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1. Introduction. This note deals with an application of the intermediate problem
technique to the computation of the natural frequencies of a vibrating inhomogeneous
plate. The intermediate problem technique was first introduced in 1935 by Alexander
Weinstein [13]. An abstract formulation of this technique was developed by N. Aronszajn
[1], [2], and is related to the theories of N. Bazley and D. W. Fox [4], [5], [6], N. Aronszajn
[3] and to further developments of A. Weinstein in [14], [15], [16], G. Fichera [8], [9],
J. B. Diaz [7], T, Kato [11], and S. T. Kuroda [12], An expository article of A. Weinstein
[17] and a monograph of S. H. Gould [10] provide a review of this theory. This note uses
a method closely related to the original technique of Weinstein to replace the problem
of finding the lower bounds to the natural frequencies of a vibrating inhomogeneous
plate subject to fairly complex boundary conditions by the much easier problem of
determining the natural frequencies of the inhomogeneous membrane which is freely
supported on the boundary.

In particular we formulate the Weinstein determinant for the plate problem in
terms of the eigenfunctions and eigenvalues of the corresponding membrane problem.

2.0 Physical assumptions and notation. We assume the correctness of Hooke's
law and the usual linear hypothesis of thin plate theory. The plate occupies a finitely
connected compact subset of the Euclidean plane E2. The boundary d'-i of D consists
of a finite number of straight lines, whose union will be denoted by r, , and of finite
number of smooth arcs, whose union will be denoted by r2 . d0 = r\ r2 (where the
bar denotes the closure operation). The interior of 0 will be denoted by 0. n will denote
the unit vector in the direction of the exterior normal to the boundary dfi, whenever
it is defined, x, y are the Cartesian coordinates, t is the time variable, V2 denotes the
Laplacian:

V2 =

(>4 denotes the operator defined by:

52 2-5 + —2-
dx2 dy2
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^ ' ' dx2 dy2 ~ dx dy dx dy + dy2 dx2'
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The physical meanings of symbols used here are: h(x, y) is thickness of the plate (h > 0
in 0), v is Poisson's ration (0 < e < §), p is mass density of the plate, p(x, y) > 0 in 12,
E is Young's modulus (E > 0), D is flexural rigidity: D = Eh3/12(1 — v2), and w(x, y, t)
is the transverse displacement. The displacement function w(x, y, t) is assumed to be
twice continuously differentiable on 12. (Note: We do not assume w £ C4(^)-)

2.1. Definitions of Hilbert spaces L2(12), L2(dl2), L2.4(12), L2,4(d). We consider a
class of real-valued functions of two real variables which are square integrable in the
region 12 C E2, and form the space L2(l2) in the usual manner by identifying all functions
which differ only on a set of measure zero in 12. For any functions fix, y), g(x, y) £ L2(12)
the inner product

IIf(x, y) ■ gix, y) dx dy = (/, g)a

is defined. ((/, /)«)1/2 = ||/||n is the usual L2(12) norm of fix, y).
In a similar way we define the space L2(dl2) of functions fix, y) defined on <912 for

which the integral <f> fix, y) ds exists. The inner product of /, g £ L2(dS2) is defined
by the contour integral:

if,g)aa=f fix, y)-g{x, y) ds,
J dil

and ((/, f)ea)1/2 = ||/||aa defines the L2(30) norm of fix, y).
We could also consider vector-valued functions Aix, y) = [Alix, y), A2ix, y), A^ix, y),

Aiix, yj], that is vectors with four components, such that each component A,(x, y),
i = 1, 2, 3, 4, belongs to L2(i2). We define L2,4(12) as the Hilbert space of all such vectors
with the inner product:

(A, B)u = J J [A,{x, y)Bl(x, y) + A2(x, y)B2ix, y) + A3(x, y)Bi(x, y)

+ Atix, y)Biix, y)\ dxdy.

The L2 i norm is: ||A|| = ((A, A)^)172. The definition of L2i4(dl2) is analogous.

3. The basic equation and the boundary conditions. In 12 the displacement function
wix, y) obeys the differential equation:

V2[Dix, y)V2wix, y, t)] - (1 - v)0\Dix, y), w{x, y, <)) + Pix, y) 0 = 0. (1)

A separation of variables reduces Eq. (1) to the form of two simultaneous equations:

V2[Dix, y)V2w0ix, y)] - (1 - p)(}\Dix, y), w0{x, y)) - w pix, y)w0ix, y) = 0 (2a)

wix, y, t) = Woix, y) exp (jut). (2b)

Equation (2a) can be rewritten as:

V2[Dix, y)V2iiv0ix, y)] - (1 - v)<)\D, w0) = XpwQ{x, y).

This equation may not be satisfied in the classical sense, because the physically motivated
differentiability assumptions do not specify the existence of the first term of this equation
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everywhere in fi, and we may replace (2a) by its weak form:

ffa ^2tD(x' y^2w°(x> 2/)] ■ *P(x, 2/) — (1 — ")0\D(x, y), w0(x, y))-i(x, y)\ dx dy

= X J J p(x, y)w0{x, y) \p(x, y) dx dy

for any \p(x, y) £ L2(ti). The use of the fundamental theorem of calculus of variations
gives us:

([V2(fiV2w.) - (1 - w0)], *)a = \(pw0 , *)„ . (2a*)

On the I\ part of the boundary <3Q the function iv0(x, y) obeys the simple support con-
ditions:

w0(x, y) = 0, (3a)

vV!w„(i, y) + (1 - v) d V) = 0. (3b)

On the r2 part of the boundary the plate is clamped, i.e.:

w0(x, y) = 0, dw0(x, y)/dn = 0 (4a, b)

We make the following assumptions only concerning the nature of solutions w0(x, y) £j 0:
i) w0(x, y) E C2(0)

ii) V2(DVw0) is regarded as a generalized derivative in the sense of Sobolev in 12.

4. Solution of the intermediate problem for the case: 0i(D, w) = 0 and T, consists
of straight lines. The basic equation (2a*) is reduced to the form

^ V2[-D(.t, y)V2w0(x, y)] - \w0(x, y) = 0. (5)

We now replace the boundary condition (4b) by the requirement:

Jr ^D{x, y)Pi(x, y) dW°^ ^ j ds = 0, j = 1, 2, 3, ■ • • , m,

where the functions p,(x, y) are selected to obey the following conditions:
(6a) The collection of functions (D(x, y)pj(x, y)), j = 1, 2, 3, • • • °°, forms a dense

subset of L2[(dS2) P\ r2].
(6b) Each function (D(x, y)pj(x, y)) is continuously differentiable on r2 .
(6c) Each function (D(x, y)pj(x, y)) is harmonic in Q.
(6d) Each function Pi(x, y) is identically equal to zero on Tj .
Using (6b), (6c), (6d), (4a) and Green's theorem, we obtain:

L f1)* - L K S)&
- L [Dp' fr_ s <D!>')] *
= (Dp,- , V2W0)n - (V2(Dp,), Wo)!!

= (pj , DV2w0)a = o (7)
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which is now valid for px , p2 , ■ ■ ■ , pn . Wo observe that the equality (7) and Eq. (5)
can be derived as a necessary condition for the weak extremum (see for example [18],
page 21 for the definition) of the functional

I(w0) = (DV2W0 , V2Wo)a — X(pt(>„ , ®o)a — 2 ^ juj(Pi , DV2w0)n , (8)
i = 1

where X, ju, are Lagrangian multipliers. By an elementary variational argument we
can derive the necessary conditions for the extremum of I(w„) to be:

- V2(Z)V2w0) - \iv0 = 0 in a, (9a)
P

w0 = constant on d£2, (9b)

V2u'0 = X] MiP. on dJ2. (9c)
i =1

It follows from (9c) that V2ti>0 = 0 on r, , since all Pi(x, y) vanish on F, . Then our
assumption that T, consists of straight lines implies that d2w0/dn2 = 0 on r\ , since
iv0 = 0 on T, , d2w/ds2 = 0 on T, , and V2w0 = (d2w/ds2) + (d2iv/dn). (This would
be false if F, had non-vanishing curvature.) Hence condition (3b) is automatically
satisfied, and becomes a natural condition of the corresponding variational problem.

We introduce the "base problem," namely the problem of vibrating inhomogeneous
membrane

2{u(x, u)\ =
\p(x, y)JV2lT7= -V\u(x,y) in £2, (10a)

u = 0 on dO. (10b)

We assume that we know all wc need to know about the "base problem." That is,
ve know the eigenvalues X, , X2 , • • • , X„ and the corresponding eigenfunctions fx ,
■s , • • • , , which satisfy

V2(f,/P) = - in 0, (11a)

f, = 0 on dQ. (lib)

Using the relationships (9) and Green's formula we have:

(DV2w0 , fOa = (DV\v0 , V2(f,/P))n

+ f [z>vV,-f-(-)l ds - f (DV>Wo)Jsa L dn \p / J Jda Lp dn

- i (»•> ■ v'(91 - vk L (7).
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X /V2u>„ \ _- > i f> J + E (Dp/ , f,)n .
"• \ P /a 1

Comparing the first and last terms in our chain of equalities, we have

Xi(DV2w0 , J\)„ = , f.) + X, E Hj(Dpj , f,)n • (12)
\ JJ ■ p /a , =,

We now observe that the eigenfunctions f, form orthogonal bases of the space L2(0).
The completeness follows from the completeness of the eigenfunctions of the Laplace's
operator, and from the positive definite property of p(x, y). The orthogonality is checked
by considering for A, 5^ X,- :

Vh (f, , f;)a - \/X,- (f. , f,)a = (-V2(f,/p), f,)n

+ (r., v°(r,/p)>. - I [f,~ <r,/p) - e, ■£ (!-,/«•)] *-0.
Hence:

((x, - ^)vv2w0, f4)o = X4 E m,CD-p, , f.)o •

We observe that for an arbitrary N

E ((x, - -^)^v2Wo, r,)fi = E (x, - ^)ov2w„ = E x, E Mi-(z>p; , r.Vf.

(assuming ||f,-|| = 1 without any loss of generality), and therefore

X, E , f.)f.
(13)£>v2w„ = E

X, -
P-L)

with convergence of the right-hand side assured. But by Eq. (7) we have

(DV2w0 , pk)a = 0, k = 1, 2, • • ■ m.
Hence:

E P-, E Xi(Dp, , r.)n(x _ > P*)a = °> k = 1,2, , m. (14)

This can be regarded as a system of m equations in m unknowns, which can have a
nontrivial solution only if the determinant of the coefficients is equal to zero:

det E X,(D-f, , Pi)a(m, -\x/p) ' Pk = 0, j, k = 1, 2, • ■ • , m. (15)
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This is the Weinstein determinant for our problem. In the case when p and D are constant
it reduces to the result of Weinstein [2]:

dot ± - ■>, (15a)

Since our (pX,) corresponds to X, of the Weinstein article, and our \/D to his X, the
formulas are clearly identical.

We note that changing to r, 9 coordinates (cylindrical polars), a possible choice of
the functions p,(0) for a starlike region 0 could be

sin (nd), cos (.kd), n = 1, 2, • • • , k = 0, 1, 2, • • • , on I\ ,

Pi(6) = 0 on r2 , Pi(d) harmonic in fi.

This implies that we have to solve first Dirichlet's problem for the region 9.. That is,
however, easily done by well-known numerical procedures (for example, the relaxation
technique). In a private communication Professor Weinstein has suggested to me a
variant of a numerical computation for a region fi, such that a conformal map is known
mapping 12 into the unit circle. Unfortunately, I did not attempt to follow his recipe.

I would like in this paragraph to comment finally on the unusual nature of the result
obtained. The base problem considered in the usual Weinstein technique as originally
given in [13] retains the differential operator and only changes the boundary conditions
to construct a simpler boundary-value problem. In the papers of Bazley and Fox (see,
for example, [4]) the differential operator is changed effecting the splitting of the operator
into a sum of two operators, so that one of them turns out to be manageable, but then
the boundary conditions remain unchanged.

Here we have replaced in the "base problem", the operator (1 /p)V2(DV2-), by
the operator ((V2/p)-)> but also the very complex boundary conditions assigned to the
plate (specified separately on the subarcs of I\ and r2) were replaced by the very simple
condition u = 0 on d£2.

5. The general plate problem. If §4(I), w) ^ 0 in Q the result of the preceding
section does not apply. One may question the physical usefulness of our result since
D 5^ constant, but <)>4(D, w) = 0 imposes what seems to be an artificial variation of
the thickness of the plate. However, this is exactly the condition which arises in the
optimum weight-strength design of thin plates. (Given a maximum permitted stress
level, we wish to design a plate of minimum weight not exceeding the prescribed maxi-
mum stress level.)

For this reason the simpler form of the plate equation:

(1/p)V3(Z)V2u') + (d2w/dt2) = 0, D(x, y) ^ const.,

should be studied for other reasons than pure academic curiosity. In the general case,
as given by Eq. (1), the variational problem has to be modified and we seek instead
an extremum of the functional

L(w0) = (DV2w0 , V2w0)si - (1 — v)(D, OV'o , *«o))a - X(ptu0 , iv0)Q

subject to the same type of a boundary constraint:

w = 0 on d£2,
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DP, , =0, j = 1,2, ■■■ , m.

There are some subtle difficulties in handling the product (D, ()4(w, u>))a which have
prevented what seems like an obvious extension of the result of this paper.
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