AN INITIAL-VALUE PROBLEM IN SHOCK STABILITY

BY G. W. SWAN (Washington State University)

A study of the stability of normal shock waves in fluids with viscosity and heat conduction is presented by Morduchow and Paullay [1]. In dealing with the structure for a continuous weak shock the following equation, their (41), is obtained:

$$\frac{\partial \bar{u}}{\partial t} + \left(u_s - \frac{1+\alpha}{2}\right)\Gamma \frac{\partial \bar{u}}{\partial x} + \Gamma u_s' \bar{u} = \frac{1}{2} \,\delta \frac{\partial^2 \bar{u}}{\partial x^2} \,, \tag{1}$$

 $(-\infty < x < \infty, t > 0)$, where $\bar{u}(x, t)$ is a small perturbation on the steady-state velocity:

$$u_s(x) = \frac{1}{2} [1 + \alpha - (1 - \alpha) \tanh \frac{1}{2} \delta^{-1} \Gamma(1 - \alpha) x], \qquad (2)$$

and α , δ (> 0) and Γ are constants. The boundary conditions are

 $x \to -\infty, \quad \bar{u} \to 0, \quad u_s \to 1, \quad x \to +\infty, \quad \bar{u} \to 0, \quad u_s \to \alpha.$ (3)

In [1] only the nature of the continuous eigenvalue spectrum is investigated. The complete formulation of the above problem requires that the initial form of the perturbation $\bar{u}(x, 0)$ be specified:

$$\bar{u}(x,0) = A(x), \tag{4}$$

say.

The purpose of this note is to illustrate how one can obtain an explicit solution to the initial- and boundary-value problem posed by (1)-(4).

The coefficients of \bar{u}_x and \bar{u} in (1) are complicated hyperbolic functions. By introduction of a change of variables it is possible to arrange for these coefficients to be algebraic in nature. This may be achieved as follows. Introduce X, t as the new independent variables, with $X = (1 - u_s)/(1 - \alpha)$. With $\Omega(X, t)$ denoting $\bar{u}(x(u_s(X)), t)$ the problem (1)-(4) is now formulated as

$$(X - X^2)^2 (\partial^2 \Omega / \partial X^2) + 2(X - X^2)\Omega = k(\partial \Omega / \partial t),$$
(5)

$$\Omega(0, t) = \Omega(1, t) = 0, \quad \Omega(X, 0) = F(X), \tag{6}$$

where $k = 2\delta/(1-\alpha)^2\Gamma^2 > 0$, and, for convenience, the initial form of the perturbation $A(x(u_s(X)))$ is replaced by F(X).

Eq. (5) is linear and this suggests the use of integral transform techniques. Introduce the Laplace transform of $\Omega(X, t)$:

$$\Phi(X, p) = \int_0^\infty \Omega(X, t) \exp(-pt) dt.$$
(7)

* Received November 16, 1972.

Direct application of this transform to (5) gives

$$\Phi'' + [2(X - X^2)^{-1} + \lambda(X - X^2)^{-2}]\Phi = f(X),$$
(8)

where

$$\lambda = -kp, \ \Phi = \ \Phi(X, \ -\lambda k^{-1}), \qquad f(X) = -k\Omega(X, \ 0)(X - X^2)^{-2}, \tag{9}$$

and $\Omega(X, 0)$ represents the initial form of the perturbation. Also, since $\Omega(0, t) = \Omega(1, t) = 0$,

$$\Phi(0, -\lambda k^{-1}) = \Phi(1, -\lambda k^{-1}) = 0.$$
(10)

Mathematically, here, we have a singular eigenfunction expansion problem. The determination of Φ and the spectrum of eigenvalues is not trivial.

Let $\varphi(X, \lambda)$, $\psi(X, \lambda)$ be two solutions of the homogeneous equation (namely (8) with $f \equiv 0$) such that their Wronskian $W(\varphi, \psi) = 1$; then it is straightforward, by differentiation, to show that

$$\Phi(X, -\lambda k^{-1}) = \Psi(X, \lambda) \int_0^X \varphi(X, \lambda) f(X) \, dX + \varphi(X, \lambda) \int_X^1 \Psi(X, \lambda) f(X) \, dX \tag{11}$$

is the solution of (8). To find φ and ψ proceed as follows. Introduce

 $U = X^{\tau} (1 - X)^{m} (n - X), \qquad (12)$

where τ , m and n are as yet undetermined quantities. Consider the homogenoeus equation

$$L\Phi = 0, L \equiv d^2/dX^2 + 2(X - X^2)^{-1} + \lambda(X - X^2)^{-2}.$$
 (13)

Now

$$LU = X^{\tau^{-2}}(1-X)^{m^{-2}}(P+QX+RX^{2}+SX^{3}),$$
(14)

where

$$P = n(\tau^{2} - \tau + \lambda), \qquad Q = -2n\tau(m - 1 + \tau) - \tau^{2} - \tau + n + \lambda,$$

$$R = 2(\tau^{2} + \tau m - n) + (m - 1 + \tau)(n\tau + mn + 2),$$

$$S = (m + 2 + \tau)(m - 1 + \tau).$$

The quantity S can be chosen to be zero if

$$m = 1 - \tau, \tag{15}$$

and for this value of $m, R = 2(\tau - n)$, which can be made zero for

$$n = \tau. \tag{16}$$

Also, on using (15) and (16), $Q = -(\tau^2 - \tau + \lambda)$ and if τ is chosen to satisfy

$$\tau^2 - \tau + \lambda = 0, \tag{17}$$

P and Q are now zero and LU = 0 with

$$U = X'(1 - X)^{1-r}(\tau - X).$$
(18)

However, the coefficient S can also be chosen to be zero for $m = -2 - \tau$ and it is readily verified that this choice does not give consistency when the quantities P, Q and R are

NOTES

set to zero. Consequently this value of m is dismissed. The solution of (17) is

$$\tau = \frac{1}{2} - \frac{1}{2}i(4\lambda - 1)^{1/2}, \quad \tau_1 = \frac{1}{2} + \frac{1}{2}i(4\lambda - 1)^{1/2}.$$
 (19)

Two linearly independent solutions of $L\Phi = 0$ are now (18) and

$$V = X^{\tau_1} (1 - X)^{1 - \tau_1} (\tau_1 - X)$$

and, since $\tau_1 = 1 - \tau$,

$$V = X^{1-\tau}(1 - X)^{\tau}(1 - \tau - X),$$

with τ being given by the first equation of (19). Furthermore

$$W(U, V) = -(1 - 2\tau)(\tau^2 - \tau) = i\lambda(4\lambda - 1)^{1/2},$$

and hence

$$\varphi(X, \lambda) = [i\lambda(4\lambda - 1)^{1/2}]^{-1}X^{r}(1 - X)^{1-r}(\tau - X), \qquad (20)$$

$$\psi(X, \lambda) = X^{1-\tau}(1-X)^{\tau}(1-\tau-X), \qquad (21)$$

with $2\tau = 1 - i(4\lambda - 1)^{1/2}$, are two linearly independent solutions of $L\Phi = 0$ such that $W(\varphi, \psi) = 1$.

Finally, substitution of the forms (20), (21) for φ and ψ into (11) gives the solution of (8) with boundary conditions (10). Inversion of (7) gives

$$\Omega(X, t) = -(2\pi i k)^{-1} \int_{-kc+i\infty}^{-kc-i\infty} \Phi(X, -\lambda k^{-1}) \exp(-\lambda k^{-1}t) d\lambda, \qquad (22)$$

where c is a positive constant. Since k is positive, kc is positive. There is a pole of Φ at $\lambda = 0$ and a branch-point singularity at $\lambda = \frac{1}{4}$. The evaluation of (22) is (formally) accomplished by closing the contour in the right-hand half-plane. Let C_1 be the arc of the quarter circle from $-kc - i\infty$ to ∞ , C_2 be the lower branch from ∞ to $\frac{1}{4} + \delta$, C_3 be the arc of a small circle, radius δ , surrounding $\lambda = \frac{1}{4}$, C_4 be the upper branch from $\frac{1}{4} + \delta$ to ∞ and C_5 be the arc of the quarter circle from ∞ to $kc + i\infty$. On C_1 and C_5 , $\lambda = \operatorname{Re}^{i\theta}$, say, and as $R \to \infty$ the presence of the decaying exponential in the integrand in (22) assures that there are no contributions from C_1 and C_5 . The residue at $\lambda = 0$ is given by

$$2\pi i k (X - X^2) \int_0^1 (X - X^2)^{-1} \Omega(X, 0) \, dX.$$

On the branch C_2 , $\lambda = \frac{1}{4} + re^{2\pi i}$ and on the branch C_4 , $\lambda = \frac{1}{4} + r$. Finally, the perturbation (in the limit as $\delta \to 0$)

$$\Omega(X, t) = (X - X^2) \int_0^1 (X - X^2)^{-1} \Omega(X, 0) \, dX + (2\pi i k)^{-1} \left[-\int_{1/4}^\infty F(X, r) \, dr + \int_{1/4}^\infty G(X, r) \, dr \right]$$

where F(X, r), G(X, r) are the contributions from C_2 and C_4 , respectively. After a little

algebraic manipulation this expression can be cast in the form

$$\Omega(X, t) = (X - X^2) \int_0^1 (X - X^2)^{-1} \Omega(X, 0) \, dX + (4\pi)^{-1} \int_{1/4}^\infty \left[a(X, r)a_1(r) + b(X, r)b_1(r) \right] \exp\left(-rk^{-1}t\right) \, dr,$$
(23)

where

$$a(X, r) = X^{1/2 + is} (1 - X)^{1/2 - is} (\frac{1}{2} + is - X) s^{-1} (\frac{1}{4} + r)^{-1}, \qquad (24)$$

$$a_1(r) = \int_0^1 X^{-3/2 - is} (1 - X)^{-3/2 + is} (\frac{1}{2} - is - X) \Omega(X, 0) \, dX, \tag{25}$$

and b(X, r), $b_1(r)$, respectively, are the same as a(X, r), $a_1(r)$, respectively, but with *i* replaced by -i; also $s = r^{1/2}$.

The first expression on the right of (23) is interpreted as being the neutrally stable mode. It represents a translation of the weak shock structure and does not damp out with time.

Reference

 M. Morduchow and A. J. Paullay, Stability of normal shock waves with viscosity and heat conduction, Phys. Fluids 14, 323-331 (1971)