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REMARKS ON THE ASYMPTOTIC PROPERTIES OF SOLUTIONS OF
FREDHOLM INTEGRAL EQUATIONS*

By GEORGE R. BART (Mayfair College, Chicago)

A theorem on the Ifirge-argument asymptotic behavior of the solution of a translation-
type of linear integral equation was recently obtained by Muki and Sternberg [1].
Presented herein is a lemma whose domain of application overlaps, in part, that of their
theorem. When our lemma applies one is able to prove the existence of a solution of the
type that their theorem presupposes. Our lemma provides a useful asymptotic bound
for the solution of any regular Fredholm equation whenever, in the context of conven-
tional Fredholm theory, the resolvent exists. The approach presented here was previously
used to determine the asymptotic behavior of the solution of a Fredholm integral equa-
tion which arises in the theory of scattering of elementary particles [2],

Let us consider the Fredholm integral equation

<p(x) — f(x) + [ K(x, s)<p(x) ds, 0 < x < co. (1)
Jo

We presume that Fredholm theory applies and that 1 is not an eigenvalue of K. Then
Eq. (1) has a solution which is unique. As a step towards obtaining the large-argument
asymptotic behavior of this solution we present the following lemma.

Lemma. If in the regular Fredholm. equation (1), 1 is not an eigenvalue oj K, and if,
as x,

f(x) = 0[fA(x)], (2)

k{x) = |K(x, s)|2 ds}"2 = 0[kA(x)], (3)

Kf(x) = [ K(x, s)f(s) ds = 0[KAj(x)], (4)
Jo

then the solution <p of (1) is bounded by

v(x) = 0[fA(x)] + 0[Ka(x)\ + 0[kA(x)]. (5)

The proof by means of the Schwarz inequality is almost trivial. Let H be the resolvent,
1 + H = (1 — K)-\ Then

v = / + Hf
= f + Kf + KHf (6)

and

  m < i/i + m + k www, (7)
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where the double bars denote the norm of Hf. Eq. (5) follows immediately from (2)-(4)
and (7).

To apply the lemma, ordinarily one can determine jA , kA , and KA j from a knowledge
of the asymptotic behavior of the given functions / and K. The usefulness of the lemma
comes from the fact that frequently one can use the bound (5) to extract from the
right-hand side of (1) a specific form for the asymptotic behavior of <p. For example,
let K be the real-valued translation kernel of Muki and Sternberg,

K(x, s) = \iG(x — s) + \2G(x + s), (8),

where Xi and X2 are real constants and G(—x) = G(x). They hypothesize that G and /
are continuous on (0, <») and [0, <*>), respectively. Also they suppose that G is absolutely
integrable on [0, ^) and that as x —» co

G(x) = ax~m + 0(x~m'1), a ^ 0, 1 < m < <=, (9)

f(x) = bx~" + b ^ 0, 0<n<°°. (10)
Their theorem states that if there is a solution <p of (1) such that ip is continuous on
[0, oo) and as x —» °o

ip(x) = ax~" + o(x~"), a 0, 0</i<oo. (11)

then (a) m < n implies fx > m or (b) m > n implies n = n, a = b/0, provided

0 = 1 - 2X, [ G(s) ds 9*0. (12)
Jo

Let us show with the aid of our lemma that if in addition to the Muki-Sternberg
assumptions we suppose that Ai = 0, n > J, and that 1 is not an eigenvalue of K, then
a ip with the properties they suppose, including property (11), does in fact exist. A
natural way to investigate (1) with the kernel (8) is by using the Weiner-Hopf technique.
For simplicity, however, we take Ai = 0 so that Fredholm theory applies also. It is
easy to see that if <p is continuous on [0, ), then K<p is also. In applying conventional
Fredholm theory we look for the solution of (1) in the space C2 of continuous functions
which are square integrable on [0, oo). We take n > § so that / is in C2. For K to be a
C2 kernel it is required that X, = 0. To see this, suppose X, p* 0 and observe that

li\x) = 2X? (" G2(t) dt - (X? - \l) [ G2(t) dt + 2XjX2 [ G(t)G{t - 2a) dt. (13)
J o Jx x

As x —» oo the second integral in (13) is 0(x~2m+1) because of (9). The last integral
in (13) can be shown to be 0(x~m). But the first term in (13) is a non-zero constant.
This implies that the integral of k2 over [0, ) diverges. Hence K is a C2 kernel if, and
only if, Xi = 0.

Suppose Xi = 0. One can verify with the aid of a lemma given by Muki and Sternberg
that now

jA(x) = x~n, (14)

kA(x) = (15)

KAj(x) = x~", m = min (m, n), (16)
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with | < n < oo and 1 < m < <». Hence by Fredholm theory and our lemma, the
unique, continuous, square-integrable solution <p of (1) has the asymptotic bound

<p(x) = 0(x~"), n = min (n, m — §) > §. (17)

This bound and the continuity of <p are sufficient to carry out the steps of the Muki-
Sternberg lemma which imply that

/'Jo
<p(s)G(x + s) ds = acx~m + o(x m), ii fi > m, . .

(18)

= o(x~"), if n < m,

where c = /" <p(s) ds. Thus, since (17) implies that n is always less than m, from the
right-hand side of (1) one gets the same asymptotic form for <p as in the Muki-Sternberg
theorem with Xt = 0.

The preceding approach can be useful in cases involving more delicate bounds than
are encountered here. See, for example, [2] where many of the integrals converge only
by virtue of logarithmic factors.

In conclusion let me add that three recent Russian works on the asymptotic behavior
of integral equations of the first kind are reviewed in Mathematical Reviews 42. Also
I wish to thank R. Warnock for helpful discussions.
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