also, since $\Omega(0, t)=$ $\Omega(1, t)=0$,

$$
\begin{equation*}
\Phi\left(0,-\lambda k^{-1}\right)=\Phi\left(1,-\lambda k^{-1}\right)=0 \tag{10}
\end{equation*}
$$

Mathematically, here, we have a singular cigenfunction expansion problem. The determination of Φ and the spectrum of eigenvalues is not trivial.

Let $\varphi(X, \lambda), \psi(X, \lambda)$ be two solutions of the homogeneous equation (namely (8) with $f \equiv 0$) such that their Wronskian $W(\varphi, \psi)=1$; then it is straightforward, by differentiation, to show that

$$
\begin{equation*}
\Phi\left(X,-\lambda k^{-1}\right)=\psi(X, \lambda) \int_{0}^{X} \varphi(X, \lambda) f(X) d X+\varphi(X, \lambda) \int_{X}^{1} \psi(X, \lambda) f(X) d X \tag{11}
\end{equation*}
$$

is the solution of (8). To find φ and ψ proceed as follows. Introduce

$$
\begin{equation*}
U=X^{\tau}(1-X)^{m}(n-X) \tag{12}
\end{equation*}
$$

where τ, m and n are as yet undetermined quantities. Consider the homogenoeus equation

$$
\begin{equation*}
L \Phi=0, L \equiv d^{2} / d X^{2}+2\left(X-X^{2}\right)^{-1}+\lambda\left(X-X^{2}\right)^{-2} \tag{13}
\end{equation*}
$$

Now

$$
\begin{equation*}
L U=X^{\tau-2}(1-X)^{n-2}\left(P+Q X+R X^{2}+S X^{3}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
P & =n\left(\tau^{2}-\tau+\lambda\right), \quad Q=-2 n \tau(m-1+\tau)-\tau^{2}-\tau+n+\lambda \\
R & =2\left(\tau^{2}+\tau m-n\right)+(m-1+\tau)(n \tau+m n+2) \\
S & =(m+2+\tau)(m-1+\tau)
\end{aligned}
$$

The quantity S can be chosen to be zero if

$$
\begin{equation*}
m=1-\tau \tag{15}
\end{equation*}
$$

and for this value of $m, R=2(\tau-n)$, which can be made zero for

$$
\begin{equation*}
n=\tau \tag{16}
\end{equation*}
$$

Also, on using (15) and (16), $Q=-\left(\tau^{2}-\tau+\lambda\right)$ and if τ is chosen to satisfy

$$
\begin{equation*}
\tau^{2}-\tau+\lambda=0 \tag{17}
\end{equation*}
$$

P and Q are now zero and $L U=0$ with

$$
\begin{equation*}
U=X^{\tau}(1-X)^{1-\tau}(\tau-X) \tag{18}
\end{equation*}
$$

However, the coefficient S can also be chosen to be zero for $m=-2-\tau$ and it is readily verified that this choice does not give consistency when the quantities P, Q and R are
set to zero. Consequently this value of m is dismissed. The solution of (17) is

$$
\begin{equation*}
\tau=\frac{1}{2}-\frac{1}{2} i(4 \lambda-1)^{1 / 2}, \quad \tau_{1}=\frac{1}{2}+\frac{1}{2} i(4 \lambda-1)^{1 / 2} \tag{19}
\end{equation*}
$$

Two linearly independent solutions of $L \Phi=0$ are now (18) and

$$
V=X^{\tau_{1}}(1-X)^{1-\tau_{1}}\left(\tau_{1}-X\right)
$$

and, since $\tau_{1}=1-\tau$,

$$
V=X^{1-\tau}(1-X)^{\tau}(1-\tau-X),
$$

with τ being given by the first equation of (19). Furthermore

$$
W(U, V)=-(1-2 \tau)\left(\tau^{2}-\tau\right)=i \lambda(4 \lambda-1)^{1 / 2}
$$

and hence

$$
\begin{align*}
& \varphi(X, \lambda)=\left[i \lambda(4 \lambda-1)^{1 / 2}\right]^{-1} X^{\tau}(1-X)^{1-\tau}(\tau-X) \tag{20}\\
& \psi(X, \lambda)=X^{1-\tau}(1-X)^{\tau}(1-\tau-X) \tag{21}
\end{align*}
$$

with $2 \tau=1-i(4 \lambda-1)^{1 / 2}$, are two linearly independent solutions of $L \Phi=0$ such that $W(\varphi, \psi)=1$.

Finally, substitution of the forms (20), (21) for φ and ψ into (11) gives the solution of (8) with boundary conditions (10). Inversion of (7) gives

$$
\begin{equation*}
\Omega(X, t)=-(2 \pi i k)^{-1} \int_{-k c+i \infty}^{-k c-i \infty} \Phi\left(X,-\lambda k^{-1}\right) \exp \left(-\lambda k^{-1} t\right) d \lambda \tag{22}
\end{equation*}
$$

where c is a positive constant. Since k is positive, $k c$ is positive. There is a pole of Φ at $\lambda=0$ and a branch-point singularity at $\lambda=\frac{1}{4}$. The evaluation of (22) is (formally) accomplished by closing the contour in the right-hand half-plane. Let C_{1} be the arc of the quarter circle from $-k c-i \infty$ to ∞, C_{2} be the lower branch from ∞ to $\frac{1}{4}+\delta, C_{3}$ be the arc of a small circle, radius δ, surrounding $\lambda=\frac{1}{4}, C_{4}$ be the upper branch from $\frac{1}{4}+\delta$ to ∞ and C_{5} be the arc of the quarter circle from ∞ to $k c+i \infty$. On C_{1} and C_{5}, $\lambda=\mathrm{Re}^{i \theta}$, say, and as $R \rightarrow \infty$ the presence of the decaying exponential in the integrand in (22) assures that there are no contributions from C_{1} and C_{5}. The residue at $\lambda=0$ is given by

$$
2 \pi i k\left(X-X^{2}\right) \int_{0}^{1}\left(X-X^{2}\right)^{-1} \Omega(X, 0) d X
$$

On the branch $C_{2}, \lambda=\frac{1}{4}+\mathrm{re}^{2 \pi i}$ and on the branch $C_{4}, \lambda=\frac{1}{4}+r$. Finally, the perturbation (in the limit as $\delta \rightarrow 0$)

$$
\begin{aligned}
\Omega(X, t)= & \left(X-X^{2}\right) \int_{0}^{1}\left(X-X^{2}\right)^{-1} \Omega(X, 0) d X \\
& +(2 \pi i k)^{-1}\left[-\int_{1 / 4}^{\infty} F(X, r) d r+\int_{1 / 4}^{\infty} G(X, r) d r\right]
\end{aligned}
$$

where $F(X, r), G(X, r)$ are the contributions from C_{2} and C_{4}, respectively. After a little
algebraic manipulation this expression can be cast in the form

$$
\begin{align*}
\Omega(X, t)= & \left(X-X^{2}\right) \int_{0}^{1}\left(X-X^{2}\right)^{-1} \Omega(X, 0) d X \\
& +(4 \pi)^{-1} \int_{1 / 4}^{\infty}\left[a(X, r) a_{1}(r)+b(X, r) b_{1}(r)\right] \exp \left(-r k^{-1} t\right) d r \tag{23}
\end{align*}
$$

where

$$
\begin{gather*}
a(X, r)=X^{1 / 2+i s}(1-X)^{1 / 2-i s}\left(\frac{1}{2}+i s-X\right) s^{-1}\left(\frac{1}{4}+r\right)^{-1} \tag{24}\\
a_{1}(r)=\int_{0}^{1} X^{-3 / 2-i s}(1-X)^{-3 / 2+i s}\left(\frac{1}{2}-i s-X\right) \Omega(X, 0) d X \tag{25}
\end{gather*}
$$

and $b(X, r), b_{1}(r)$, respectively, are the same as $a(X, r), a_{1}(r)$, respectively, but with i replaced by $-i$; also $s=r^{1 / 2}$.

The first expression on the right of (23) is interpreted as being the neutrally stable mode. It represents a translation of the weak shock structure and does not damp out with time.

Reference

[1] M. Morduchow and A. J. Paullay, Stability of normal shock waves with viscosity and heat conduction, Phys. Fluids 14, 323-331 (1971)

[^0]: * Received November 16, 1972.

