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VALUE PROBLEMS*
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1. Introduction. Consider a general system of n first-order differential equations

V' = Fit, y) (1.1a)

subject to the linear two-point boundary conditions

Biy(a) + B2y(b) = a. (1.1b)

The n-vector function F is assumed to be a continuous function of it, y) for t belonging
to [a, b], b — a > 0 sufficiently small, and y belonging to a suitable region R C En .
The n-vector a is fixed, and Bi and B2 are n X n matrices such that the augmented
matrix [B1 , B2] has rank n. Considerable interest has been shown in the numerical
solution of (1.1) (cf. Keller [1], Conti [2], Osborne [3], and Roberts and Shipman [4]).
Keller [1], for example, describes shooting methods for the numerical solution of such
boundary-value problems. The justification of this approach depends upon the existence
and uniqueness of solutions of the linear boundary-value problem

y' = A(t)y + /(<), (1.2a)
B^ia) + B2y(b) = a, (1.2b)

where A(t) is a continuous n X n matrix on [a, &] and /(£) is continuous on [a, b]. (In
the nonlinear case of (1.1), reduction to (1.2) can be accomplished by Newton's method.)
Usually Bi + B2 is assumed to be nonsingular, although Keller [1, 5] describes a method
for obtaining the solution of (1.2) when Bi + B2 is singular. Keller's method consists of
obtaining solution bounds and then applying the Banach lemma.

We shall give a new criterion for the local existence of a unique solution to (1.2)
when Bx + B2 is singular. Our conditions involve only Bv , B2 and /1(a). Our method is
then applied to the general two-point boundary-value problem with unmixed boundary
conditions.

2. The linear boundary value problem. Let Y (t) denote the fundamental matrix for
for (1.2a) satisfying

Y'(t) = A (t) Y(t), Y{a) = I, I = identity matrix. (2.1)
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From the variation of parameters formula and (1.2b) we have

[.B. + BaY(b)]y(fl) = a- B2 Y (b) f" Y^(s)/(s) ds, (2.2)
a

and it follows that a necessary and sufficient condition for (1.2) to have a unique solution
is that [Z?! + B2Y(b)] be nonsingular.

We can write

B, + B2Y(t) = [/ + S(t)]UY(t), (2.3)

where U = B,P + B2 and S(t) = B1(Y~\t) — P)U~\ Here P is an elementary matrix
(||P|[ = 1) chosen such that BJ' + B2 is nonsingular (cf. Keller [1, p. 60]). Consequently,
a condition equivalent to Bj + B2Y(b) being nonsingular is that the matrix S(b) not
have an eigenvalue X(6) = — 1. If/?, + B2 is nonsingular then, from (2.3) with t = a,
it follows that S(a) does not have an eigenvalue X(a) = —1. A standard continuity
argument establishes the existence of solutions on [a, b], b — a > 0 sufficiently small.
In the following a general criterion is established for the case when 7i, + B2 is singular.

3. Bi + B2 singular. Suppose that Bt + Z>2 is singular, rank [Bx, B2\ = n and rank
[Z?i + B2] = m < n. Since B, + B , is singular, I + S(a) is singular. Thus there exists
an eigenvector x such that

S(a)x = —x. (3.1)

Now consider the equation

S(t)x(t) = \(t)x(t) (3.2)

valid for a < t < b where x(i) is an eigenvector corresponding to the eigenvalue X(<)
of S(t) such that A(<) —» — 1 as t —» a and x(t) —> x as t —» a.

Let y be the right eigenvector of S(a) corresponding to the eigenvalue X = — 1, i.e.

yTS(a) = -yT. (3.3)

Denoting the right derivative of a function by DR and taking the right derivative of (3.2)
at t = a, we obtain

DRS(a)x + S(a)DRx(a) = DR\(a)x — DRx(a). (3.4)

Multiplying this equation on the left by yT yields

yTDRS(a)x = DR\(a)yTx. (3.5)

To compute DRS(a) consider

DR(Y(t) ■ Y~\t)) = 0 = DRY(t)-Y-\t) + Y(t)-DRY~\t)

and
DRY(t) = Y'(t) = A(t)Y(t), Y(a) = 7.

Then
DRY-\a) = -A(a)

which yields, from the definition of S(t),

DRS(a) = BlDsY~1(a) U~x =
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If

yTx ^ 0 and yTDRS(a)x ^ 0, (3.6)

from (3.5) we have DR\(a) ^ 0. By assumption, the multiplicity of the eigenvalue
\(a) = — 1 is n — m. If we could find n — m pairs (y',x')i= 1,2, • • • , n — m satisfying
(3.6) having the additional property that both {yl , y2, • • • , yn-m\ and {z, , • • • ,
are linearly independent sets spanning R„-m , we could conclude that DB\(a) 5* 0 for
every eigenvector pair (?/*, x'), i = 1, 2, • • • , n — m, corresponding to the eigenvalue
\(a) = — 1. In this case, I + S(x) or, what is the same, + B2Y(t) must be nonsingular
if 0 < b — a sufficiently small, using a standard continuity of the eigenvalues argument.

We must now find conditions which insure that (3.6) is satisfied. If we can prove the
existence of one such pair (y, x), we will then be able to show this yields the existence
of the set (y', x') having the desired properties.

We will now determine conditions which insure the existence of at least one pair (y, x)
satisfying (3.6). Consider (3.3): yTS(a) = —yT. Since

S(a) = B,{I - P)U~\

yTBi(I - P)U~l = -yT,

yT(B, + B2) = 0. (3.7)

(3.3) can be written

or

From (3.1),
S(a)x = 5,(7 - P)U~lx = -x

and letting x = Uv, it follows that

(.B! + B2)v = 0. (3.8)

By assumption, rank [B, + P>2\ = m < n. By rearranging equations and identifying
the components of y in (1.2), if necessary, B, + B2 can always be written in the form

Bi + B2 =
B ii B12

B2 i B22

where Bu is a nonsingular m X m matrix. If

/„ 0rI\ =

and

T2 =
1

.0
where It is the k X k identity matrix, then

T\{Bi + B2)T2
Bii
0 J221J21 "11J

Bu 0

0 0
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where B22 — B2lB^Bl2 must vanish in order not to contradict the rank [Bi + B2] = m.
Then

implies

yT(B1 + B2) = 0

yTTi
0

0 0
= 0

or

(Tlr'y = 0.|£n 0

L o o_
Thus any vector y satisfying (3.7) can be written as a linear combination of vectors

"o~i
Vi = T\ j = 1,2, • • • ,n — m

where [°J represents an n-vector with the first m components 0, and e,- is the jth (n — m)-
dimensional unit vector. In exactly the same manner, it can be shown that any vector v
satisfying (3.8) can be written as a linear combination of the vectors

1
; = 1, 2, • • • , n — to.v, = T,

Let

0

e,J

[0, ef]T.UT,

and

0

e,J
= c„. , C = (c„) (3.9)

0

L_e,d
[0, eJYf.B^iaYT,

Consider the vectors

r ° iy = T\ v = T,

d{, , D = (d„). (3.10)

X wiei

0 1

2 Zfii j
. t -1 J

which span the appropriate subspaces. If w = (wi, • • • , wn-m), z = (zi, • • ■ , £»-,») then

yTx 0 and yTB1A(a)U~1x j6- 0

if there exist constant vectors w, z such that

wTCz 7^ 0 and wTDz ^ 0. (3.11)

The conditions we have been searching for are: Ij C and D are both nonzero then a w and z
can be jound satisfying (3.11). Assume not. Then for every w, z, (wTCz)(wTDz) = 0.
Since wTCz and wTDz are polynomials in the polynomial ring R[w, z] which is an integral
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domain, either wTCz = 0 for every w, z or v/Dz = 0 for every w, z. This implies that
either C or D is the zero matrix, a contradiction.

We have now established the existence of a pair (x, y) satisfying (3.6) which is
equivalent to finding a pair (w1, z1) satisfying (3.11).

Both wTCz and wTDz are continuous functions of w and z. Thus there must exist a
neighborhood of (w1, z1) C R"'m X Rn~m where (3.11) is satisfied. It is then possible to
find two bases in Rn~m one containing w' and the other z remaining in the neighborhood
of (wl, z ). Thus every eigenvalue X(a) = — 1 of I + A (a) has DH\(a) 5^ 0. By continuity,
it follows that / + S(t) or + B2Y(t) must be non-singular for 0 < b — a sufficiently
small.

We have proved the following theorem:

Theorem. Assume rank [Bx , B.,] = n, rank [J5j + B2] = m < n. The boundary value
problem (1.2) has a unique solution for b — a > 0 sufficiently small if either 0/ the following
equivalent conditions is satisfied:

(i) there exists right and left eigenvectors y and v corresponding to the eigenvalue
X = 0 for Bi + B2 such that yTUv 5^ 0 and yTB1A(a)v ^ 0,

(ii) C 0 and D ^ 0.
Remark. Condition (ii) will usually be easier to verify and we use it in the following

corollary.

Corollary. Let n = 2k,

A (a) = Al1 Al2 B, = Bn 0

_ 0 0
B, 0 0

B2i 0

where An , A12, A2l, A22, B u , B21 are kX k matrices, and the rank Bu = rank B21 = k.
Then (1.2) has a unique solution for b — a > 0 sufficiently small if B21A12 has a nonzero
element.

Proof. Since
Bn 0U =
0 B.21-

rank U = 2k,

using the definition of , T2, (ii) of the Theorem yields that both B21 and B21A12 must
have a nonzero element. B2I has a nonzero element since rank B2t = k; hence the corollary
is proven.

Remark. If A(t) is in companion form then A12 has a one in the (fc, 1) position and
all other elements are zero. The corollary, in this case, reduces to requiring B2l to have
a nonzero element in the first row.
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