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1. Introduction. Existence and uniqueness of the positive solution for a nonlinear
second initial boundary value problem involving a one-dimensional heat equation
with zero initial distribution of temperature and a nonlinear radiation boundary con-
dition were established by Mann and Wolf [11]. Their results were improved by Roberts
and Mann [16] and Padmavally [14], Recently, Keller and Olmstead [10] gave a con-
structive proof of the existence for a problem of this type. Using Schauder's fixed-
point theorem [18], Friedman [5] considered an n-dimensional linear parabolic equation
with linear initial and nonlinear second boundary conditions. The maximum principle
[6, pp. 34-40; 12; 15, pp. 173-175] was used to prove uniqueness, and a constructive
proof of the existence was given by Chan [2] for a problem consisting of an n-dimensional
semilinear heat equation under linear initial and nonlinear radiation boundary con-
ditions with the use of the variational properties of the Neumann functions. In these
last two papers, the solutions need not be positive.

The purpose of this paper is to establish uniqueness, existence, upper and lower
bounds of positive solutions for a class of nonlinear second initial boundary value prob-
lems more general than that considered by Chan [2], The techniques used are different
from those in the above-mentioned papers. Our class of problems consists of a semi-
linear parabolic equation under linear initial and nonlinear radiation boundary con-
ditions. Positive; steady-state solutions for problems of this type were considered by
Olmstead [13], Keller [9], Cohen and Laetsch [4], and more recently by Cohen [3].

In Sec. 2 we establish uniqueness of a solution (not necessarily positive) under less
stringent conditions than those imposed by Chan [2], Conditions which imply that the
solution is positive are given in Theorem 2. An existence theorem of the positive solution
is proved constructively in Sec. 3 by using an iteration scheme of the Picard type. This
scheme gives an alternating sequence consisting of two monotone subsequences bounding
the solution from above and below. Thus in a given problem, each successive iteration
yields a more accurate pointwise upper or lower bound. The sequence is shown to con-
verge geometrically to obtain the existence theorem. In Sec. 4 we first use the quasi-
linearization technique to establish an existence theorem. We show that this technique
gives a monotone non-increasing sequence, converging quadratically to the solution.
The method of quasilinearization was introduced in dynamic programming by Bellman
[1]. It was used by Keller [9] and more recently by Cohen [3] for some n-dimensional
mildly nonlinear elliptic boundary-value problems. To obtain the lower bounds, we
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construct a monotone nondecreasing sequence converging to the solution. From these
constructions, pointwise upper and lower bounds are also obtained.

2. Uniqueness. Let D be a bounded n-dimensional domain in the real n-dimensional
Euclidean space, D~ its closure, and dD its boundary. Also let x — (/, , x2 , ■ • • , ./•„),
0 = D X (0, T], T < °°, and S = dD X (0, T). The semilinear parabolic equation
under consideration is

Lu = ib, 0 + c(x, t)u - ~ = g(.r, t;u) in 0, (2.1)

where c < 0 is continuous, au = a a (i, j = 1,2, ■ • • , n) are continuously differentiate,
and for all n-tuples of real numbers (£i , £2 , • • • , £»)> there exists a positive number k
such that

E a, Mi > k E s£.-2
i ,j = 1 t = 1

for all (x, 0 in fi. Let Br = D X [0, T] ji = r}. The initial condition is given by

u(x, 0) = </>(/) on B0~. (2.2)

Let n = («, , n2 , • ■ • , n„) be the outward unit normal to dD. Our nonlinear radiation
boundary condition is given by

Au ^ dv{x t) + B(-X' t] ^ = ^X' ® °n S'

where d/dv = /" ,,, a^n^d/dx;) is the outward conormal derivative to S.
For n = 3, a, ; = 1 if i = j, and au = 0 if i ^ j, the problem (2.1)-(2.3) can be inter-

preted physically as that of finding the temperature u(x, t) of a homogeneous and isotropic
solid having an arbitrary initial distribution of temperature <f>(x). Heat is generated
nonlinearly in it at a rate proportional to cu — cj, and the body is subject to a nonlinear
radiation boundary condition (2.3), which is more general than the Stefan fourth-power
law [13], Our quest for positive solutions is motivated by the physical concept of the
absolute temperature.

Let the subregions D X (r, /] and dD X (r, <] be denoted respectively by , and Sr, .

Theorem 1. Let M(x, t) satisfy LM < g(x, t; M) in 12, M(x, 0) > <p(x) 011 B0~,
AM > f on S. Also let m(x, t) satisfy Lm > g(x, t; m) in ft, m(x, 0) < <f>(x) on Bn~,
Am < / on S. If m, u and M are continuous 011 QT where u is a solution of the problem
(2.1)—(2.3), and if

g{£, T-, f($, r)) > gf(£, t;z({, t)) when f(£, r) > z(£, r), (2.4)

B(£, t; f(£, t)) > /i(£, T;z(Z, t)) when f(£, r) > z(£, r), (2.5)

then m(x, t) < u(x, t) < M(x, t) on ft".

Proof. Let 10 = M — u. If w < 0 at some point of ft", then since w is continuous
on £2~, iv attains its negative minimum c, at some point, say (x, t). If (x, t) is in O0( >
then let w be the largest subset of S20, such that w < 0. From (2.4), Lw < 0 in co, and
hence by the strong maximum principle tv = c, in co, contradicting the definition of co
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unless w = fl0( ■ But this latter case contradicts by continuity the condition w > 0
on B0~. Therefore the negative minimum cannot be in ft0, . If (x, t) is on S0, , then at
this point dw/dv < 0, and B(x, t; M) — B(x, t; u) < 0 by (2.5). This contradicts the
given condition AM — Au > 0. Thus w > 0 on ft", and hence M > u on ft .

To prove m < u on ft", we let 2 = u — m and use a similar argument to conclude
2 > 0 on ft". Thus the theorem is proved.

From this theorem, we obtain uniqueness of the solution.

Corollary 1. If (2.4) and (2.5) hold, then there exists at most one solution to
the problem (2.1)-(2.3).

Theorem 2. If there exists a positive constant c2 such that u > v at the point
(|, r) implies

C2{m(£, t) — v(£, r)} > g(%, r; w(£, r)) — </(£, r; i>(£, t)), (2.6)
and if

g(x, «; 0) = 0, <t>(x) > 0, (2.7,2.8)

B(x, t; 0) = 0, j(x, t) > 0, (2.9, 2.10)
and if (2.4) and (2.5) hold, then there exists at most one solution u of the problem
(2.1)—(2.3); if a solution exists, it is positive.

Proof. It follows from Corollary 1 that it is sufficient to show u > 0 on Let
m(x, 0 = 0 on Q~. Then Lm = 0 = g(x, t; m) in ft, m = 0 < <f>(x) on B„~, Am = 0 < /
on S. Hence, by Theorem 1, u(x, t) > 0 on

From (2.1) and (2.7), we have; L(u — 0) = g(x, V, u) — g(x, 0). Thus, from (2.6),
(L — c2)u < 0 in ft. By (2.8), u > 0 on B„~. If u < 0 at some point of ft", then, by the
weak maximum principle, u attains its non-positive minimum at some point on S.
It follows from (2.5) and (2.9) that Au < 0 at this point. This contradicts (2.10). Thus
u > 0 on ft".

3. Iteration scheme of the Picard type. Let us give the following definitions:
Definition 1. A function lc(x) is said to belong to the class Cm + a if all its first in

partial derivatives exist, are continuous and are locally Holder-continuous of exponent
a, where 0 < a < 1.

Definition 2. The boundary dD belongs to the class C'"+a if for every point x of
dD, there exists an ?i-dimensional neighborhood K such that K dD can be represented
for some i (1 < i < n) in the form xt = )i(xi , x2 , • • • , x,-t , xi + i , • • • , xn), where h
belongs to Cm+a.

We shall also need the following assumption:
(A) the coefficients au (i, j = 1, 2, • • • , n), their partial derivatives da^/dx,t , and

c are uniformly Holder-continuous of exponent a on ft".
For convenience we state the following lemma whose proof can be found in Friedman

[6, p. 146].
Lemma 1. Under assumptions (A) and dD £ Cl + a, if w is a solution of the problem

Lw = b(x, t) in ft, w = l(x) on B0~,

= (~ + = p(x, t) on S,
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where \(x, t) is continuous on S~, then for all (x, t) on ft",

\w(x, 01 < c,,(l.u.b. \b\ + l.u.b. |Z|, l.u.b. |p|),
Q- Bo" S ~

where c3 is a constant depending on L, X and ft".

Let ft* = D X [0, T), ftrl* = D X [t, t), and Srl* = 3D X [r, 0- To define a Neumann
function, we follow Friedman [6, p. 155].

Definition 3. A function R(x, t; £, r) defined and continuous for (x, t\£, r) £ ft~ X ft*,
i > t is called a Neumann function of Liv = 0 in ft and ifew = 0 on S, where (i(x, t)
is continuous on S~, if for any 0 < r < T and for any continuous function l(x) on Br
having a compact support, the function

w [ R(x, t;£, t)1(0 dV(
J Br

is a solution of Lw = 0 in ftr7. , and satisfies

lim w(x, t) = l(x) for x G B~,
I 1 r

and ippiv = 0 on SrT .
Let R*(x, t\ £, r) denote the Neumann function of the adjoint equation L*w = 0

in ft* corresponding to the boundary condition ippiv = 0 on S0r*. Under assumptions
(4) and dD £ C2+a, it follows from Friedman [6, p. 155, pp. 82-84] and Ito [4, 5] that
R and R* exist and are unique, LR = 0 for (x, t) in ft, L*R* = 0 for (x, t) in ft*, \ppR = 0
for (x, t) on SrT , \pnR* = 0 for (x, t) on S0r*, and furthermore, R, Rx , and R, are
continuous functions of (x, t\ £, t) in ft X ft*, t > r while R*, R*, Rrx* and R * are con-
tinuous functions of (x, t\ £, x) in ft* X ft, t < t.

Let r(x, t; £, t) denote the fundamental solution of L. It can be constructed by the
parametrix method [6, pp. 3-25], Let F(.r, t; £, r) denote the solution of the linear second
initial boundary value problem: LV — 0 in QrT , V = 0 on Br~, xppV = — yj/fiT on SrT .
Then the Neumann function is given by

R{x, I; £, t) = r(z, t] £, r) + V(x, t; £, t).
By Friedman [6, p. 134],

|r(-c, t)I < cj\(t - Ty \x - £["-2"} = q(x — $, t — r)

where c4 is a positive constant and 0 < ^ < 1. From Lemma 1, |F| < c5 on ft", where
c5 is a constant.

In the Green's identity

vLu - UL'V - ± £ {g (»„ - ua„ ^)} - ft "">■
let u(y, cr) = R(y, a; r) and v(y, a) = R*(y, a; x, t). Integrating this over the domain
D X (r + t, t — e) and letting e —> 0, we have by the boundary condition

R(x, t- £, r) = r; x, t) (3.1)

for any two points (x, I) and (£, r) in ft with t > r. Using an argument similar to the
proof of Theorem 11 of [6, pp. 44-45], we have for (£, r) in ft*

R{x, t; J, r) > 0 in ft,r . (3.2)
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Let N(x, t; £, r) be the Neumann function of Lw = 0 in 9, and dw/dv = 0 on S.
Our iteration scheme is given by

Lua = 0 in 0, (3.3)

MoO, 0) = <p(x) on S0", (3.4)

^ = /(z, 0 on <S, (3.5)

and for I = 0, 1, 2, • • ■ ,

Lui+1 = g(.r, m.) in Q, (3.6)

ui + 1(z, 0) = <£(z) on Ba~, (3.7)

(dUi+i/dv) + 5(.r, Ui) = f(x, t) on *S. (3.8)

Under assumptions (4) and 3D £ C2+", iV(./;, £, t) exists, and hence the sequence
{«, } is well defined, provided g, <j>, B and / are continuous. In the following theorem
we show that this scheme gives an alternating sequence consisting of two monotone
subsequences bounding the solution from above and below.

Theorem 3. Under assumptions (4) and dD £ C2+a, and the hypotheses of
Theorem 2 with (2.4) replaced by

r; ffe r)) > g(z, T; z(£, t)) when f(£, r) > z(£, r), (3.9)

if g, <f>, B and / are continuous, then the solution u of the problem (2.1)-(2.3) satisfies

— c6 < Mi < • • • < w2i + i < • • ■ < u < ■ ■ ■ < U'U < ■ ■ ■ < u0 < c6 in £2, (3.10)

where c6 = max {l.u.b.n u0 , l.u.b.n- |w,|}.
Prooj. Let v = N*(%, r; x, t) in the Green's identity, and integrate over D X («, t — e).

On letting e —> 0 and using (3.1), we can rewrite (2.1)-(2.3) equivalently as

u(x, t) = f N(x, t; £, 0)0© dVs - f [ N(x, t\r)gg, r; m) dV( dr
Jd Jo Jd

+ f f N(x, t-£, r)[/(ij, r) — B(t, t;u)] dr. (3.11)
«/0 J dD

Since L(u0 — u) = — g(x, t\ u) in Q, ua — u = 0 on B0~, and (d/dv)(u0 — u) =
B{x, t; u) on S, we have

M0 - m = / / NOr, t] £, r)g(£, r; m) (ZFf dr
JO J D

f f N(x, t\£, t)B(£, t]u) dA{ dr. (3.12)
Jo JdD

+

By Theorem 2, u > 0 on tt~. From (2.7) and (3.9), </(£, r; u) > 0. Similarly, from (2.5)
and (2.9), B(£, r; u) > 0. By (3.2), N(x, t\ £, r) > 0 in &rT . Thus the right-hand-side
of (3.12) is positive, and hence m0 > u in 12.

Since u0 > u in il, we have

L(u — m,) = g(x, t; u) — g(x, t\ m0) < 0 in O
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by (3.9). By continuity, un > u on S. Hence it follows from (2.5) that (d/dv)(u — m,) =
B(x, t; M0) — B(x, t; u) > 0. From (3.11),

u - Ml = [ f N(x, t; £, tM£, t;m0) - g(£, t;m)] dFf dr
Jo

+ f f N(x, <; £, t)[B(£, t;m0) — 5(£, t;m)] dA£ dr > 0.
J 0 JdZ>

Thus m > Ui in 12.
From Lemma 1,

Mo < c3(l.u.b. </> + L.u.b. /),
Bo" S~

|Mi| < c3( l.u.b. g(x, t;uo) + l.u.b. <t> + l.u.b. |/ — B(x, <;m0)|}.
fl- B0~ S~

Since g, <t>, B and / are continuous, u„ and mx are bounded. Thus we have

— c6 < Mi < m < u0 < c6 in S2.

To complete the proof of the theorem, we use the principle of mathematical in-
duction. Let us assume that for a particular value of i, say j, we have

— c6 < u, < • ■ • < m2, + i < u < u2i < ■ ■ ■ < m„ < c6 in fi. (3.13)

Then for i = j + 1, we have by (3.9) and (3.13)

L(u2i+2 — u) = <7(2, m2, + 1) — gr(a:, <; m) < 0 in S2.

Since w2/+2 — m = 0 on and (d/dv)(u2i+2 — u) > 0 on S, we have m2/+2 > u in 12
by an argument similar to the above. By repeating the procedure for u2i — W2/ + 2 ,
m — m2,+3 , and m2,+3 — m2/+1 respectively, we obtain in w2, > m2)+2 , u > m2,-+3 , and
m2i+3 > m2, +1 . Thus we have (3.10).

Theorem 4. Under the hypotheses of Theorem 3, if u > v at (y, cr) implies

B(y, <7; m(y, <t)) - B(y, a; v(y, a)) < c7{u(y, a) - v(y, a-)}, (3.14)

where c7 is a positive constant, then there exists a unique positive solution of the problem
(2.1)-(2.3).

Prooj. Let us rewrite the iteration scheme (3.6)-(3.8) equivalently as

m, + i(x, t) = f N(x, t; £, 0)</>(£) dV( - [ [ N(x, t; £, r){/(£, r; m.) dFf dr
Jd Jo

+ f f N(x, t; £, r)[/(|, t) - i?(£, r; m,)] dA( dr. (3.15)
Jo J dD

Let pi = max |m, + i — m,|. Then by (3.10), p» < 2c6 . Let c8 = max jc2 , c7}. By (2.6),
(3.2), (3.14) and (3.15), we have

u2 — Mi < c8) / N(x, t; £, t)(m0 — Mi) dFf dr + / / AT(a:, <;£, t)(m0 — m,) dAt dry*
WO .'0 J
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Thus

Pi < CsPol [ f N(x, t; £, r) dV( dr + [ [ N(x, t; £, r) dA( dr\
WO JD «'0 J

< c8p0 [ [ {q(x—Z,t—T) + c5}dV(dT+ [ [ {q(x-£, t-T) + c5] dA( dT\-
L^O J D Jo JdD J

Let the quantity inside the square brackets be denoted by r. r > 0, and pi < c8p0r <
2c6c8r. It follows from induction that

p„ < 2c6(c8r)".

Since g(x — £, t — t) is integrable, for example by taking n to be any arbitrarily-fixed
value between 1/2 and 1, we can choose the time interval [0, cr] such that csr < 1 so
that the sequence converges uniformly and geometrically. Thus lim,_„ ui + 1 is a solution
of (2.1)-(2.3), and hence we have the existence of a solution on [0, a]. Since global
uniqueness of the positive solution on 0" follows from Theorem 2, we have existence
of a unique positive solution on

To prove the global existence on we start from time t = a — r/, where is an
arbitrarily chosen positive constant such that <j — ?? > 0. An argument similar to the
above gives the inequality

c8 [ [ {q(x-Z, t-r) + c5] dV( dr + [ [ {q(x—£, t—r) + c5} dA( dr < 1,
LJe-rj Jd J a—r) JdD J

restricting the time interval for existence. Since O" is cylindrical, the same length a
of time satisfies this inequality. Thus we have a unique positive solution for 0 < t <
2<j — 7). Proceeding in this way, we obtain the global existence of a unique positive
solution.

4. Quadratic convergence, upper and lower bounds. We shall use the following
lemma.

Lemma 2. Let w(x, t) be continuous on ft", and Lw < 0 in ft. (i) If w > 0 on B0~
and ip\W > 0 on S, where \(x, t) > 0, then w > 0 on ft", (ii) If w > 0 on B0~ and \p^w > 0
on S, then w > 0 on ft".

Prooj. (i) If iv < 0 at some point of ft", then by the weak maximum principle
w attains its negative minimum at some point on S. Thus at this point \px'io < 0, con-
tradicting the given condition ip\W > 0. Thus w > 0 in ft".

(ii) If w < 0 at some point of ft", then again by the weak maximum principle
w attains its non-positive mininum at some point on S. At this point, \pxvJ < 0, which
is a contradiction to > 0. Hence w > 0 on ft".

We shall need the following assumptions:

(B) g is twice continuously differentiable in u such that

0 < gu < c9 , and 0 < guu < 03 for u > 0, (4.1)

where c9 is a constant.
(C) gu(x, t; u) is uniformly Holder-continuous when (x, t) £ ft" and u varies in a

bounded set.
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(D) B is twice continuously differentiable in u such that

0 < Bu < co, and 0 < S„„ < » for u > 0. (4.2)

Let us define a sequence {u;j by the method of quasilinearization: u0 is any positive
continuous function, conveniently given by (3.3)-(3.5), and for i = 0, 1, 2, ■ ■ ■ ,

Lui + l = g(x, t; u.) + gu(x, t; «,)(«,- +1 — «<) in ft, (4.3)

ui+l(x, 0) = <t>(x) on B0~, (4.4)

(dUi + i/dv) + B(x, t; iii) + Bu(x, t; m,)(m1 + 1 — m.) = /(a*, t) on S. (4.5)

The following theorem gives the upper bounds for the solution of the problem (2.1)-
(2.3).

Theorem 5. Under conditions (2.7)-(2.10), assumptions (A)-(D) and dD £ C2+a,
if <j> and / are continuous on />„~ and S~ respectively, then the sequence {it,} given by
(3.3)-(3.5) and (4.3)-(4.5) is well defined, and satisfies

Cio > m, > ui +1 > 0 on Q,~, i = 0, 1, 2, • • • ,

where

c,o = c3(l.u.b. 4> + l.u.b. /).
B0~ S~

Prooj. By Taylor's theorem,

g(x, t; u) = g(x, <; u{) + gu(x, t; mv)(u — u,) + guu(x, t; r,){u - w,)V2, (4.6)

where tj lies between u and u{ . Since g{x, t; 0) = 0, and guu > 0 for u > 0, we have
at u = 0,

0 > gr(a;, w.) — ^(x, m,)m, if Ui > 0. (4.7)

Similarly,
0 > B(x, V, Ui) — Bu(x, t; Ui)Ui if ut > 0. (4.8)

First we show that > 0 (i = 0, 1, 2, • • •). If u0 < 0 at some point of £2~, then it
follows from the weak maximum principle and <f> > 0 that u0 attains its non-positive
minimum at some point on S. Thus at this point du„/dv < 0, contradicting / > 0. Hence
M0 > 0 on Now we use the principle of mathematical induction. Let us assume that
for a particular value of i, say j, Uj > 0 on S2~. For i = j + 1, it follows from (4.3) and
(4.7) that

[L - gu(x, t; ui)]ui+1 < 0 in 0.

u,-+1 > 0 on Ba~. From (4.5), (4.8) and / > 0,

~d
3u(x, (;«,)!«, + !. + BJx, t:Uj) w.- + i >0 on S.

dv

Since gu(x, t; w,-) > 0 and B(x, t; m,) > 0, we have from Lemma 2, where L is now re-
placed by L — gu{x, t; ut), that ui+l > 0 on S2~. Thus > 0 (t = 0, 1, 2, • • •) on

Next we show that u, > ui +1 . From (4.1) and (4.6),

g(x, t; ui+1) > g(x, t; w.) + gu(x, t; m,•)(«, +1 - «<)■ (4-9)
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Similarly, we have

B(x, t; ui + 1) > B(x, t; u,) + Bu(x, t\ m,)(m1+1 — u{). (4.10)

From g(x, <; 0) = 0, g(x, t\ u0) > 0, and (4.9), we have

Lui < g(x, t; u{) in 9, (4.11)

for i — 0, 1, 2, • • • . Similarly, from B(x, t; 0) = 0, B(x, V, u0) > 0, and (4.10), we obtain

(<dUi/dv) + B(x, t; if,-) > j(x, t) on S (4.12)

for i = 0, 1, 2, • • • . Using (4.11) and (4.12), we get

[L — gu(x, t-,ui)\(ui — ui+1) <0 in fi,

+ Bu(x, <; w,)j(wi — Ui+i) > 0 on S

for i = 0, 1, 2, • • • .It follows from (4.1) and (4.2) respectively that gu(x, t; ut) > 0
and Bu(x, t; u<) > 0. Since u{ — ui + i = 0 on B0~, we have from Lemma 2, where L is
now replaced by L — gu(x, <; u,), that u{ > ui+1 on for i = 0, 1, 2, ■ • • .

By Lemma 1, c10 > u0 . Thus cln > u{ > ui + 1 > 0.
Under assumptions (A) and dD £ C2+a, N(x, I; £, t) exists and hence u0 is well-

defined. Since 0 < ua < c10 on it follows from assumption (C) that gu(x, t\ u0) is
uniformly Holder-continuous, and hence the Neumann function Ri(x, t; £, r) associated
with [L — gu(x, t; u0)]ui = 0 in S2 and [(d/dv) + Bu(x, t; u0)]ui = 0 on S exists. Thus
Ui is well-defined. By repeating the above procedures, we see that the sequence {u,)
is well-defined. Thus the theorem is proved.

Theorem 6. Under the hypotheses of Theorem 5, there exists a unique positive
solution of the problem (2.1)-(2.3).

Proof. c9 > gu > 0 implies (2.4) and (2.6). Bu > 0 implies (2.5). Hence by Theorem
2, the problem (2.1)-(2.3) has at most one positive solution.

Since the sequence {«;} is monotone non-increasing and is bounded below, there
exists a function U(x, t) such that lim,^„ it, = U. To show U(x, t) is the solution of the
problem (2.1)-(2.3), let us rewrite the iteration scheme (4.3)-(4.5) equivalently as

ui+i(x, t) = f N(x, t; £, 0)0© dV;.
J D

- f f N(x, t; £, r)[g{t, tj u^) + g„(£, T]ut)(ui+1 - u>)] dV( dr
*'o Jd

[ [ N(x, t; £, t)[/(£, r) — B(£, r; — BJ£, r; u,)(ui+l - «;)] dA( dr.
Jo J dD

(4.13)

+

By (3.2) and Theorem 5, the integrands in the second and third integrals of (4.13)
are bounded respectively by

N(x, t; £, t)[(7(£, t; c10) + c10gu(£, r; c10)],

and
N(x, t; %, r)[/(£, t) + B(£, t; c10) + c10Bu(£, r; c10)],



452 C. Y. CHAN

both of which are integrable over their respective regions of integration. Let us take
the limit as i tends to infinity in (4.13). By the Lebesgue convergence theorem [17,
p. 200], we can interchange the limit and integration processes. Hence

U(x, t) = f N(x, t; £, mt) dV( - [' [ N(x, f; £, r)</(£, r; U) dVc dr
Jd Jo Jd

+ f f N(x, t; a, r)m, r) - B(t, r; U)] dAt dr.
Jo JdD

This implies that f/(x, <) is the solution of the problem (2.1)-(2.3).
We give another proof of existence of the solution in the next theorem. The proof

also shows that the sequence {m, } converges quadratically to the solution.
Theorem 7. Under the hypotheses of Theorem 5, the problem (2.1)-(2.3) has

a unique positive solution to which the sequence {u, [ converges quadratically.
Proof. As in Theorem 6, uniqueness of a positive solution follows from Theorem 2.

By Theorem 5, p0 < cI0 . For i = 1,2, • • • , we have by Taylor's theorem

g(x, t; Ut) = g{x, t; + gu(x, t; «,•_!)(«,• - w,-_,) + guu(x, t\ y)(m, - w,_i)2/2

where y(x, t) lies between u, and ti,., . Thus, from (4.3),

L(v,i - ui+,) = 0u(z, t; Ui)(Ui - U{ + i) - guu(x, t]y)(ui-l - Ui)2/2 in n.

Similarly, by Taylor's theorem and (4.5),

— (ui — Ui + i) = —Bu{x, t; M,-)(wi — wi+1) + 2?„„(a;, <; f)(u,_, — w.)72 on <S,
av

where f(x, <) lies between m, and «,_[ . Since m, — Wi + 1 = 0 on 50~, w, — ui+1 > 0 on
iV(a;, £, r) > 0 on > 0 and Z?u > 0, we have for i = 1, 2, 3, • • • ,

Ui - ui+1 < f f N(x, t; £, r )<•/„„(£, r; 7)(m<-i - wJ 2/2 c2F{ dr

+ f f N(x, t; £, t)Buu(Z, t; t)(Ui-1 — Ui)2/2 dAi dr
Jo JdD

by dropping out the non-positive terms. Since u, < c10 , let

Cn = max { l.u.b. ^(x, t]u), l.u.b. Buu{x, t;u)j.
n~X[0,c10] 5 — X 10, c! o ]

Thus

P. < CnpJ-jj^ £ AT(x, t) £, r) dFf dr + J f N(x, t; £, r) drjf 2.

Following the proof of Theorem 4, we have

Pi < p?-i(cnr)/2 for i = 1, 2, • • • .

Let us choose the time interval [0, 5] such that cur/2 < 1. Then the sequence converges
quadratically and uniformly on [0, 5].

An argument similar to the proof of Theorem 4 establishes the global existence of
the positive solution on £2".
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To construct a bounded non-decreasing sequence, we shall use the following as-
sumption:

(E) g and B are continuously differentiable in u, and there exists a bounded uni-
formly Holder-continuous function d(x, t) on iV such that

6{x, t) > gu(x, t] u) >0 (4.14)

and a continuous function s(x, t) on S~ such that

s(x, t) > Bu(x, <; u) > 0. (4.15)

We note that in particular 9 and s can be replaced by appropriate constants. Let
us construct a sequence {y,}: v0 = 0, and !\ + i (i = 0, 1, 2, • ■ ■) are given by

Lvi + 1 = g(x, t; v<) + d(x, t)(vi+1 — v<) in Q, (4.16)

yi+1(z, 0) = 4>(x) on B0~, (4.17)

(dvi+1/dv) + B{x, t; Vi) + six, t)(vi+1 — Vj) = j{x, t) on S. (4.18)

Under assumptions (4), (E) and dD £ C2+", the Neumann function of (L — d)w = 0
in and \psw = 0 on S exists, and hence the sequence {v,} is well defined.

Theorem 8. Under the hypotheses of Theorem 5 with assumptions (B), (C)
and (D) replaced by assumption (E), the sequence ju, ( satisfies

0 = v0 < Vi < v2 < ■ ■ ■ < u0 < c10 on

where c10 = c3 (l.u.b.Bo- 4> + l.u.b.s- /).
Proof. Vi satisfies (L — 0)^ = 0 in Q, > 0 on B0~, \p,Vi > 0 on S. By Lemma 2,

»i > 0 on fT. Let us assume that for a particular value of i, say j (>1), we have v0 <
Vi < v2 < ■ ■ ■ < Vj . Then, from (4.16),

(L - 6)(vi+1 - vf) = g(x, t; v,) - g(x, <; v,^) - 6{Vi - d.-.j).

By the mean value theorem and (4.14),

g(x, t; v^ - g(x, t; f,_i) < 6(Vj - v^).

Therefore (L — 9)(vi+l — «,) < 0 in O. Similarly, from (4.15) and (4.18), iA,(wi + i — u,) > 0
on S. From (4.17), vi+1 — vt = 0 on B0~. From Lemma 2, vi+1 > vf on Q~. Thus v0 <
Vi < v2 < ■ ■ • .

Since wt > , g(x, t;w) >0 and B(x, t;w) >0 for w > 0, we have L{u0 — vt) < 0
in £2, and (d/dv)(u0 — v() > 0 on S for i > 2. u0 — v{ = 0 on B0~~. Thus, by the weak
maximum principle, u0 > vt on Q~ for i > 2. From Lemma 1, u0 < cl0 .

The following theorem shows that the sequence forms the lower bounds to the
solution. Its proof is similar to that for Theorem 6, and hence is omitted.

Theorem 9. Under the hypotheses of Theorem 8, there exists a unique positive
solution lim.^oo v, of the problem (2.1)-(2.3).

For the scheme (4.16)-(4.18), the same Neumann function corresponding to
(L — 0)iv = 0 and i/\m) = 0 occurs in all steps in the construction of the solution. Let
us rewrite (4.3) and (4.5) respectively as

[L - gu(x, t; ui)]ui+1 = g(x, t; u.) - gu(x, t; w,)w, in fi,

^ + Bu(x, <;m,)Jw, + 1 = / — B(x, t;v,i) + BJx, t\ ut)u, on S.



454 C. Y. CHAN

gu{x, <; Ui) and Bu(x, t\ u<) vary as i varies. Hence the associated Neumann function
Rl + l(x, t; £, r) varies in each successive step of the construction in the quasilinearization
technique. Although the rate of convergence is geometrical in the Picard scheme (3.3)-
(3.8), the Neumann function N(x, t; £, r) remains the same in all steps.
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