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AN INITIAL-VALUE PROBLEM IN SHOCK STABILITY

by G. W. SWAN (Washington State University)

A study of the stability of normal shock waves in fluids with viscosity and heat
conduction is presented by Morduchow and Paullay [1], In dealing with the structure
for a continuous weak shock the following equation, their (41), is obtained:

du ( 1 + cA_ dii , _ 1 d2u
M + \u> Y~)T~dx+ Tu'u = 2Sd7' (1)

(—0° < x < ,t > 0), where u(x, t) is a small perturbation on the steady-state velocity:

u,(x) = J[1 + a — (1 — a) tanh |S_1r(l — a)x], (2)

and a, S (> 0) and r are constants. The boundary conditions are

x—oo, u —> 0, u8 —> 1, a:-^+oo; u —> 0, u, —> a. (3)

In [1] only the nature of the continuous eigenvalue spectrum is investigated. The com-
plete formulation of the above problem requires that the initial form of the perturbation
u(x, 0) be specified:

u(x, 0) = A(x), (4)

say.
The purpose of this note is to illustrate how one can obtain an explicit solution to

the initial- and boundary-value problem posed by (l)-(4).
The coefficients of ux and u in (1) are complicated hyperbolic functions. By introduc-

tion of a change of variables it is possible to arrange for these coefficients to be algebraic
in nature. This may be achieved as follows. Introduce X, t as the new independent
variables, with X = (1 — u,)/( 1 — a). With 0(X, t) denoting u(x(u,(X)), t) the problem
(l)-(4) is now formulated as

(X - X2)\d3tt/dX2) + 2(X - X2)Q = k(dSl/dt), (5)

12(0, t) = £2(1, t) = 0, Q(X, 0) = F(X), (6)

where k = 25/(1 — a)2r2 > 0, and, for convenience, the initial form of the perturbation
A(x(us(X))) is replaced by F(X).

Eq. (5) is linear and this suggests the use of integral transform techniques. Introduce
the Laplace transform of Q(X, t):

$(X, p) = [ to(X, t) exp (—pt) dt. (7)
Jo
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Direct application of this transform to (5) gives

+ [2(X - XT1 + \(X - X2r2]$ = f(X), (8)

where

x = -hp, $ = $(X, -X/T1), /(X) = -kQ(X, 0)(X - X2)-2, (9)

and 0(X, 0) represents the initial form of the perturbation. Also, since S2(0, t) =
0(1, t) = o,

$(o, -xr1) = $(i, -x/r1) = o. (io)
Mathematically, here, we have a singular eigenfunction expansion problem. The deter-
mination of $ and the spectrum of eigenvalues is not trivial.

Let <p(X, X), <p(X, X) be two solutions of the homogeneous equation (namely (8)
with / = 0) such that their Wronskian W(<p, $) = 1; then it is straightforward, by
differentiation, to show that

4>(X, -Xfc"1) = +{X, X) [X V(X, X)/(X) dX + <p(X, X) f MX, X)/(X) dX (11)
Jo Jx

is the solution of (8). To find v and proceed as follows. Introduce

U = .YT(1 - X)m(n - X), (12)

where t, ?n and n are as yet undetermined quantities. Consider the homogenoeus equation

L$ = 0, L = d2/dX2 + 2(X - X2)'1 + X(X - X2)'2. (13)

Now

LU = X^2(l - X)m~\P + QX + RX2 + SX3), (14)

where

P = n(jl — t + X), Q = —2 riT(m — 1 + t) — t2 — r + w+ X,

R = 2 (r2 + r?n — n) + (m — 1 + r)(nr + mn + 2),

S = (m + 2 + r)(m — 1 + r).

The quantity S can be chosen to be zero if

m = 1 — t, (15)

and for this value of m, R = 2 (r — n), which can be made zero for

71 = r. (16)

Also, on using (15) and (16), Q = — (r2 — r + X) and if r is chosen to satisfy

t2 — T + X = 0, (17)

P and Q are now zero and LU = 0 with

U = XT(1 - X)1t(t - X). (18)

However, the coefficient S can also be chosen to be zero for m = —2 — t and it is readily
verified that this choice does not give consistency when the quantities P, Q and R are
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set to zero. Consequently this value of m is dismissed. The solution of (17) is

r = i - \i(4X - 1)1/2, Tl = h + i*'(4X - D1/2. (19)

Two linearly independent solutions of = 0 are now (18) and

v = xTt(i - - x)

and, since t1 = 1 — t,

V = X1_r(l - X)r(l - r - X),

with t being given by the first equation of (19). Furthermore

W(U, V) = -(1 - 2r)(r2 - t) = iX(4X - 1)1/2,

and hence

<p(X, X) = [t'X(4X - l)1/2]-1Xr(l - X)1-t(t - X), (20)

i(X, X) = X1_r(l - X)T(1 - r - X), (21)

with 2t = 1 — i(4X — 1)1/2, are two linearly independent solutions of = 0 such
that W{f>, \p) = 1.

Finally, substitution of the forms (20), (21) for >p and \p into (11) gives the solution
of (8) with boundary conditions (10). Inversion of (7) gives

/ — kc — i co
3>(X, — X/c-1) exp (— Xfc 1 i) d\, (22)

-kc + i co

where c is a positive constant. Since k is positive, kc is positive. There is a pole of $ at
X = 0 and a branch-point singularity at X = J. The evaluation of (22) is (formally)
accomplished by closing the contour in the right-hand half-plane. Let Ci be the arc of
the quarter circle from — kc — ico to °°, C2 be the lower branch from °d to | + 5, C3
be the arc of a small circle, radius 5, surrounding X = f, C4 be the upper branch from
| + 5 to co and Cs be the arc of the quarter circle from °° to fee + . On C\ and C5 ,
X = Re' , say, and as R —» the presence of the decaying exponential in the integrand
in (22) assures that there are no contributions from Ci and C5 . The residue at X = 0
is given by

2«fc(x - x2) f1 (X - x2r'a(x, 0) dX.
Jo

On the branch C2 , X = f + re2" and on the branch C4 , X = \ + r. Finally, the per-
turbation (in the limit as 5 —» 0)

«(X, t) = (X - X2) f (X - X2)-'0(X, 0) dX
Jo

+ (2trik)-l\ - f F(X, r) dr + f G(X, r) dr ,
L J1/4 J1/4, J

where F(X, r), G(X, r) are the contributions from C2 and C4 , respectively. After a little
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algebraic manipulation this expression can be cast in the form

q(X, 0 = (X - x2) f1 (X - x2)~'n(x, o) dx
Jo

+ (4ir) 1 [ [a(X, r)oi(r) + b(X, rjb^r)] exp (—rk H) dr, (23)
J 1/4

where

a(X, r) = XI/2+i'(l - X)1/2-"(i + is - X)s~\l + r)"1, (24)

aL(r) = [' X~3/2~"(l - Z)"3/2+i'(i - is - X)0(X, 0) dX, (25)
Jo

and 6(X, r), 6i(r), respectively, are the same as a(X, r), ai(r), respectively, but with «
replaced by — i; also s = r'/2.

The first expression on the right of (23) is interpreted as being the neutrally stable
mode. It represents a translation of the weak shock structure and does not damp out
with time.
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