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INFLATION OF THE TOROIDAL MEMBRANE*
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1. Introduction. The purpose of this paper is to discuss the existence, uniqueness,
and asymptotic behavior of tensile solutions for the nonlinear toroidal membrane
inflated by a constant normal pressure P. The theory to be adopted is that suggested
by Bromberg and Stoker in [1],

The equations governing the axially symmetric deformation of a membrane are
a combination of three sets of equations—(1) the strain-displacement equations,
(2) Hooke's law, and (3) the equilibrium equations. For the toroidal membrane these
equations have the form

= 0*' + «) + ~2 (co' — ̂  ('= d/dd) (1.1a)

u cos 8 + « sin 6 .e4, = X  (1-lb)
X

1
t _ i (e6 + vet) (1.2a)

1
m — (e« + vee) (l-2b)

(x«)' = X cos 60 — rx«(w' — m) (1.3a)

r[xa(w' — /*)]' = \ sin 6/3 + x<x ~ x (1.3b)

where E and v are the Young's modulus and Poisson ratio and F is the dimensionless
normal pressure, i.e. T = Pb/Eh where h is the thickness of the elastic surface. The
quantities a and /3 are the dimensionless stresses in the 6 and <j) directions (cf. Fig. 1),
i.e. a = <xe/TE and /3 = a^/TE, ee and are related to the strains &e and by e„ =
S«/r and = S^/r, and a> and n are related to the normal and tangential displacements
by co — iv/ Tb and /j. — u/T?b. The geometric constant X — bj& 'C 1 and

X = 1 + X sin 6. (1.4)
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Fig. 1.

In this paper it will be assumed that the deformation of the toroidal surface is symmetric
about the x-y plane. It follows that to and n must satisfy the boundary conditions

&>'(—•7r/2) - 0/(71-/2) = 0, (1.5a)

n(—ir/2) = n(ir/2) = 0. (1.5b)
Assuming that « and n satisfy the conditions (1.5), Eq. (1.3a) implies that

a'( — ir/2) = a'(ir/2) = 0. (1.6)

The problem of the deformation of a toroidal membrane by internal normal pressure
has been studied by a number of authors (cf. the bibliography in [2, 3]), using both
asymptotic techniques and numerical approximations. Unfortunately, none of these
techniques have succeeded in completely resolving the difficulties associated with the
toroidal membrane. Thus the system of equations (1.1), (1.2), and (1.3) with boundary
conditions (1.5) and (1.6) have not been solved numerically, although an approximate
linear equation has been successfully integrated (cf. [2]). Moreover, asymptotic results
have of necessity been purely formal, since the existence of a solution has not been
proved nor the necessary estimates obtained.

The difficulty in treating the above system of equations is a familiar one in non-
linear membrane theory, i.e. a straightforward linearization of the equations leads to
a system of equations of reduced order. In the case of the toroidal membrane, this fact
evidently implies the existence of an internal boundary layer occurring at d = 0 (cf. [3]).
Thus the linearized equations yield smooth solutions for a and /?, but the corresponding-
solutions for co and tx are singular at 0 = 0.

In this paper it will be shown that the system of equations (1.1), (1.2), and (1.3)
have a solution satisfying the boundary conditions (1.5) and (1.6). In particular, the
following theorem will be proved.

Theorem (1.1): Let T0 be an arbitrary but fixed number such that T0 > 0. There
exists an interval 0 < X < X*(r0) < 1 such that Eqs. (1.1), (1.2), and (1.3) have a unique
tensile solution (a > 0) for all T > T0 satisfying the boundary conditions (1.5) and (1.6).
The proof of this theorem is constructive, yields bounds on the solution, and implies
a procedure for the numerical integration of the equations. However, no numerical
computations have been attempted. As a consequence of the proof of Theorem (1.1)
we also obtain results on the asymptotic behavior of the solutions as X —» 0 (b/a —> 0)
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and as r —> (P —» <=°). In order to simplify the notation, introduce

11-11 = max H-
-r/2<6<,v/2

The results on asymptotic behavior are
Theorem (1.2): Let T be any number such that V > 0.

lim ||a(0; X, T) — 1|| = 0, (1.7a)
X-0

lim ||/3(0; X, r) - | = 0, (1.7b)
X—>0

lim
X-0

lim
X—>0

, . 1 — 2v . 2 — vw(0; X, r)  —sin 0 — = 0, (1.7c)

1 — 2vm(0; x, r) -— cos

x 2

= 0. (1.7d)

Although Theorem 1.2 implies that w —> <» and ^ —» <» as X —> 0 it does not follow that
w and u are unbounded as X —» 0. In fact Theorem 1.2 implies that

f(l - 2v)a sin 0 + 2 g , u -> cos 0Pb
W~^ Eh

as X —> 0.
Theorem (1.3): There exists a junction «(0, X)—a solution of a linear equation—and

junctions g(0, X), w(0, X), and y(0, X), each uniquely determined by a(0, X), such that

lim ||a(0; X, r) - a(0; X)|| =0, (1.8a)
r-co

lim |l/3(0; X, T) — 3(0; X)11 = 0, (1.8b)
r-»co

lim ||o)(0; X, T) - a>(0; X)11 = 0, (1.8c)
r—oo

lim ||M(0; X, T) - y(0; X)|| = 0 (1.8d^
r—oo

for X in some interval 0 < X < X* < 1. The function a(0; X) in Theorem 1.3 is a solution
of the equation

rw^.yiLx Vcos 0 J _ X2(l - v)x' COS 0a = /(0; X, A). (1.9)

The inhomogeneous term in Eq. (1.9) is defined by

. _ x1 + " cos2 0 + x'(l — A + sin 0 — X2 cos2 0/2)(sin 0 + X(1 + v) cos2 0)
7(0; x, a) - cog3 Q

(1.10)
where A is a parameter determined by an algebraic equation, but in any case A satisfies
the condition 2 > A > 0. Although Eq. (1.9) is singular, at 0 = ±ir/2, it follows from
the discussion in this paper that the equation has a unique solution satisfying the bound-
ary conditions (1.6) for each A (2 > A > 0). However, the question of the qualitative
behavior of solutions to Eq. (1.9) satisfying the boundary conditions (1.6) has not been
treated.
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In Sec. 2 of this paper it is indicated how to reduce the system of equations (1.1),
(1.2) and (1.3) to a single equation for a depending on a parameter A (the actual details
of the calculation are in the appendix (Sec. 5) at the end of this paper). In Sec. 3 it is
proved that this equation has a solution for a certain range of the parameter A, and
in Sec. 4 it is proved possible to choose A in such a way as to yield nonsingular solutions
for the displacements u and p.

2. Formulation. The stress equations. In this section the three pairs of equa-
tions (1.1), (1.2), and (1.3) will be reduced to a single equation for the diinensionless
stress a. The function j3 is eliminated from Eqs. (1.3a) and (1.3b) by multiplying (1.3a)
by sin 6 and (1.3b) by cos 6 and subtracting. The resulting differential equation can be
written

(<7x«)' = x cos e (2.1)

where

g = sin 6 — F cos 9\f/, $ = «' — n. (2.2, 2.3)

It follows from (2.1) that

1 ( . n F(d; X) - A\=     sin 6 y--L-L  • (2.4)T cos 0 V x°t /

A is a constant of integration and

/ XX cos r? di) = 1 + sin 6 — — cos2 6. (2.5)
-t/2 ^

If the function is to be regular at 6 = ±?r/2 Eq. (2.4) requires that

«(-*■/2) = A/( 1 - X), a(ir/2) = (2 - A)/( 1 + X). (2.6a, b)
Thus ot( ir/2) and a(x/2) must satisfy the condition

(1 + X)a(x/2) + (1 - X)a(-7r/2) = 2. (2.7)

Note also that if the membrane is in tension throughout, as is to be expected, the con-
ditions (2.6) imply that

2 > A > 0. (2.8)

In order to insure the regularity of it will be assumed for the moment that a satisfies
(2.6). It then follows from L'Hospital's rule that

\p(—ir/2) = i{ir/2) = 0, (2.9)

a condition already implied by the boundary conditions (1.5).
Eqs. (1.1) and (1.2) can be reduced to a single equation for /? as a function of a and

For this purpose note that the Eqs. (1.1) imply that

(xe*y — X cos 6ee = X sin 6\p — ^ ^°S ^ 4? (2.10)

or, using (1.2),

(x1 + vPY = v(x+vd)' + (1 — v2)\ cos dxa + sin H ~ ^. (2.11)
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Eq. (2.11) can be solved explicitly for j3 as a function of a and \p. Combining this result
with (2.4) and (1.3a), we obtain an equation for a (cf. Sec. 5). In fact we find that the
function a satisfying the boundary condition (1.6) must be a solution of the non-linear
integral equation

n 2/i   2\

a{6) x, D = /,(<?; x, r) k l_/) cos e / G(e, r, x)x' cos v« dv
V * — t/2

+ f/2 G(6, X) ^ dv (2.12)
ZI V J — t/2 V fiOS TlfY
nn 1 — v I \ * 2 — v Z2Fx J-r/2 x COS rja

where F(d; X) is given by (2.5) and

r(n . xs Hv) X)(/j(tt/2; X) - h(0; X)) ^
G(0, V, X) - h(^\) ' ~*/2

h(0; X)(fe(7r/2; X) — fe(r?; X))
h(ir/2; X)

The function /L(0; X, T) in (2.12) is given by

(F(0; X) — yl) sin 6M0; x, r) =
A

, cose \ \ • ( 1-, , (F(tj; X) - A)\+ ^37/ //(0, i;; X) sin t?I x - Xv ;+>  I
V * — t/2 \ X

rf?7

X2 cos a '"r/2

where

rr,n . M A(0; X) - /iCtt/2; X)f/(0' x) - ^72Tx) ' ~x/2 ^ 17 < e'

h(9; x) 0 < 7? < */2.
/t(x/2; X) '

It is also possible to express (3 in terms of a. Thus it is found that (cf. Sec. 5)

Xa - i>2) fr/
i

X
13(0; X, D = U(0; X, V) + va(0; X, T) + X(1 1+/) [ " H(v, 0; X)x' cos ^

V ^ - t/2

H("'x) = 4^ax)' _7r/2 " * <
A(r?; X) - h(ir/2] X) „

- ^72lx) ' 0 < ' ^ x/2'

(2.13)
0 < r, < tt/2,

W; x) = f ^ (2.14)
J -t/2 V

DS 6 f* rfn -w "sin 71 7 i"\21^ L/,G(d'v'x)x ^dv (2A5)

(2.16)

x rT/2 m 4)1 ,
- —^ / /o #(*» X) — — efcj (2.17)21X t/2 X COS rja

where ^(77, 0; X) is simply the adjoint of #(0, ??; X), i.e.

(2.18)
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and

m x, r) - -£r. f" «U,«; X) ̂ d,2rx J-»/2 cos 7;

+ XA(ir/2; XV- C ™ '(*"• - * (£k^ ~) "*■ «"•
The solution of (2.12) (if it exists) will determine a up to the constant A, and in

addition (2.17) will determine /3 up to the constant A.
3. Existence of solutions to the stress equation. In this section it will be shown

that under certain conditions Eq. (2.12) has, for each value of A in a certain interval,
a unique solution.

Lemma (3.1): Let t and r0 be arbitrary but fixed numbers such that 0 < t < 1 and
T0 > 0. If 2 — e > A > e there exists an interval 0 < X < A^r,, , e) < 1 such that /,(0;
X, r) > 0 for 7r/2 < e < w/2 and T > T0 .

Proof: The function fi(6; X, T0) is a continuous function of X for 0 < X < 1. At
X = 0 (cf. (2.15))

/*/ 2 H(^d} r)] 0) sin 77 dfj (3.1)
-*/2

(3.2)

where (cf. (2.16))

H(6, 1?; 0) = (6 — — tt/2 <7; < 0,

= (6 + t/2)/it, 6 < 7; < 7r/2,

from which it follows that

M0; 0, r0) = 1 + (1 - A) sin 0. (3.3)

The minimum of /i(0; 0, T0) is achieved at either 6 = — ir/2 or 0 = ir/2, i.e.

min f^d; 0, r0) = min (A, 2 — A) > e > 0. (3.4)
— t/2<6<t/2

Since fi(6; X, T0) is a continuous function of X, we conclude that /j(0; X, T0) is positive
in some interval 0 < X < Xi < 1. Moreover, f,(d; X, r) is an increasing function of r
(cf. (2.15)) so that f^d; X, r) > 0 for 0 < X < X, < 1 and r > r0 . Q.E.D.

IjEmma (3.2): There exists an interval 0 < X < X2 < 1 such that the linear equation
-v2/-j   2\ /»t/2

V = Q(8)  cos 6 / G(d, 7/; X)x' cos t]V drj (3.5)
X 9 J-t/2

with Q(d) continuous ( —it/2 < 6 < tt/2) has a unique solution. If Q(6) > 0 there exists
an interval 0 < X < X3 < 1 such that V (6) > 0.

Proof: Eq. (3.5) is a linear Fredholm integral equation with a continuous kernel.
The existence of a unique solution when X is sufficiently small follows from the con-
traction mapping theorem. In order to prove the second part of the lemma, it suffices
to show that

V < Q (3.6)
since in this case (3.5) implies
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V > Q(6) - X2(1~ " ) cos Q [' G(6, v; X)x" cos VQ(V) dv > 0 (3.7)
X " — t/2

when X is sufficiently small. To prove (3.7) rewrite (3.5) in the form
\ 2/-j   2\ fir/2

V — Q =   " cos 0 / G(d, -q) \)x" cos i?(F — Q) dy
X " * — t/2

~ X'(1cos e ['" G(e, ij; X)x' COS VQ dv. (3.8)
^ " J-r/2

It follows from (3.8) that

[x1+2'(^)(Q - F)']' - X2(l - S)x COS 8(Q - V) = -X' COS 0Q

(-t/2 < 0 < t/2) (3.9)

and

Yv—(0 - F)Ylim £M^V} . lim
>—»± x/2 COS a 0->±x/2 cos 6

< co . (3.10a, b)

Assume Q — F < 0 in some interval — t/2 < 0, < 0 < 02 < t/2 where Q — F = 0
at 0 = 0i and 0 = 02 . Multiplying (3.9) by x1_"(Q — F)/cos 0 and integrating from
0i to 02 we find that

C {*'""([£5 <« - ">]')' + x'(1 - "')xiQ - ">'}de - C *e(e - F>
(3.11)

The right side of (3.11) is negative, and the left side is positive; this contradiction proves
the lemma. Q.E.D.

Lemma (3.3): If V is a solution of

rr X2 cos 6 fr/2 ^ Q(rj) 1 X2(l — v2) cos 6 f"/2 n/ N p T7. ,
V =  — / G(0, i?; X)       / G(9, v; X)x cos 77 F di?

2rv ■'-t/2 cos J7 v-1 ' J_t/2

(3.12)

with Q(6) > 0 awd continuous ( — t/2 < 0 < t/2) <Aen F > 0 /or —t/2 < 0 < t/2.
Proof: Any solution of (3.12) is twice continuously differentiable in the interval

— t/2 < 0 < t/2 and in fact must satisfy the differential equation

1+2p(
X fYVcos 0 /

In addition it follows from (3.12) that

- X-(l - ,v cos «F - (3.13)

lim = 0
)—t/2 NCOS e /

and
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lim ,'xLl F)' = J+ 00 or
9__t/2 Vcos 0 / 1, finite

d—*/2

l~r

lim -A—- V =cos 0 } 1 finite
00 or

where the value of (x1 "F/cos 0)' at 0 = ±ir/2 depends on the behavior of Q(0) at
0 ■— i 7r/2. Assume 'F(0) is negati\ e in some portion of the interval 7r/2 0 tt A
i.e. assume there exist two points 0i and 02 such that F(0X) = F(02) = 0 and F(0) <0
for 0! < 0 < 02 • If lim9_±I/2 (x1_"F/cos 0)' = =F 00 then —x/2 < 0i < 02 < ir/2. On
the other hand if lim9_±l/2 (x1_"F/cos 0)' is finite then — ir/2 < 0i < 02 < ir/2. In
either case the fact that solutions of (3.13) must satisfy the identity

C {*'*"([£ f]7 + k'c - 'Wd> -1C Std° <3-14'
leads to a contradiction. The situation in which (x1-*F/cos 0)' is finite at one end and
infinite at the other leads to a similar contradiction. Q.E.D.

Lemmas (3.1), (3.2) and (3.3) will enable us to prove the existence of a solution to
Eq. (2.12). For this purpose define the following iteration scheme:

_ X2(l - v) cos 0 r/2 nto , ,
an+i = /i(0; X, r) —  / <7(0, 7)-, x)x cos T]a„+1 drj

V J-r/2

X2 cos 0 r/2 . (F(„; X) - A)2
+ 9r i + , J G(6,v,\) 2_ 2 dv (3.15)

Z\ v J-t/1 v P.OS f)f\2rx J-'/2 x cos t]an

where a0 is a solution of

/i(0; x, r) —  O COS 0 r ^ x)x' cos 7ja0 d?; (3.16)
V J-t/2

Specify e and T0 as in Lemma (3.1), so that /1(0; X, r) > C > 0 for r > r0 and
2 — e > A > e if X is in the interval 0 < X < X^To, e)/2. It thus follows from Lemma
(3.2) that there is an interval 0 < X < X5 < X^ro , e)/2 such that Eq. (3.16) has a
unique solution a0(d; X, T) for each A (2 — e > A > e) and T > T0 and that

a„(0; X, T) > 0. (3.17)

Moreover, Lemma (3.2) implies that (3.15) has a unique solution for in the interval
0 < X < X5 . The function a 1 — a0 is a solution of the equation

X2 cos 0 T/2 ^ (F(^;X) - A)
at! — a0 =

2 cos 0 r/2
2rx1-1' J-'/t ' xd" cos wo

X2(l - x2) cos 0 . ^/2
      cos 0\ — ¥ ,

x -1-"*

™0 [ rm— / G(0, 77; X) —— — di?
J-t/2 y COS r?d0

f G(0, y, X)x'(«i - «o) ̂  (3.18)
J-ir/2

Lemma (3.3) implies that the solution of this equation is positive, i.e.

> a0 ■ (3.19)

Similarly,
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a2 — a0 =
x2 COS d r/2 n,* . x) - A)
nr, !—y G(0> n, X) — T2TX ~*/2 x cos Wi

X2(l - V2) COS
2\ /»x/2

1-v
X T/2

X2 cos e r/2 M (F(?j; X) — .4)
«i _ "2 = i_, / '> X> ~~ir; 772Tx t/2 x cos qaia2

X2(l - v2) cos a '"/2

/x/2 G(0, tj; X)x' COS rj(a2 — a0) dr\ (3.20)
-»/2

and

)S 6 r/2 r. . . (F(tj; X) — A)-1 , 2 2\ ,
— / G(0, 77, X) —— — (aj - a0) m

•>-*/2 y COS

/t/2 G(0, 17; X)x' COS i7(«i — a2) dt). (3.21)
/V '7r/2

Eqs. (3.20) and (3.21) in conjunction with Lemma (3.3) implies that a2 > a2 > a0 .
By induction it is shown that

Lemma (3.4): Let e and T0 be arbitrary but fixed numbers such that 0 < e < 1 and
r0 > 0. If 2 — e > A > e there exists an interval 0 < X < X5(r0 , «) < 1 such that the
iterates defined by (3.15) satisfy

<*i > <*3 ^ ^ «2m-i > cem > • • • > a2 > a0 (3.22)

for — 7r/2 < 0 < 7r/2 and Y > T0 .

A similar type of iterative behavior has been observed in treating circular plates [4]
and circular membranes [5].

The iterates {a2m} are a bounded monotone increasing sequence, and the iterates
{a2m+i} are a bounded monotone decreasing sequence. In addition, it follows from
differentiation of (3.15) that the derivatives of a2m+1 and a2m are uniformly bounded.
Thus the sequence {a2m+i\ converges to a continuous function a+ and {a2m{ converges
to a continuous function a_ where

a+ > a_ . (3.23)

The functions a+ and a_ are solutions of the pair of equations

t (n * r\ ! cos 9 fr/2 rm - v> x) ~ 7*+>_ = /1(6»; X, r) + ——[Z7 G(e> V, x)  5— dl>
Z Y J-x/2 y COS2rx J-r/2 x cos m-.+

x2(i - v2) cos e r/2
 ^  / G(0, 17; x)x cos T]0C+.- dt). (3.24)

X ~ t/2

Theorem (3.1): Le< e and r0 be arbitrary but fixed numbers such that 0 < t < 1
and T0 > 0. If 2 — e > A > t there exists an interval 0 < X < X*(r0 , e) < 1 such that
Eq. (2.12) has a solution for all T > T0 . The solution is unique for each A.

Proof: In order to prove the existence of the solution, it suffices to show that a+ =
a- . When we note that > a+ > a_ > a0 Eqs. (3.24) imply that

< /x2(l - v2) cos 0 r/2 ^ ,< —  / G(e,r)]\)x COS t] dr}
\ V J-v/2X

X2 cos. .. „os 6 [*/2 n, , ^) — A)2 \ M ..
+ G(d,i7;X)   — dr,> \\a+ - a_||. (3.25)

Fx *"/2 ^ cos r,a0 )
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When X is sufficiently small (3.25) yields ||«+ — a_|| = 0, which implies that a+ = a_ .
In order to prove the uniqueness, it suffices to note that, since every solution a of (2.12)
satisfies the condition a > a0 , an estimate of the type (3.25) yields the uniqueness.

Q.E.D.
The preceding development also yields results on the asymptotic behavior of a

and /3 as X —> 0 and r —» <*>.
Theorem (3.2): Let A be any number such that 2 > A > 0.

lim ||«(0; X, r) - (1 + (1 - A) sin 0)|| = 0, (3.26)
X—0

lim ||0(0; X, D - (| + *(1 - A) sin 0)|| =0, (3.27)
x-*o

X, r) - 1 [sin 6 - 1 ~JII = o. (3.28)r cos 6 L 1 + (1 — A) sm 6U11 v '

Proof: The function a(d; X, F) satisfies the inequality > a > a0 and

lim «i(0; X, T) = limao(0; X, T) = 1 + (1 — A) sin 6 (3.29)
X—"0 X—>0

which implies (3.26). Eqs. (3.27) and (3.28) follow from (2.17), (3.26) and (2.4) and the
fact that

l f/2 • ( i-, , f(u;x) - A\ , 1 - 2vllm - i+,,, /9.,. J sm v[x - X" 777 J dv = —15— (3.30)
X-0 AX /l(7T/2, a) J-v/2 \ X '

Q.E.D.
In order to discuss the asymptotic behavior of a and /3 as T —> 0 define two functions

a(0; X) and (3(0; X) where a is the solution of the linear integral equation
•v2/-|   2\ pT/2

a(0; X) = /3(0; X) —— cos 0 / G{6, 77; X)x' cos r?a d-q (3.31)
X ~ */2

where

_ (F(6; X) - A) sin 0
JS\") *) ~~

A

, COS 6 f TT,n ^ % (97; X) — , /n or»\-I 177 / H(e, 1;;X)sm ijU — \v — I d-q (3.32)
X J~*'2 v X '

5(0; X) = /4(0; X) + "a(0; X) + ^ [ H(i), 0; X)x' cos rfr; (3.33)
y J-t/2

where

/4(0; X) = X 1+'M /2- X) P Shl "l*" ~ X" ̂ ^ ^' (3"34)Xx h{T/2; X) J-t/2 \ x '

Theorem (3.3): Let t and T0 be arbitrary but fixed numbers such that 0 < e < 1
and r0 > 0. Assume X is in the interval 0 < X < X*(T0 , e) < 1.

lim ||a(0; X, T) - a(0; X)|| = 0, (3.35)
r-co
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lim me; X, D - 5(0; X)|| = 0, (3.36)
r->co

lim 11^(0; X, r)|| = 0. (3.37)
r-»®

Proof: In the limit as T —» °° both a0 and ai are solutions of (3.31). Since the
solution of (3.31) is unique and ai > a > aa , Eq. (3.35) follows. Eq. (3.36) and (3.37)
are obtained from (2.4) and (2.17) on letting r —> <=. Q.E.D.

4. The displacement problem. The question of existence of a solution to the bound-
ary value problem for the toroidal membrane is not completely settled by Theorem
(3.1) since the solution contains an undetermined parameter A. In addition, it remains
to decide whether the displacement equations have a solution.

Equations for to and n are given by (1.1a) and (2.3) where (1.1a) may be rewritten

H' + u = a - vfl - (T/2)i2. (4.1)

These two equations imply that co must be a solution of

co" + co = a - vp + V - (r/2)^ (4.2)

and satisfy the boundary condition (1.5a). The homogeneous equation corresponding
to (4.2) has a nontrivial solution sin 6 satisfying the boundary conditions. Thus the
Fredholm alternative theorem implies that (4.2) has no solution satisfying the boundary
conditions (1.5a) unless

J (a - vp + V - | ^ sin 6 df) = 0, (4.3)

or, after integration by parts,

/t/2 /»t/2 / p \
(a — vp) sin 8 dd = (cos 6\p + — sin 6\p* J dd. (4.4)

-r/2 J — t/2 > Z J

Eq. (4.4) is an algebraic equation for the determination of A.
Theorem (4.1): There exists an interval 0 < X < \6 < 1 such that Eq. (4.4) has

a unique solution for A in the interval 2 > A > 0.
Proof'. In order to simplify the notation, define

/t/2 (a — i>P) sin d dd, (4.5a)
-t/2

I2(A, X) = ^cos dyp + |-sin d\p2^J dd. (4.5b)

Solutions of (4.4) for a fixed X are determined by the intersections of the curves Ii(A, X)
and h(A, X). In the case X = 0 Eqs. (3.26), (3.27) and (3.28) imply that

t t a n\ (1 — f2)(l — A)ir . .Ii(A, 0) = 1^ ~ , (4.6a)

h{A, 0) = J j^cos 6i(6; 0, r) + | sin 6^(6; 0, T)J dd, (4.6b)

where 0, T) is given by (3.28). It is easily verified that, since 0, r) = 0 when
A = 1,
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1,(1, 0) = 7,(1, 0) = 0. (4.7)
Moreover, this is the only solution of h(A, 0) = hiA, 0) for 2 > A > 0, since

Ii(A, 0) = -(1 2v)ir < 0, (4.8a)

^ h(A, 0) = | [1 + (1C!!i)sin0]3 (1 + (1 - -1) sin 0(sin 0 - cos 0)) dd > 0.
(4.8b)

The non-negativity of (4.8b) for r > 0 is guaranteed by the fact that the integrand
is positive for 2 > A > 0 and — x/2 < 6 < ir/2. The theorem follows from the fact
that I,(A, X) and I2(A, X) are continuous functions of X for X in a neighborhood of
X = 0. Q.E.D.

It also follows from the above discussion that if we consider the behavior of A as
a function of X and r, i.e. A = ^4(X, r), then

lim A(\, r) = 1, (4.9)
X-0

lim A(\, r) = A(X) (4.10)
r-co

where A is the solution of (4.4) in the limit as T -> <», i.e. (cf. (3.35), (3.36), (3.37))

/T/2 (a — f(5) sin 0 dd = 0. (4.11)
- r/2

We summarize the results in the following corollary:
Corollary (4.1):

lim ||a(0; X, T) - 1|| = 0, (4.12a)
x-*o

lim 11/3(0; X, D - ill = 0, (4.12b)
X—*0

lim ||*(0; X, D|| = 0. (4.12c)
X-.0

The limiting behavior of a, /3 and as F —> <*> is given by (3.35), (3.36), (3.37) where
A = A is the solution of (4.11).

Once A has been determined as a solution of Eq. (4.4), it follows that (4.2) has a
solution, although this solution is determined only up to the nontrivial solution of the
homogeneous equation. In fact, the most general solution of (4.2) satisfying the boundary
conditions (1.5a) can be written

co(0; X, r) = c sin 0 + J ' <?,(«, ,)(« - v(S + r - | ^ dr, (4.13)

where C is an arbitrary constant and G1(0, if) is a modified Green's function for (4.2)
(cf. [6]). The function G,(0, if) can be found explicitly for (4.2) and can be written

7r/2Grl(0, if) —  cos 0 sin i] + J sin 0 cos 77, — rr/2 < -q < 0,
(4.14)

_ 0 + 71-/2 0 sin 1] — § sin 0 cos 77, 0 < ?? < ir/2.
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After an integration by parts, (4.13) becomes

/ 7r/2 / F \ f*/?
(?i(0, n)[a — v@ — — \p2) d-q — / G2(d, 77)\p dt] (4.15)

-1/2 \ A / J-1/2

where

^  7r/2
G2(0, j?) =  cos 6 cos t? — § sin 0 sin t?, —jt/2 < -q < 6,

(4.16)
_ 6 + 7t/2 cog ^ cos ^ i gjjj g gin d < t] < 7r/2.

7T

Eq. (4.15) determines w up to a multiple of sin d. The function /u is given explicitly by
(2.3), or after differentiating (4.15)

m(0; X, T) = C cos e — I G3(0, n)(a — i>p — ^2) d?i + [ Gt(0, dr) (4.17)
J-t/2 \ Z / J-t/2

where

^(flj »?) =   ^"~sin 0sin 77 — § cos 6 cos 77 — - cos 0sin 77, —7r/2 < t; < 0,T x (4.18)

_ 6_+jr/-sjn ^gjn ^ _)_ i cos 0 cos ^ _ I cog flgjn ^ 0 < 77 < 7r/2,
7T 7T

and

£4(0, 1) = ~ ~sin 0 cos 77 + J cos 0sin 77 + - cos 0 cos 77, —x/2 < 77 < 0,
T x (4.19)

_ y_+jVzgin ^ cos ^ _ 1 COg 0sin 7/ + - COS 0 cos 77, 0 < 77 < 7r/2.
X 7T

The constant C occurs in (4.15) and (4.17) because of the fact that- in obtaining the
original integral equation for a, i.e. Eq. (2.12), we have differentiated (1.1b). Thus C
is to be determined so that (1.1b) is satisfied. However, since this equation will be satisfied
up to an additive constant, it suffices to choose C so that (Lib) is satisfied for a single
value of 0. Evaluating (1.1b) at 0 = 0 we find

(l/X)03(O; X, r) - m(0; X, D) = /*(0; X, T). (4.20)
Equivalently,

C = J 03(0; X, r) - m(0; X, D)

/t/2 / -p \ pir/2
G3(fi, 77) (a ~ vfi — ~ yp2\ d-q — / (r4(0, ?7)^ ̂ 57. (4.21)

- ir/2 \ L / J-x/2

Eq. (4.21) completes the proof of Theorem (1.1). It is also possible to describe the
asymptotic behavior of co(0; X, T) and ;u(0; X, r) as X —> 0. It follows immediately that

lim C(X, r) = C(X) = I (5(0; X) - m(0; X)) + f " <?,(0, 77)(a - ,(?) d„ (4.22)
r-»» a J _ t/2
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so that

where

lim ||«(0; X, T) - a>(6>, X)|| =0, (4.23a)
r-»

lim ||M(0; X, r) - y(6»; X)11 = 0. (4.23b)
r-«

/r/2 6^(6, ij)(a — v(3) dr], (4.24a)
-*/2

/t/2 ^3(^1 — ̂ 3) d-q. (4.24b)
■t/2

This completes the proof of Theorem (1.3). Eq. (1.9) is determined by differentiating
(3.31).

In order to determine the asymptotic behavior of C(X, T) as X —* 0, we note that
(4.21) in conjunction with (2.17) yields

C(x, r) = /2(0;.x' r) + (l - S) r H(n, 0; x)x' cos dv
A J-t/2

- ~ r H(v, 0; X) F(?_: X) ~ f dr, + f'/2 6,(0, Ja - vfi - § *2) dr,
Z1 J-x/2 x cos rja ^ -r/2 \ * /

- f 6,(0, v)tdv. (4.25)
J-r/2

All the terms on the right of (4.25) have a limit as X —» 0 except /2(0; X, r)/X (cf. (2.19)).
In fact, (4.25) implies that

lim
X-0

C(\, r) - - Co 0 (4.26)

where

C.x = , Co = 0. (4.27a, b)

Combining these results with (4.15) and (4.17), we obtain Eqs. (1.7c) and (1.7d). This
completes the proof of Theorem (1.2.)

5. Appendix. In this section the actual details of obtaining Eqs. (2.12) and (2.17)
will be indicated. As was mentioned in Sec. 2, these two equations are obtained by a
combination of Eqs. (1.3a), (2.4), and (2.11). After an integration (2.11) yields

B , , X(1 - V2) f° , „ , X f' ,( . „, r cos £ ,2\£ = + "« -1 77;— / X cos d£ + ~w / x sm W  — ^ J
X X J-t/2 X J-t/2 \ LI

(5.1)
where B is a constant of integration.

Eqs. (2.4) and (5.1) can be combined with Eq. (1.3a) to give a single equation for a.
Thus Eq. (1.3a) implies that a must satisfy
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f \f \B cos 6 , X2(l — j-2) cos d f° , „(xa) =  777 b v\ cos da -( —  / x cos d£
X X

, X2 cos 9 f' ,( . „, T cos J ,2^ ^(0; X) — A /r+ —r-*)d£-iml>xa + ^n— (5-2)

This rather complicated expression can be rewritten

cos 0 (x1""' V X5 cos 0 X2(l — v2) cos 8 fe „
' ^r~ + ^ L»x 008

, \2 cos 6 f" ,( . „, r cos J ,2^ , ^(0; X) — A /r
+ 2-*)*+ X COS fl ' <5'3)

There is an apparent difficulty in integrating (5.3), i.e. neither x1-'«/cos 0 nor (F —
A)/(x cos 0) is defined at 0 = ±7r/2. However, this difficulty is removed by rewriting
(5.3) in the form

rX1"' f (F(e; x) — A) . X]' \B , X2(1 - x2) re . „Lss»V" "  sm "J J " x~-+ L,x 008 ^

+ /"r > x'(sin {f - i-—1 #■) <f{ - sin «(x- - »x *'■»- A)- (5.4)

The conditions (2.6) imply that

j£_( _F(e;X)-Asin\
cos 0 \ x /

is well defined at 0 = ±ir/2. Thus after integration of (5.4) we find

«<»;x, r) - + W:« - A>' + *«!»>-?4(#ix)
X x x

, x2(i - f2) cos e r° lf/ ^ r , , ,
H J—  / M?75 X) / X COS fa dij

X J - r/2 J - v/2

, x2 cos e f" llf ^ f ,( . „, rcosj ,2\ ,H 737- / A (»j; >0 / X Isin   — i ) d%d,T)
X */2 J-T/2 \ £t f

cos 0 /"" . ( X) — j /r — / sm 7}l x - Xv 1+, ) cfy, (5.5)
X J-t/2 \ X

where C is a constant of integration and A(0; X) is given by (2.14). It is easily verified
that the function a(d; X, T) defined by (5.5) satisfies the conditions (1.6) regardless of
the values of B and C. The constants B and C are determined from the boundary con-
ditions (1.5). The boundary condition <*'(— tt/2) = 0 implies that

C = 0 (5.6)

and the boundary condition a'(ir/2) = 0 yields
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x2(i -»2) rn ,,( ... r .
A(r/.2; X) i_T/2 k ("' X) J.r/2 X- —z,/_/o. w I h'(v; X) / x' COS J drj

V nets £ _ .
lA ) dt; dyh(y/2

+ M^IX) .Csi"- to <z&7^) ^ (5-')
Eqs. (5.6) and (5.7) reduce (5.5) to a nonlinear Fredholm integral equation for a. In
fact, noting that

TTJ0Y) f/2 h'(v, X) f m d£ dn - f h'(r, X) f m da dr,
HyiT/ Z, A) J-r/2 J — x/2 J-t/2 J-ir/2

= r2 6X6, X)/(„) d„, (5.8)
^ - x/2

where (?(0, ??; X) is given by (2.13), Eq. (5.5) becomes

(F(8;\) — A) sin 6 , cos 6 fT/2 TT/n . ( x_, , F(jj; X) — .4^= ^ z h -737 / H(0, v] X) sin ?jl x - Xv 1+t )
X ^ J-t/2 \ X

x2(i - »2) cos 6/ r/2 ^ ,
— / ??; X)x COS 77a C??7

^-t/2

d?j

i-»
X

_ X^J r/2 G(0J v; x)xYsin ̂  _ r_^L5 ^ d)? (5.9)
X J-t/2 > A /

where #(0, 17; X) is given by (2.16). Eq. (5.9) can be further simplified since (2.4) implies
that

sin Vxp - F C°S V if = "Ul2 n (g(r?; X) -^) ^ ^
2 2T cos 77 2T cos rjx ol

We conclude that a is a solution of (2.12). If we assume that a 0 for —x/2 < 0 <
ir/2, each of the integrals in (2.12) and (2.15) is convergent.

It remains to find an expression for /?. However, Eq. (2.17) is an immediate con-
sequence of Eqs. (5.1) and (5.7).
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