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INFLATION OF THE TOROIDAL MEMBRANE*
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University of Wisconsin, Madison

1. Introduction. The purpose of this paper is to discuss the existence, uniqueness,
and asymptotic behavior of tensile solutions for the nonlinear toroidal membrane
inflated by a constant normal pressure P. The theory to be adopted is that suggested
by Bromberg and Stoker in [1].

The equations governing the axially symmetric deformation of a membrane are
a combination of three sets of equations—(1) the strain-displacement equations,
(2) Hooke’s law, and (3) the equilibrium equations. For the toroidal membrane these
equations have the form

o= +a)+5 0= (= d/do) (1.1a)

e, = )\pCOSG;I-wSinﬂ (1.1b)
1

e (es + ve,) (1.2a)

B = 1 i 2 (es + veq) (1.2b)

(xa)" = X cos 8 — I'xalw — w) (1.33)

Ixe( — w)] = Asin 8 + xa — x (1.3b)

where E and v are the Young’s modulus and Poisson ratio and I is the dimensionless
normal pressure, i.e. I' = Pb/Eh where h is the thickness of the elastic surface. The
quantities @ and § are the dimensionless stresses in the 6 and ¢ directions (cf. Fig. 1),
ie. a = 0p/TE and 8 = o,/TE, ¢ and e, are related to the strains & and &, by ¢, =
&/T and ¢, = &,/T, and w and p are related to the normal and tangential displacements
by o = w/Tb and p = u/Tbh. The geometric constant A = b/a < 1 and

x =14 Asin 6. (1.4)
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In this paper it will be assumed that the deformation of the toroidal surface is symmetric
about the z-y plane. It follows that w and u must satisfy the boundary conditions

W'(—7/2) = o'(x/2) = 0, (1.5a)

w(—7/2) = p(@/2) = 0. (1.5b)
Assuming that w and u satisfy the conditions (1.5), Eq. (1.8a) implies that

o(—=/2) = o/(x/2) = 0. (1.6)

The problem of the deformation of a toroidal membrane by internal normal pressure
has been studied by a number of authors (cf. the bibliography in [2, 3]), using both
asymptotic techniques and numerical approximations. Unfortunately, none of these
techniques have succeeded in completely resolving the difficulties associated with the
toroidal membrane. Thus the system of equations (1.1), (1.2), and (1.3) with boundary
conditions (1.5) and (1.6) have not been solved numerically, although an approximate
linear equation has been successfully integrated (cf. [2]). Moreover, asymptotic results
have of necessity been purely formal, since the existence of a solution has not been
proved nor the necessary estimates obtained.

The difficulty in treating the above system of equations is a familiar one in non-
linear membrane theory, i.e. a straightforward linearization of the equations leads to
a system of equations of reduced order. In the case of the toroidal membrane, this fact
evidently implies the existence of an internal boundary layer occurring at 8 = 0 (cf. [3]).
Thus the linearized equations yield smooth solutions for « and 8, but the corresponding
solutions for » and u are singular at 8 = 0.

In this paper it will be shown that the system of equations (1.1), (1.2), and (1.3)
have a solution satisfying the boundary conditions (1.5) and (1.6). In particular, the
following theorem will be proved.

TaroreM (1.1): Let Ty be an arbitrary but fixed number such that Ty > 0. There
exists an interval 0 < X < MN¥(D) < 1 such that Egs. (1.1), (1.2), and (1.3) have a unique
tensile solution (a > 0) for all T > T, satisfying the boundary conditions (1.5) and (1.6).
The proof of this theorem is constructive, yields bounds on the solution, and implies
a procedure for the numerical integration of the equations. However, no numerical
computations have been attempted. As a consequence of the proof of Theorem (1.1)
we also obtain results on the asymptotic behavior of the solutions as A — 0 (b/a — 0)
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and as ' — = (P — ). In order to simplify the notation, introduce

-]l = max |-].
—x/25057/2

The results on asymptotic behavior are
TaeOREM (1.2): Let T' be any number such that T > 0.

lim ||e(8; N, T) — 1]| = 0, (1.7a)
A—0

lim [|8(6; A, T) — || =0, (1.7b)
A0

lim |lw(0; A, T) — 2= Zsin g — 2=|| = o, (1.7¢0)
A—0 )\ 2

lim ||u(0; \, T) — 1 —}\ Z cos 6 l = 0. (1.7d)
A0

Although Theorem 1.2 implies that w — « and u — = as A — 0 it does not follow that
w and u are unbounded as A — 0. In fact Theorem 1.2 implies that

Pb . 2 —v Pba
wﬂﬁ[(l—b)asm0+ 5 b], uﬁﬁcoso
as A — 0.
TaeEOREM (1.3): There exists a function e(8, \)—a solution of a linear equation—and
functions 8(6, \), o(6, N), and u(8, \), each uniquely determined by «(8, \), such that

lim [la(6; %, T) ~ o(6; V]| = 0, (1.82)
}g} [18(6; N, T) — B(6; || = 0, (1.8b)
lim [lo(6; A, T) — o(6; M| =0, (1.8¢)
lim ||u(6; N, T) — w(6; || =0 (1.8d)

I'-w

for A in some interval 0 < A < \* < 1. The function «(6; \) in Theorem 1.3 is a solution
of the equation

[x'+2"( X a)] — N(1 — ) cos e = f(6; N, ). 1.9)

cos 0
The inhomogeneous term in Eq. (1.9) is defined by

7 608’ § + x"(1 — A + sin § — \° cos’ §/2)(sin § + N1 + ») cos® 6)
cos® 60

f(8; 2, 4) =%
(1.10)

where A is a parameter determined by an algebraic equation, but in any case A satisfies
the condition 2 > A > 0. Although Eq. (1.9) is singular, at § = +x/2, it follows from
the discussion in this paper that the equation has a unique solution satisfying the bound-
ary conditions (1.6) for each A (2 > A > 0). However, the question of the qualitative
behavior of solutions to Eq. (1.9) satisfying the boundary conditions (1.6) has not been
treated.
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In Sec. 2 of this paper it is indicated how to reduce the system of equations (1.1),
(1.2) and (1.3) to a single equation for a depending on a parameter 4 (the actual details
of the calculation are in the appendix (Sec. 5) at the end of this paper). In Sec. 3 it is
proved that this equation has a solution for a certain range of the parameter 4, and
in Sec. 4 it is proved possible to choose 4 in such a way as to yield nonsingular solutions
for the displacements w and p.

2. Formulation. The stress equations. In this section the three pairs of equa-
tions (1.1), (1.2), and (1.3) will be reduced to a single equation for the dimensionless
stress a. The function 8 is eliminated from Egs. (1.3a) and (1.3b) by multiplying (1.3a)
by sin 6 and (1.3b) by cos 6 and subtracting. The resulting differential equation can be
written

(9x)’ = x cos 6 (2.1)
where
g=sind —Tcosy, ¥ =0 — u 2.2, 2.3)
It follows from (2.1) that
1 ( _g«’_(a;x)—A).
Y = T oos g S0 0 e (2.4)
A is a constant of integration and
[} 2
F(6;\) = f x cos ndn = 1 +sin 6 — % cos? 0. 2.5)
-x/2
If the function ¢ is to be regular at § = +7/2 Eq. (2.4) requires that
a(—7/2) = A/(1 = N\), a(x/2) = (2 — A)/(1L +N. (2.6a, b)
Thus a(—7/2) and a(x/2) must satisfy the condition
a4+ Nea(x/2) + A — Na(—7/2) = 2. 2.7

Note also that if the membrane is in tension throughout, as is to be expected, the con-
ditions (2.6) imply that

2>4>0. (2.8)

In order to insure the regularity of ¢ it will be assumed for the moment that o satisfies
(2.6). It then follows from L’Hospital’s rule that

Y(—m/2) = ¢(x/2) =0, (2.9)

a condition already implied by the boundary conditions (1.5).
Egs. (1.1) and (1.2) can be reduced to a single equation for 8 as a function of a and
¥. For this purpose note that the Iiqs. (1.1) imply that

(xes)’ — X\ cos ey = Asin 6y — w Vv (2.10)
or, using (1.2),
6B = v(x''a)’ + (1 — V)X cos Ox’a + x"(x sin 0y — _1132%_@ ¢’)- (2.11)
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Eq. (2.11) can be solved explicitly for 8 as a function of & and ¢. Combining this result
with (2.4) and (1.3a), we obtain an equation for a (cf. Sec. 5). In fact we find that the
function « satisfying the boundary condition (1.6) must be a solution of the non-linear

integral equation

)\2(1 _ V2) 2 )
a(0; A, r) = f1(6; A, T) — - .-, _ ¢cos 0 G(07 7; Nx” cos na dn

)\ cosof (60, 7 )(F(m)\) A)2

2Ty ™" cos na’
where F(0; )\) is given by (2.5) and
Ny P N (/25 N) — k(6; N) _
G(B’ n, )‘) = h(?l'/z; A) y 7"/2 <2< 0,
_ h(6; N(R(x/2; N) — h(n; N)
]
oy = [ A
-x/2 X
The funection f,(6; A, T') in (2.12) is given by
(050, T) = (F(g;\) — A)sin 6
X
r/2 f—
+ 950 [ Hg, ;N sin n(x' P T = ),
-x/2 X
A? cos @ in®
- 6 9, 7; \ d
T doese (6, 20 > cos 3 &7
where
RN — h@/2; N _
H(or 7, )‘) = h(ﬂ‘/.?; )\) ) 7r/2 <3< 0,
RICRNE
SNy PSS
It is also possible to express 8 in terms of @. Thus it is found that (cf. See. 5)
2
80N T) = H0 %, ) a0 n, ) + 22 [ F 6305 c0s nadn
x -x/2
A s FE@; N — A)
— H(y, 6; \ —’—d
2Ty '/;r (n ) cos 7o’ !
where H(y, 6; \) is simply the adjoint of H(6, 4; \), i.e.
N (CTRY, _ '
H(’]; 0’)‘) —h(r/Q;)\)’ W/ZS n < 6,

TN ICTEtS S

hw/2;N)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)
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and

) _ )\ [1/2 ) Xv Sinz "
fz(ox A, P) = e H(ny 0; >‘) cos 7 dy

2I\xl+v
1 i 3 +v F

The solution of (2.12) (if it exists) will determine « up to the constant A, and in
addition (2.17) will determine 8 up to the constant A.

3. Existence of solutions to the stress equation. In this section it will be shown
that under certain conditions Eq. (2.12) has, for each value of 4 in a certain interval,
a unique solution.

LemmA (3.1): Let e and Ty be arbitrary but fixed numbers such that 0 < ¢ < 1 and
To>0.If2 — e > A > ethere exists an interval 0 < N < N\ (To, € < 1 such that f,(6;
ANT)>0for —m/2 <0< n/2and T > T, .

Proof: The function f,(6; A, To) is a continuous function of N for 0 < A < 1. At
A = 0 (cf. (2.15))

1,(6:0, T)) = (1 — A + sin 6) sin 8 + cos af H(9, 7;0)singdn  (3.1)
-x/2

where (cf. (2.16))

H(8, »;0) = (6 — w/2)/m, —7/2 < 9 <6, 3.9)
= (0 + 7/2)/x, 0 <9 <mw/2
from which it follows that
£1(6;0,To) = 1 + (1 — A) sin 6. (3.3)
The minimum of f,(8; 0, T'y) is achieved at either § = —x/2 0or § = 7/2, i.e.
min  £,(0;0, Ty) = min (4,2 — 4) > ¢ > 0. 3.4
~r/250<7/2

Since f,(6; \, T,) is a continuous function of A\, we conclude that f,(8; A, T,) is positive
in some interval 0 < A < A\; < 1. Moreover, f,(8; A\, T') is an increasing function of T

(cf. (2.15)) so that ,(6; A, T) > 0for0 < A<\ < landT > T,. Q.E.D.
LeEMMA (3.2): There exists an interval 0 < X < X, < 1 such that the linear equation
v =) — Y= oo g f G(6, 7 X" cos nV dn (3.5)

with Q(8) continuous (—w/2 < 0 < 7/2) has a unique solution. If Q(6) > O there exists
an interval 0 < X < \s < 1 such that V(6) > 0.

Proof: Eq. (3.5) is a linear Fredholm integral equation with a continuous kernel.
The existence of a unique solution when X\ is sufficiently small follows from the con-
traction mapping theorem. In order to prove the second part of the lemma, it suffices
to show that

V<Q (3.6)

gince in this case (3.5) implies
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> Q(6) — —,_— cos ¢ G(8, n; Nx" cos nQ(n) dg > 0 3.7
x -x/2
when ) is sufficiently small. To prove (3.7) rewrite (3.5) in the form
)\2(1 _ ) /2 )
V—-—Q= ——l—- cos 6 G(8, 7; Nx" cos 9(V — Q) dy
X —-%/2
2 I /2
A=) s [ 68, 150X cos wQdn.  (3.9)
X -%/2

It follows from (3.8) that

[th(cos 0)(Q - V)'] N0 — )x" cos 8(Q — V) = —x" cos 6Q
(—r/2 < 0 < =/2) (3.9
and

1-v —
lim XQ-7V) _ 0, lim

0 7/2 cos 6 -+ x/2

(&"_(_Q—_V))" < .  (3.10a,b)

cos 0

Assume Q — V < 0 in some interval —7/2 < 6, < 8 < 6, < w/2 where @ —V =0
at @ = 0, and § = 6, . Multiplying (3.9) by x'*(Q — V)/cos 8 and integrating from
6, to 0, we find that

[ fe([E5@-n]T +ra - - vrpas = ["xe@ - nas

3.11)
The right side of (3.11) is negative, and the left side is positive; this contradiction proves
the lemma. Q.E.D.

Lemma (3.3): If V s a solution of

V=)\2cos0 /2 G0, m; \) Q(")d N(1 — +*) cos 6

2rxl_, /2 y My cos 7 n — Xl_, e G'(0, 7, >‘)X CcOoSs 'r;V dﬂ

(3.12)

with Q(6) > 0 and continuous (—x/2 < 6 < w/2) then V > 0 for —1r/2 <0< /2
Proof: Any solution of (3.12) is twice contmuously differentiable in the interval
—7/2 < 6 < 7/2 and in fact must satisfy the differential equation

[X“"(xl-, V>’:| — N1 —A)x cos OV = —== ~_Q (8.13)

cos 6 2T cos 6

In addition it follows from (3.12) that

1-v
lim (" V) -
9 xs2 \COS 0




18 R. W. DICKEY

Jim ("H V)' - {+ ® or

g~—ns2 \COS 0 finite

. x )’ _J=oor
0{1::/12 (cos 0 V) = { finite
where the value of (x'~*V/cos 6)’ at § = /2 depends on the behavior of Q(6) at
6 = ==m/2. Assume V(0) is negative in some portion of the interval —=/2 < 8 < /2,
i.e. assume there exist two points 6, and 6, such that V(8,) = V(8,) = 0and V(8) < O
for 6, < 8 < 6, .If limy.,,/2 (x'°V/cos ) = F o then —x/2 < 6, < 6, < /2. On
the other hand if limy..,/. (x' "V /cos 6)’ is finite then —x/2 < 0, < 6, < x/2. In
either case the fact that solutions of (3.13) must satisfy the identity

o[22 0] dag 2 X [

fa‘ X cos 0 + N1 — PV do = oT pove R de (3.14)

leads to a contradiction. The situation in which (x'~’V/cos 0)’ is finite at one end and
infinite at the other leads to a similar contradiction. Q.E.D.

Lemmas (3.1), (3.2) and (3.3) will enable us to prove the existence of a solution to
Eq. (2.12). For this purpose define the following iteration scheme:

N — ) cos b [T ,
v = H(6; N T) — —(—xly_)— o G(6, 7; Nx" oS nan., dy
)\2 0 x/2
o G(8, 1; N) (———F(”’ N=4 g, 3.15)
2Tx —x/2 * cos noi
where a, is a solution of
AN — ") cos § [T ,
o = 105\, T) — —(—X)— GOV s naedn  (.16)

Specify ¢ and Ty as in Lemma (3.1), so that f,(6; A, T') > C > 0 for T > T, and
2 — e> A > eif Nisin the interval 0 < A < A\ (To, €)/2. It thus follows from Lemma
(3.2) that there is an interval 0 < X < X\s < A\(To , €)/2 such that Eq. (3.16) has a
unique solution a,(8; N, T) for each A(2 — e > A > ¢) and T' > T and that

as(6; A, T) > 0. (3.17)

Moreover, Lemma (3.2) implies that (3.15) has a unique solution for «, in the interval
0 < A < A5 . The function a; — a, is a solution of the equation
@ — oy = 2’ cos 0/‘ (o, m; \) (F(n,)\) A) dn
” COS noiy
2 — 2 0 x/2 )
- M cos 6 [ GO, ;N — a)dn  (3.18)

xl-v —x/2

Lemma (3.3) implies that the solution of this equation is positive, i.e.

ay 2 o . (319)

Similarly,
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*cos § [T F(n; N
o — ap = )—\% G(g’ )\) (_(li—) d77
2Tx -%/2 ¥ cos na1
N v) "/
————= cos 0 G(6, 7; Nx cos (o, — ao) dy (3.20)
X'~ -1/2
and
F
@ — o = LOIS_'O G(0 : ) (Av’_k)_A) @ — ) dn
2Px -x/3 COS nalaz
2 —
- )L_;v:),c_osﬁ o G(8, 7; Nx cos n(a; — ap) dy. (3.21)

Egs. (3.20) and (3.21) in conjunction with Lemma (3.3) implies that a; > a, > a .
By induction it is shown that

LeEmMA (3.4): Let € and T\, be arbitrary but fixed numbers such that 0 < ¢ < 1 and
To>0.If2 — e > A > ethere exists an interval 0 < N < Ns(To , €) < 1 such that the
iterates defined by (3.15) satisfy

Q> a3 >t Z Qomer Q2 v 2 0 2 (3.22)
for —w/2 <6< 7w/2and T > T, .

A similar type of iterative behavior has been observed in treating circular plates [4]
and circular membranes [5].

The iterates {a..} are a bounded monotone increasing sequence, and the iterates
{azme1} are a bounded monotone decreasing sequence. In addition, it follows from
differentiation of (3.15) that the derivatives of apns; and as,, are uniformly bounded.
Thus the sequence {az..1} converges to a continuous function e, and {e.,} converges
to a continuous function a_ where

a, > a_. (3.23)
The functions a, and a- are solutions of the pair of equations
)\ cos 0 F(n; N
= f,(6;\, T) 4+ G(o, )(_(ﬂ_)_)
—x/2 cos na’ .
NS 0
N0 =)o IV.) o2 G(G, 7; NX cos na, —dy.  (3.24)
X -%/2

TueoreM (3.1): Let € and Ty be arbitrary but fized numbers such that 0 < ¢ < 1
and Ty > 0. If 2 — € > A > e there exists an interval 0 < X\ < N*¥(Ty , €) < 1 such that
Eq. (2.12) has a solution for all T > Ty . The solution is unique for each A.

Proof: In order to prove the existence of the solution, it suffices to show that a, =

_ . When we note that @, > @, > a- 2> o, Egs. (3.24) imply that

2 _ 2 /2
llaw — a_|| £ {MI—L)M G(6, n; Nx" cos n dny

xl—' —x/2
F(n;
)\Pc?s,af (6, 1 )( (n; >\()3 —4 3) 77} e — ]l (3.25)
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When A is sufficiently small (3.25) yields ||, — a-|| = 0, which implies that a, = a_ .
In order to prove the uniqueness, it suffices to note that, since every solution a of (2.12)
satisfies the condition o > a, , an estimate of the type (3.25) yields the uniqueness.
Q.E.D.
The preceding development also yields results on the asymptotic behavior of «
andBasA—0and I' > o,
TaEorREM (3.2): Let A be any number such that 2 > A > 0.

lim [ja(6; \, T) — (1 + (1 — A)sin 6)|| = 0, (3.26)
A0
lkim [18(6;\, T) — (3 +»(1 — 4)sin ]| =0, (327

¥(6; N, T) —

lim
A—0

. 1— A +siné _
[smo- T+ 0= Asn 0]” = 0. (3.28)

T cos @
Proof: The function a(8; N\, T') satisfies the inequality oy > « > a, and
limey(6; N\, T) = limae(6; A\, T) =1+ (1 — A)sin 6 (3.29)
A0 A0

which implies (3.26). Egs. (3.27) and (3.28) follow from (2.17), (3.26) and (2.4) and the
fact that

x/2 _ _
1 f sin n(xl" F_______(n, N A) dn = 1-2 (3.30)

lim ———————
0 N "h(r/2; N) J-es2 X 2

Q.E.D.
In order to discuss the asymptotic behavior of a and 8 as T' — 0 define two functions
a(6; \) and 3(8; \) where « is the solution of the linear integral equation
2 —
)\_(1_;') cos 6 f G(0, 7; Nx~ cos na dy (3.31)
x'

—-%/2

«(0;N) = fo(6;N) —

where
NORIUCRERE.Y
e [ e vsinale —n TR A) g Gy
and
B0 N = 1,03 ) + (65 ) + (—x—) [7 Ha, 00x cosedn 3.39
where

1 /2 . ( 1- F(n A) )
W YMEI Ten SR dn (334
f ( ) )\Xl“h(1r/2; x) ~[-7/2 s 1] X xl+r 7) ( )

TaeEOREM (3.3): Let € and T, be arbitrary but fixed numbers such that 0 < ¢ < 1
and Ty > 0. Assume \ s in the interval 0 < X < N¥ (T, ¢ < 1.

iim |le(8; X, T) — a«(6;2)|| =0, (3.35)
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}‘im [18(8; x, T) — B(6; M| = 0, (3.36)
lim [[¢(6; A, T)|| = O. (3.37)
T

Proof: In the limit as T — « both «, and @, are solutions of (3.31). Since the
solution of (3.31) is unique and @, > o > a,, Eq. (3.35) follows. Eq. (3.36) and (3.37)
are obtained from (2.4) and (2.17) on letting ' — . Q.E.D.

4. The displacement problem. The question of existence of a solution to the bound-
ary value problem for the toroidal membrane is not completely settled by Theorem
(3.1) since the solution contains an undetermined parameter A. In addition, it remains
to decide whether the displacement equations have a solution.

Equations for w and u are given by (1.1a) and (2.3) where (1.1a) may be rewritten

¥t w=a—B— (T/2)¥" (4.1)
These two equations imply that w must be a solution of
o't o=a—8+ ¢ — (T/2¢ (4.2)

and satisfy the boundary condition (1.5a). The homogeneous equation corresponding
to (4.2) has a nontrivial solution sin @ satisfying the boundary conditions. Thus the
Fredholm alternative theorem implies that (4.2) has no solution satisfying the boundary
conditions (1.5a) unless

/2 P
f <a—v{3+1l/—§:l/2>sin0d0=0, 4.3)

/2

or, after integration by parts,

/2 i x/2 P
f (@ — vB) sin 6 db = f (cos 0y + = sin 0¢"') de. 4.4)
-x/2 -x/2 2
Eq. (4.4) is an algebraic equation for the determination of 4.

TaeEOREM (4.1): There exists an interval 0 < N < N\ < 1 such that Eq. (4.4) has
a unique solution for A in the interval 2 > A > 0.

Proof: In order to simplify the notation, define
/2

I(A, ) = f = w)sin0ds, (4.58)

/2

I(A, ) = f (cos o + 5 sin o.p*) do. (4.5b)

-%/2
Solutions of (4.4) for a fixed \ are determined by the intersections of the curves I,(4, \)
and I,(4, N). In the case A = 0 Egs. (3.26), (3.27) and (3.28) imply that

14,0 = 4= - 4

(4.6a)

/2

L4,0 = [ [cos 0(6;0, T) + L sin 6y*(0; 0, r)] do, (4.6b)

-r/2

where (6, 0, T') is given by (3.28). It is easily verified that, since ¢(6; 0, I') = 0 when
A =1,
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I1,(1,0) = I.(1,0) = 0. “.7
Moreover, this is the only solution of I,(4, 0) = I,(4,0) for2 > A > 0, since
d 1 -
51 (4,0 = _( 2”)" <0, (4.82)

!; /2 0052 0

rJ..,.[14+ @1 — A4)sin 6

ﬁ I,(4,0) = (1 + (1 — A) sin 0(sin 6 — cos 6)) d6 > 0.

(4.8b)

The non-negativity of (4.8b) for ' > 0 is guaranteed by the fact that the integrand
is positive for 2 > A > 0'and —7/2 < 8 < w/2. The theorem follows from the fact
that I,(4, N\) and I,(4, \) are continuous functions of A for X in a neighborhood of
A=0. Q.E.D.

It also follows from the above discussion that if we consider the behavior of A as
a function of A and T, i.e. A = A(\, T), then

lim AQ\, T) = 1, (4.9)
lim A\, T) = AQ\ (4.10)

where A is the solution of (4.4) in the limit as T' — o, ie. (cf. (3.35), (3.36), (3.37))
x/2

f (@ — v8) sin 6 d6 = 0. (4.11)
-%/2

We summarize the results in the following corollary:
CoroLLARY (4.1):

lim ||a(8; A, T) — 1]] = 0, (4.12a)
A-0
lim [[8(6; A, T) — }|| =0, (4.12b)
A0
lim ||¢(6; X\, T)|| = 0. (4.12¢)
A—0

The limiting behavior of &, 8 and ¢ as T' — « is given by (3.35), (3.36), (3.37) where
A = A is the solution of (4.11).

Once 4 has been determined as a solution of Eq. (4.4), it follows that (4.2) has a
solution, although this solution is determined only up to the nontrivial solution of the
homogeneous equation. In fact, the most general solution of (4.2) satisfying the boundary
conditions (1.5a) can be written

/2
wi 1) = Csin o+ [ 6o, ma—w+ v - T Flan @
-n/2
where C is an arbitrary constant and G,(8, 5) is a modified Green’s function for (4.2)
(cf. [6]). The function G,(6, n) can be found explicitly for (4.2) and can be written

06— /2
T

G.(8, n) =~ cos #sin n + % sin 6 cos 7, —n/2< <0,

(4.14)

cos fsin n — 3 sin 6 cos 7, 0 < q<m/2.

64 x/2
™




INFLATION OF THE TOROIDAL MEMBRANE 23
After an integration by parts, (4.13) becomes

w/2 T /2
w(; A, T) = Csin 6 + f_ p G.(8, n)(a —wB-3 ¢2> dn — f_ p Ga(6, )¢ dn  (4.15)

where

0 — w/2
T

G2(6, 1) cos 6 cos n — % sin 6 sin 7, —7/2<93< 8,

(4.16)

%cosecosn-F%sinas'mn, 0 < qg<w/2.

Eq. (4.15) determines w up to a multiple of sin 6. The function u is given explicitly by
(2.3), or after differentiating (4.15)

/2 r /2
w0 D =Coso— [ G ne-w-Fv)an+ [ 6o v @m
where
Gy(8, n) = o—zjﬁsin Osin g — % cos 6 cos n — lcos fsinyg, —x/2<9Z04,
™ T
(4.18)
= —0—-'—_;7L/-gsi110sinn+%cos000sn —-}rcos fsing, 6<9<m/2
and
G0, n) = o;ﬂgsin 0 cos p + % cos 6sin n + -l-cos f6cosy, -—-w/2<17L04,
w T
(4.19)
= %sinlicosn — 1 cos ﬁsinn-l-}rCOSOCOSn, 0< 9<7/2.

The constant C occurs in (4.15) and (4.17) because of the fact that in obtaining the
original integral equation for «, i.e. Eq. (2.12), we have differentiated (1.1b). Thus C
is to be determined so that (1.1b) is satisfied. However, since this equation will be satisfied
up to an additive constant, it suffices to choose C so that (1.1b) is satisfied for a single
value of 0. Evaluating (1.1b) at § = 0 we find

(1/N)(BO0; X, T) — va(0; N, T)) = u(0; A, T). (4.20)
Equivalently,

C =3 (BO; N, T) = va(0; ), 1))

x/2

T 2 x/2 ,
+ 7 a0 nle—m-F)ar— [ o pvan @

-x/2

Eq. '(4.21) completes the proof of Theorem (1.1). It is also possible to describe the
asymptotic behavior of w(6; A, T') and u(8; N\, T) as A — 0. It follows immediately that

lim C(\, T) = CO) = 3 (60; ) — w(0; 1) + [ G0, (e — Q) dn  (4.22)

T—»
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so that
lim ||w(6; X, T) — (8, ]| = 0, (4.23a)
T—o
lim ||u(6; A, T) — uw(6; N)|| = 0, (4.23b)
) ()
where
/2
o(8;)) = Csin 6 + f Go(6, (e — B) dn, (4.242)
-x/2
*/2
w(6;\) = C cos 6 — f_ G0, (e —B) d. (4.24b)

This completes the proof of Theorem (1.3). Eq. (1.9) is determined by differentiating
(3.31).

In order to determine the asymptotic behavior of C(\, T') as X — 0, we note that
(4.21) in conjunction with (2.17) yields

. /2
co, 1 = EOND 4y [ He, 0,0x cos nady
-x/2
/2
- L[ B, 0»@&—(1 +f Ga(O,n)<a—Vﬂ——ll/)dn
2TV vp cos na’

/2

- G40, n)y dn. (4.25)

~x/2

All the terms on the right of (4.25) have a limit as A — 0 except f,(0; A, T')/X (ef. (2.19)).
In fact, (4.25) implies that

lim |CQ, T) = Ca_cf = (4.26)

where

1 — 2
2 ?

C-[ = Co = 0. (4.273., b)
Combining these results with (4.15) and (4.17), we obtain Eqs. (1.7¢) and (1.7d). This
completes the proof of Theorem (1.2.)

5. Appendix. In this section the actual details of obtaining Eqgs. (2.12) and (2.17)
will be indicated. As was mentioned in Sec. 2, these two equations are obtained by a
combination of Eqgs. (1.3a), (2.4), and (2.11). After an integration (2.11) yields

x" cos éa df + a f_om x'(sin gy — E—%)Eé tﬁ’) d¢

(5.1)

g = 1+-+ +)‘_(1——")
X

-r/2

where B is a constant of integration.
Eqgs. (2.4) and (5.1) can be combined with Eq. (1.3a) to give a single equation for a.
Thus Eq. (1.3a) implies that o must satisfy
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2 — 2 (]
(xa) = AB f?,s o ~+ »A cos fa + AL —») cos ¢ ::,) cos 8 x" cos ta dE
X X -7/2
2 ] . _
yArcosé x'(sinzn// ~ Lot ¢2) dt — tan Oxe + DN =4 5 0
x 7 —x/2 cos 6
This rather complicated expression can be rewritten
cosO(x"" YV ABcos® , A —)cosh [ ,
1-r (cos 0 ) - X’ + e e cos far df
A cos 0 [° ,( . T cos ¢ 2) F(o;\) — A
+ o x'\sin ¢y 5V )dE+ < cos 8 5.3

There is an apparent difficulty in integrating (5.3), i.e. neither x'~"a/cos 8 nor (F —
A)/(x cos ) is defined at 6 = +=x/2. However, this difficulty is removed by rewriting
(5.3) in the form

[xx-. (a _(F(8; )\i — A) sin 0)]’ _ xz:f' + N1 - [°

cos @ xm.

x’ cos fa d

-x/2

N R I'cos§ ,, ) — Flo;N) — A

The conditions (2.6) imply that
1-» . —
X __ (a _FEiN — 4 )2 4 sin 0)

cos @
is well defined at 6 = =+x/2. Thus after integration of (5.4) we find

(F(0; \) — A)sin 6 + AB cos ¢

C cos 6
» X xl—-

1—-

a(6;\, T) =

+ Rh(8; )

2 — 2 0 2
ra 1’-’-:) 03 & R (n; N) x~ cos £ dt dn
X

-%/2 -x/2

+

N 0 [° . T co:
- o [ x(singy — T2 g2 geay
X /2 -x/2 Z

-7

+

[} . —
- colsi'() sin n(x“’ - M W) dn, (6.5)
X

X -%/3

where C is a constant of integration and h(6; \) is given by (2.14). It is easily verified
that the function a(8; )\, T") defined by (5.5) satisfies the conditions (1.6) regardless of
the values of B and C. The constants B and C are determined from the boundary con-
ditions (1.5). The boundary condition o’(—#/2) = 0 implies that

C=0 (5.6)

and the boundary condition o’/(7/2) = 0 yields
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)\2(1 — V2) /2

M= =rzn 1, TN f" cos £ df dn

)\2 /2

_ "o L O __Tcost 2)
h(@/2;N) J_1/2 W N) ‘/‘_,/2 X (Sln 14 2 V') didn

o ) = )

1 e (
/230 Jonp S0 X NEE

+ (5.7

Eqgs. (5.6) and (5.7) reduce (5.5) to a nonlinear Fredholm integral equation for . In
fact, noting that
h(a. A) /2 fﬂ [0 '/‘7'
YA YR h'(m; N - h'(n; N dtd
h(1r/2; )‘) -x/2 (77 ) -%/2 f(g) dg dn -r/2 (7’ ) —r/2 f(g) ‘E K

/2
= [ a6 mNmdn, 69
where G(6, n; \) is given by (2.13), Eq. (5.5) becomes

. . : /2 . —-
o = (F(8; N - A) sin 0 n cols_yﬂf H(0, n: ) sin n<xl—r — F(n; >:)+' A) dn
X -x/2

N1 =) cos g [

xl—r —x/2

2 /2
-l [ G, sy~ TS ) G9)

—-%/2

G(8, 7; NX" cos na dn

where H (6, n; \) is given by (2.16). Eq. (5.9) can be further simplified since (2.4) implies
that

. _Tecosn , _ sin®n _ (Flp3N) — A?
sin ny 5y ¥ = 2T cos g 2T cos e’

(5.10)

We conclude that « is a solution of (2.12). If we assume that @ # 0 for —7/2 < 0 <
m/2, each of the integrals in (2.12) and (2.15) is convergent.

It remains to find an expression for 8. However, Eq. (2.17) is an immediate con-
sequence of Eqgs. (5.1) and (5.7).
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