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1. Introduction. Diffraction of P-waves by disk-shaped obstacles and cracks

embedded in a homogeneous and isotropic elastic medium has recently been given

considerable attention. A bibliography of this subject is given in [1]. The corresponding

problems of diffraction of S-waves are also of considerable interest in seismology and

geophysics. Knowledge of the modification of S-waves in the vicinity of a crack is

helpful in predicting the nature of flaws in the material. The dynamic stress intensity

factors in the vicinity of a crack also help in predicting the fracture and failure of the

material. Furthermore, the observation of diffraction pattern of S-waves generated by

earthquakes or explosions reveal the presence of inhomogeneities and structural dis-

continuities in the medium. However, this problem has not received much attention.

The main difficulty is that diffraction of S-waves leads to an asymmetric boundary

value problem which is rather difficult to solve.

We present here the solution of the problem of diffraction of a plane S-wave for

two cases. In the first case we discuss diffraction of S-waves by a rigid circular disk

which is embedded in an infinite homogeneous and isotropic elastic medium. In the

second case we analyze the corresponding problem of diffraction of a plane S-wave by a

penny-shaped crack. It is assumed that the two faces of the crack are separated by a

small distance so that they do not come into contact during vibration. The incident

S-wave is assumed to be time-harmonic and is polarized in planes perpendicular to those

of the disk and the crack. Furthermore, it is assumed to propagate along their axes of

symmetry.

The method of solution is based on an integral equation technique suitable for mixed

boundary value problems [2]. This method rests on giving an integral equation formula-

tion to these problems by the usual Green's function approach. This leads to various

Fredholm integral equations of the first kind which are subsequently transformed

into Fredholm integral equations of the second kind suitable for iteration at low fre-

quencies. The boundary conditions are prescribed in the interior and exterior of the disk

and crack. These conditions are mixed with respect to the components of stress tensor

and displacement vector. It emerges from the present analysis that the edge conditions

play the same crucial role here as they do for the corresponding problems in electro-

magnetic theory.

We give the method of determining app?oximate values of the displacement and

stress fields in the planes of the crack and the disk for these problems. In the case of
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the crack problem we also give the values of the dynamic intensity factors. The corre-

sponding static intensity factors, when the loading is a uniform shear field at infinity,

can be derived from the analysis of Westmann [3]. Second-order correction terms to

these factors in the dynamic case were presented by Mai [4], However, due to a con-

ceptual error in one set of his relations and a slight algebraic error in another, his correc-

tion terms are, unfortunately, incorrect. Although we have given the values of these

factors to the fourth order of the wave number, one can calculate these values to a

higher-order accuracy also from our analysis. We have further derived the formulas

for the far-field amplitudes and scattering cross-section for both of these problems.

Finally, we establish that the crack faces would never make contact during vibration

if a constant static pressure, however small, is applied over the crack.

The interesting feature of the present analysis is that when we take the elastostatic

limit of the formulas for the various physical quantities as mentioned above, we find

that even some of these limits appear to be new.

I: Diffraction By A Rigid Circular Disk

2. Formulation of the problem. We normalize all lengths with respect to the radius

a of the disk and choose a cylindrical polar coordinate system (p, <p, z) in such a way

that the disk occupies the region z = 0, 0 < p < 1, for all <f>. The time dependence of all

the relevant quantities is taken to be where to is circular frequency, and this

factor is suppressed in the sequel. Let the incident wave be a shear wave propagating

from — oo in the positive z-direction. The time-independent parts of the incident anc

the diffracted displacement fields can be written as

u0(r) = u0(p, <p, z) = e! exp (im#), (1]

u(r) = u(p, <p, z) = !«„(r), uv(t), w,(r)j

= {U„(p, z) cos <p, - Uv(p, z) sin <p, Ut{p, z) cos <?}, (2)

where r is the position vector of a field point and ei is the unit vector in the direction

of z-axis. The function U„ , Ur and U, are given in terms of three scalar functions

$i , , and 4>a as

U,(p, z) = (d^/dp) + (d2 $2/dp dz) + (l/p)$3, (3)

UV(P, z) = (l/p)<£, + (l/p)(d^/dz) + (d$3/dp), (4)

U.(p, z) = (d^/dz) + (d'$2/c)z2) + , (5)

where the functions $,(p, z), j = 1, 2, 3, satisfy the Helmholtz equation

(V2 + m^)$,(p, z) cos <p = 0, (6)

and

m\ = w2p0a2/ (X + 2 p), ml = ml = u2p0a?/p, (7)

while X and p. are the Lamp's constants of the elastic medium.

The stress components r„ , rv, , and t„ due to the diffracted field are

. d (nd2 . 2V . ia$3\
T"(r) = "V dpte + Tp V2 a? + + pli) cos (S)
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T-(r) * -«{; f1 +; (2 h + "*)*•+ sin "• (9)

r„(r) = J^2m\ - m\ + 2 + 2^ + m2) cos <p. (10)

The boundary condition

u(r) + u0(r) = 0, z = 0, 0 < p < 1, all

is equivalent to

u,(p, 0) = 1, ur(p, 0) = -1, u.(p, 0) = 0 (11)

for 0 < p < 1. Furthermore,

u„ , ur , uz , tftt , rvt , r„ are continuous across the surface z = 0, p > 1, (12)

and

$, satisfy the radiation condition at infinity. (13)

It follows from the relations (3)-(10) and the boundary conditions (11)—(13) that $,■

and d$i/dz are continuous across z — 0, p > 1.

The integral representation formulas for the scalar functions <£,- can be obtained

from Eq. (6) by the Green's function method. These formulas are [5]

$,(?, 2) = \ fo Jg T exp (-7,- |z| t dp dt, z ^ 0, (14)

where

Ti = (P2 ~ my\ V>mi,

- -i(m) - PY\ m, > p,

and the source densities /,(£) and <7,(0 are defined as

m = ccd/asoc^c^. *o]—o- - [(d/dzi)(t>,(t,z1)]^0+, (i6)

9i(t) = [$,(*, 2i)].,-o- - [$,(*, 21)]I1_0+ . (17)

The result of substituting these values of <£, in relations (3)-(5) and (8)-(10) and using

the boundary conditions (11)—(12) is

?i(0 = MO = g3(t) = 0, (18)

f tfi(t)Ji(pO dt = -p2 f tg2(t)J!(pt) dt, (19)
J o «o

l! lo p2[(7a " + dpdt = ~4> 0 ̂  p ̂  (20)

fo f p2[(73 ~ ~ dP dt = °> 0 < p < 1- (21)

In order to apply the present integral equation technique [2] it is necessary that we

decouple the integral equations (20) and (21) into two integral equations, one containing
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the unknown function g2(t) only and the other containing the function j3(t) only. This

is readily achieved if we use the relations

Jo(pp) - ^ j-p [pj,(pp)], J,(pp) = -P-j-p [p-V^p)]. (22

Indeed, when we substitute them in (20)-(21), integrate both sides of the resultinj

equations with respect to p, add and subtract them, we obtain

L •[ ~~ dp dt = C 2" 4 P' 0 - P - l' ^23

f [ ^ J1(pt)J1(pP)t dpdt = %p, 0 < P < 1, (24
J 0 Jo 72

where C is an unknown constant of integration and will eventually be evaluated witl

the help of appropriate edge conditions. It follows from (23) and (24) that

I dt = c + 4I ~ dt. (21

The next step is to substitute the relation (25) in (20) and (21), use the formula

(22), (24), as well as the relation

J2(pp) = 2Jl(pp)/pp - J0(pp),

and integrate by parts with respect to t. The result is

I L P[(-y— dp dt = C + 4, 0 < p < 1, (2t

and

where

and

[ [ — I3(t)Ja(pt)J0(pp) dp dt = C, 0 < p < 1, (27
Jo Jo 7a

72(0 = (d/dt)(tg2(t)), I3(t) = (t/dt)(tf3(t)), (28]

ga(l) = /,(!) = 0. (29;

Furthermore, it is assumed that lim,-,0 [^2 (01 and lim,_0 [#3 (01 are finite.

The integral equations (26) and (27) are Fredholm integral equations of the first kind

They can be converted to Fredholm integral equations of the second kind by using thf

technique explained in [2], This results in the following two equations:

Sa(p) = 2S 13 + f L2(v, p)S2(v) dv, 0 < P < 1, (30]
Till ~T* 1112 * 0

S3(p) = c + f L3(v, p)S3(v) dv, 0 < P < 1, (31'
J 0
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where

S,(p) = £ . i = 2, 3, (32)

L2(v, p) = f p{l - -r^—s (£ ~ V,)}J-,MJ-,„(PP) dp, (33)
Jo K mi + m2 \Ti /)

La(v, p) = (ivp)u2 f p(l - —)j-1/2(pv)j.1/2(pp) dp. (34)
Jo \ 72/

Let us now assume that mx « 1, m2 « 1 and mi = 0(m2). The kernels L2 and L3 can

then be expanded in ascending powers of mi and m2 by using Noble's technique [6].

These expressions are

L2(v, p) = - a2+ 1} [g (2t3 + l)m2 - | (3/ + 1 )ml

- ~ (v> + p2) (4/ + 1 )ml + OK)] , v> p, (35)

L3(v, p) = —(2ifflj/i) + (v/2)ml + (2i/3ir)(p2 + v2)m\ + 0(mt), v > p, (36)

where t = 7n1/m2 . The corresponding values of these kernels for the case p > v are

obtained by interchanging v and p in the above relations. The expansions (35) and (36)

enable us to solve the Fredholm integral equations (30) and (31) by iteration and we

obtain

2(C + 4) r 4i(2r3 + 1) J M (2t3 + l)a

2(P) ~ (m? + ml) L1 3tt(t2 + 1) ™2 + \ 9*2 (r2 + l)2

1 (3r4 + 1) A s i / 4 (4r5 + 1) (I 2\

+ 8(?"+Tj (1 + PT 2 + ±* 115 (r2+ 1) \3 /

1 (2/ + 1X3/ + 1) (I , (2f3 + D3V;1» . 0(m*) 1 (37)
~ g (T» + !)• \3+ p ) + 27ic2 (r2 + l)2 J™2 + °(ma)J ' (3?)

^(p) = C[l — ^ m2 — ̂ 2 ml + ^ (1 + p2) + ^ 18 ^ 6~}m*

(38)

The unknown constant C occurring in the above relations is determined by applying

the edge condition

[r„],_o± are continuous and finite at the edge of the disk. (39)

For this purpose we appeal to relations (8), (14), (18) and (19) and find that

[t,,],-0± = ±9 cos p|~—ml _|_ I /3(p)~| , 0 < p < 1,
A L. up P J

= 0, p > 1.

Next, we invert the Volterra integral equations (32) and use relations (28) and (29).

Thereby the functions g2(t) and /3(<) are evaluated in terms of S2 and S3 . These values
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are then substituted in (40). Hence

r -i u fml d f1 uS2(u) du
[r,.]..„4 = T-COSv>[_-^ Jp

1 f1 u[mlS2(u) + <S3(w)] dul
p2 J, (if - PT2 J '

= 0, P > 1.

Similarly,

, , n . fl d f1 uS3(u) du
KJ,-0± - T-sin^^ (#1 _ p2)1/2

_I f1 u(mlS2(u) + S3(u)) du] . .
p J„ (u2 - p2)I/2 J ' ~ p ~ ' ( )

= 0, P> 1.

With the help of relations (41) and (42) we can evaluate [rv,],_0± . From this it emerges

that the edge condition (39) is satisfied if

m2iS2(l) + S,(l) = 0. (43)

The result of substituting the values of <S2(1) and &3(1) from (37) and (38) in (43) is

C = — (8/(r2 + 3))[1 + CjWj + c2ml + czm\ + 0(m\y\, (44)

where

Ci = [2t(l + 3r2 — 4r3)]/37r(3 + t2),

_ (3r4 - 2r2 - 1) 16(2 + t3)(1 + 3r2 - 4r8)

Ca ~ 4(3 + r2) + 9tt2(3 + r2)2

_ i_ / (2r3 -f- l)(3r4 + 1)(3 4" 5r2)   (9r4 + 8t3 + 7)
Cs ~ 7T IT 9(1 + r2)(3 + T2)2 3(3 + r2)2

2(8(4/ + 1) - 5(1 + t2)) (1 + t^Qt4 + 8t" - 6t' + 13)
45(3 + t) + 6(3 + r2)a

128(2 + T3)2(4r3 - 3r2 - 1)1

+ 27tt2(3 + t2)3 /'

Substituting the value of C from (44) into (37)-(38), we have

SM = (8mj7(r2 + 3))[cZ0 + d2 p2 + 0(m4)], (45)

where

8i(2 + r') /(3r4 + 1)(t2 - 1) 1 64(2 + r3)2 \ ,

3t(3 + t) 2 + \8(1 + r2)(3 + r2) + 3 + r2 9tt2(3 + r2)2/™2

£ /4(r2 - 5)(4t" + 1) (1 + 2t8)(1 + 3r4)(3 - 7r2) _ (3r4 + 1)(1 + 3t2)

t (45(3 + r2)(l + t2) 18(1 + r2)(3 + r2)2 2(3 + t2)2(1 + r2)7T (45(3 + r2)(l + r2)

8 (1 + 2r3) 2(11t2 - 3) 512(2 + r3)3 \ ,

3 (3 + r2)2 + 9(3 + t2)2 + 27tt2(3 + r2)3/™2 '
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j _ (3/ + 1) 2 , i k .. , , (2 + r3)(l + 3r4)\ 3
dl 8(1 + T2) 2 + 3tt(1 + T2) \5 ( + ^ (3 + r2) r2 ■

and

S.(p) = -(8/(r2 + 3)){e0 + e2f>2 + 0(»i})|, (46)

where

, - i _ 8*(2 + r3) /(3r4 - r2 + 2) _ 64(2 + r3)2 \ ,

3t(3 + r2) m'+\ 4(3 + r2) 9tt2(3 + r2)2/7"2

i /l6(4r* + 1) (2r8 + 1)(1 + 3/)(3 + 5T2)

t \ 45(3 + t2) 9(1 + t2)(3 + r2)2

+ 6(3 I ry [-12(1 + t2)2 + 3(3/ + l)(r2 - 1) + 4(2t3 + l)(r2 - 1)]

+ 18(3 \ r2} [32(1 + r2) - 9(3r4 + 1) - 8(r2 + 3) - 12(r3 + 2)]

+ 512(2 +
T3)3 1 ,

27tt (3 +

e2 = + (2«77zl(l + t2 — t3)/3tt(3 + t2)).

3. Far-field amplitudes and scattering cross-section. The far-field amplitudes are

obtained from the integral representation formulas for $, obtained from (6). Indeed, by

using the formulas (18), (19), (28), (29) and (32) and introducing the spherical polar

coordinates (r, 6, <p), we obtain [5]

$,(r, 6) = $,(p, z) ~ (exp (m,r)/r)/l,(0) as r -* ~, j = 1, 2, 3, (47)

where

^i(0) = i("»i sin 0)2.A(0, mt), ^4.2(0) = m2 cos 6A(0, m2), A3(d) = — iB{8,m2), (48)

and

A(d, ma) — (2sin 0)~1/2 f v1/2 J-1/2(mav sin 0)S2(v) dv, a = 1, 2, (49)
Jo

B(6, rn2) = (27rm2 sin 0)~1/3 [ v1/2 J-1/2(m2v sin d)S3(v) dv. (50)
Jo

Substitution of relations (47) in (3)-(5) and the resulting expressions in (2) yield

ur{r, 0, <p) = — m\ sin2 8A(8, mt) cos <p(exp (im^/r) + 0(r-2),

ufi(r, 0, <p) = — m3 sin 0 cos 6A(d, m2) cos ^(exp (im2r)/r) + 0(r~2), (51)

u,(r, 0, ¥>) = — m3 sin 8B(6, m2) sin 95(exp (im2r)/r) + 0(r~2),

as r —* <*>.

The next step is to put the values of the functions S2 and S3 from (45)-(46) into

(49)-(50) and derive the values of A(Q, ma) and B(8, m2) as
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A/n \ 8m23
A(d, ma) =

7rma sin 0(r + 3)

■ [(* + di) - f {' - Wrl2}sh*8 + 0W)] ■ « = 1, 2, (52)

B(d, m2) = —
irm2 sin 6{t + 3)

T 32a2

' 3ir(3 + T2)2

' [(«• + 1) - f ~ 8m/+3T} Sin' 8 + 0(mi>]' (53>

Thus, the far-field behavior of the displacement field u(r) is completely known from

(51)-(53).
Finally, we use the formula for the scattering cross-section 2, as given in [7] and

find its value (in physical units) as

2. = (47ra2/m2)[e1-h(0, <p)]e.r.0 , (54)

where

h(0, <p) = — m2 sin 0[m2 cos 6A(6, m2) cos <p& + B(0, m2) sin <^>], (55)

while 0, <p and are unit vectors in the 6, <p and x directions.

When we substitute the values of A (6, m2) and 5(0, m2) from (52) and (53) in (55)

and the resulting expression in (54), we obtain

/q/o , 3^ , ["(1 + 3t4)(9 + 19ra + 8r5) 2(15 - llr2 + 24r')

\ T L 3(1 + t2)(3 + r2) + 3(3 + r2)

8(1 + 4t5)(1 - r2) 512(2+ t3)3!, 4

+ 15(1 + r2) 9t2(3 + r2)"J 2 + ( 2)J' ( )

The first term agrees with the result derived by the authors [1] as a limiting case of an

ellipsoid by a different method. The second term is new. The interesting feature of the

present method is that we can obtain the higher-order terms without solving any extra

integral equations as is necessary in using the perturbation technique ([1]; see also

[5, Chapter 11], for explanation). However, the advantage of taking the limit from the

result for an ellipsoid is that no constant of integration occurs in the analysis.

As explained in [1], by setting r = 1, the present problem reduces to that of diffraction

of an acoustic plane wave by a perfectly soft disk and this serves as another check on

formula (56). For finding the displacement and stress fields in the plane z = 0, we first

have to evaluate the unknown functions g2(t) and f3(t) by inverting the Yolterra integral

equations (32) and by using relations (28)-(29) as well as relations (45)-(46). These

values are

«■<» - mS [4 + f(2'' +"+ 0(™:)] ■ (57)

/,(«) - [<!. + I (2'" + 1) + • (58)

The required results can then be easily derived by substituting the above values in

(3)—(5), (8)-(10) and (14).
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In the limit when to —> 0, i.e. wij —» 0 and m2 —* 0, we get the solution for the corre-

sponding elastostatic problem when the rigid circular disk is given a uniform displacement

— ei in an infinite elastic solid. As far as the authors are aware even these limiting

solutions are new. However, we have verified that the formula for the horizontal force

acting on the plate in this limiting case agrees with the known result [8],

II: Diffraction By A Penny-Shaped Crack

4. Formulation of the problem. The mathematical formulation of this problem

is similar to the one given for the disk problem in Sec. 2. However, it is not exactly a

dual problem as we are not given the Neumann conditions in this case.

Let the crack occupy the region 0 < p < 1, z = 0, for all <p. Eqs. (2)-(10) hold for

the present case as well. The difference starts with the boundary condition which, for

the present case, must be given in terms of the stress components. For this purpose,

let us denote the stress components due to the incident field u0(r) = iAue1 exp (im2z) as

r°f. , r°r. , r°,l. Then

t°p, = —Aoum,, cos <p exp (im&), t°, = Aanm2 sin <p exp (im&), t°, = 0. (59)

The boundary conditions for the present case are therefore

(rp, + Tp.) = 0, (r„ + t°.) =0, r„ = 0, z = 0, 0 < p < 1, for all <p, (60)

and (12) and (13). The integral representation formulas for $,• are the same as (14).

Application of the boundary conditions (12) and (60) yields in this case

m = <72w = m = o, (ei)

™I f dt = 2p1 [ t[gi(t) + f2(t)]Ji(pt) dt, (62)
J o J 0

L fo [_27~ l4p2y>72 ~ (2pS ~ + p2y2g3(t)~^Jl(]?t)Jo(pp)t dp dt = 4A0mt ,

0 < P < 1, (63)

L L [^2 ®47,27172 _ ^2p2 — m2)2l<7iW — p\2g3(t)~^Jl(j)t)J2(pP)t dp dt = 0,

0 < P < 1. (64)

Eqs. (63) and (64) are to be processed as were the corresponding equations (20)

and (21) and this leads to the equations corresponding to (23) and (24):

fo [ [2^ {4p 7172 " (2p° - ml)2}\<hmi(pfiJi(pp) dp dt = A0m2( 1 + D)p,

0 < p < 1, (65)

[ [ tpy2g3(t)J1(pl)J1(j)p) dp dt = A0m2(l - D)p, 0 < p < 1, (66)
•'O •'o

where the constant of integration D will be found with the help of appropriate edge

conditions.

The integral equations (65)-(66) are amenable to the present integral equation tech-

nique. When we apply this technique we can convert (65) to Fredholm integral equation
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of the second kind:

Sl(p) = + £ Ll(v' p)Sl(-v) dv> ° " p - l'

where

Sl(p) = P / (*2 2-.

and the kernel Li(y, p) is

ii(f, p) = Op) 1/3 ̂  [p - 2(ma - m?b'2 ~~ ̂  ~ mff^Ji/iipfiJi/iipp) dp.
(69)

As in Part I, we assume that mx « 1, m2 « 1, mx = 0(wi2). Then by Noble's technique

we find that

(67)

Slip) = P / /gIp (68)

(m2
ii(», p) =   m2^ ^ (wii + W2) + jjr- (8mf + 7ml)

^ \&VP"> (-m' + + °^\ ' P > «■ (70)

The value for v > p follows by interchanging v and p in (70). The integral equation (67)

can now be readily solved by straightforward iteration. An approximate solution is

n, s 24„m2(l + D) / (1 + r4) 2 , iP (8/ + 7) ,

Sl(p) ~ iml - m\) V + 24(1 - r2) (3 ~ P )p™2 + 45^ (1 - r2) ™2

+ (35p - 30p3 + 3P5)m4 + («}• (71)

To solve Eq. (66) we introduce a new function g^t) such that

P2 f tg3it)Jl(p() dt = [ tgiit)Jdt. (72)
*0 *0

Then from (66) and (72) we have

[ f ~T Qiit)Ji(pt)Ji(pp) d-p dt = A0m2il — D)p, 0 < p < 1. (73)
•'O •'O P

This equation reduces to the following Fredholm integral equation of the second kind:

S^p) = 2^„m2(l - D)P + f Liiv, P)Stiv) dv, 0 < p < 1, (74)
Jo

where

0 / \  r qS) dt . .
^4\P/ — P / /j2 2\ 1/2 , V'O/

J p [} p )

Uiv, p) = (fP)1/2 fa p(l - fyiMJmipp) dp. (76)
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The expansion for the kernel Lt is

U{v, p) -!!&+*& ml - ^ +^v) ml + OK), p > (77)

where for v > p we interchange v and p in (77). This enables us to solve Eq. (74) by

iteration and get

&(p) = 2A0m2(l - D)\p + (3p12 p3) ml+ ^ ml

. (35p — 30p3 + 3p5) 4 | | /7m
H Q0Q m2 + 0{m2) | • (78)>]•

When we substitute the values of <Si and S4 from (71) and (78) into (68) and (75) and

invert these Volterra integral equations, we derive the values of gi(t) and g^t) as

_ 440m2(l + D)t [ (1 + r4) ,

9l{t) ~ (ml - m?Ml - t2)1/2 L1 + 12(1 - r2) VJ

, l(8r + 7)m2 3 , (1 + T ) /j4 I * I r\r 5\ I nnt

+ 45tt(1 - t2) T"h+ 120(1 - r2) ( ~ 81 + 8)m* + <79)

and

,A 4A0m2(l - D)t i\ , (2 - f) 2 , 2i 3 , (t - 8t2 + 8) < , 5,~|
0t® = ,-(1 - t2)1/2 L 6 m2 + 9^ + 120 m2 + 0(ma)J"

(80)

Let us now evaluate the constant D with the help of the edge conditions:

[u„(p, <p, z)],_0± and [uv(p, <p, z)L-o± are finite and continuous at the edge of the crack, (81)

which as in the previous problem can be put as

[ ^ dt = 0. (82)

When the edge condition (82) is satisfied, the displacement vector components u„, uv are

continuous in the plane z = 0, at the edge of the crack and are of order cos <p{0{\ — p2)1/2}

and sin <p{0(\ — p2)1/2} respectively, as p —> 1.

Substituting the values of the functions <71 and gi from (79) and (80) in (82), we

obtain the value of the constant D as

n _ (1 ~ 2r2) [. _ 2m\{\ - t2)& _

(3 - 2r2) L 5(3 - 2t2)(1 - 2r2)

4im2^i(l — t2)

9tt(1 - 2t2)(3 - 2r2)

, mt( 1 - t2)032„ - 100/32(3 - 2r2)) 5 , .

+ 25(3 - 2r2)2(l - 2r2) + °W I ' (83)>]■

where

A -l+JL_o 8rg + 7 2r2(l + T4) 1
Po ~ 1 - x2 ' Pl 5(1 - t2) ' 105(1 - r2) 50Po •
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Now we put this value of D in (71) and (78) and obtain

e / \ _ 8-i40 J 1  ft,  2   3

*p' m2(3 - 2t2) rL 10(3 - 2r2) 2 9^(3 - 2r2) 2

g2 - 100&(3 - 2r2) 41 (1 + T4) _ 3 ft, ,1

+ 100(3 - 2r2)2 2J + 24(1 - r2) ^ p p) 2|_ 10(3 - 2r2) 2 J

+ 45^(1 ^ J2) @5p ~ 30p3 + 3p5)r??2 + 0(m®)| , (84)

and

O / \ 4-A(,^2
o4(p) = 75 o 2>r p 1+g^0m2 +

(3 - 2r ) rL 5(3 - 2t ) 2 ' 9ir(3 - 2r2)

(1 - r2)(/?q - 100/32(3 - 2r2)) | ^ (3p - p>2 | , J (1 - r2)ft,

2z'p 3 , (35p - 30p3 + 3P5) 4

50(3-2 t2)2 m2 J + 12 L1 + 5(3

+ ^ m2 H 960 »2 + 0(mt)j- (85)

5. Dynamic stress intensity factors. The dynamic stress intensity factors N„ and

Nv are defined as (in physical units)

N, = lim (a)"1/2(p - l)1/2[rpz],-0-p>i , (86)
p-*l +0

and

N, = lim (a)-,/2(P - l)1/3[r,.],. (87)
p-»l+0

From (8), (14), (Gl), (62), (68), (72) and (75) it follows that

d_
dp

[t„,(p, <p, z)].-o = M COS <fi\ (m\ — m\) j-

+

Similarly,

'11 (P" II,("' ":',Vrj *J" 11

7 [f <7^T" f il("' ")S'W * ̂  - I' (88>

r / ..m m sin <s J (m2 — m2)
<91 2)J*-o =   

7T

+

'[/, (,r -"'.rj1' I LJ,:- w>S,'':' d"h° I lyY'ty'""]

i [; r (7^?p i' ")s*w *- p r (T^-]}- »
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Consequently, the formulas (86) and (87) become

»r _ —8^0m;M(l — T2) cosy f [" (1 + T4) ft, ~| 2

ir(2a)1/2(3 - 2t2) \ L12(l - r2) 10(3 - 2r2)J 2

J_ f(8r5 + 7) _ 5ft "1, , |"/3q - 100(3 - 2t')/32
45tt L (1 - r2) (3 - 2r2)J 2 + L 100(3 - 2r2)

00 2\ + 12;+:r2)]^ + 0(ml)} , (90)120(3 - 2r ) 1 120(1 - r2).

840wi2,z sin / |~1 (1 - r2)/30l , 2i 1" (1 - t2)&~| ,
A " - 7r(2a)l/2(3 - 2r2) V + [_6 + 5(3^=~2?)J"?2 + £ L1 + (3 - 2r2) J™2

f 1 (1 - r2) (01 - 100(3 - 2t2)/?2) (1 - t2)/?0 1 4 , nf*
+ Ll20  50(3 - 2r2)2 + 30(3 - 2r2)_T2 + ^ (91)

When w —> 0, that is m1 —* 0 and m2 —> 0, we recover the static intensity factors.

These static factors can also be obtained from the analysis of Westmann [3], and given

in [9]. Mai [4] has derived the terms of 0(m2). However, due to a conceptual error in

his Eqs. (28)-(29) and an algebraic error in his Eqs. (40), (42), (45), (48a) and (48b),

his results are incorrect.

6. Far-field amplitudes and scattering cross-section. Let us use the same notation

as in Sec. 3. Then the far-field amplitudes are defined by the formulas (47) where the

values of A! , A2 and A3 in the present case are

Ai(8) = m\ sin 9 cos 9A(9, m,), (92)

A2(9) = — (i/2)m2(cosec 8 — 2 sin 9)A(9, m2), (93)

-^3(0) = cos 6 cosec 8B(9, m2), (94)

with

A(9, ma) = (\irma sin 9)l/2 [ v1/2J1/2(mav sin 8)Si(v) dv, a = 1, 2, (95)
Jo

and

B(9, m2) = (%irm2 sin 8)u2 [ vW2J1/2(m2v sin 9)Si(v) dv. (96)
Jo

Thus, from relations (2), (3)-(5), (47) and (92)-(94) we find that the displacement

field u has the following far-field behavior (in spherical polar coordinates):

u,(r, 9, <p) = irriiA^) cos <p exP (t7nir)
r

— im\ sin 9 cos 6 cos <pA(9, m,) exP _|_ 0(r~2),
r

ue(r, 9, <p) = — m\A2(9) sin 9 cos <p exP (12M)

l- m'(l - 2 sin2 9) cos VA(9, m2) eXp + 0(r"3), (98)
A T
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uv(r, 9, <p) = — im2A3(9) sin 0 sin ip exP dm2r)
r

= —im2 cos 0 sin <pB{6, m2) exP (tm2r) _j_ Q(r~2) (99)
r

as r —> co.

The next step is to put the values of the functions Sl and S4 from (84) and (85) into

(95) and (96) and derive the values of A (9, ma) and B(9, m2) as

lm2A(0, ma) 37rm2(3 - 2r2) 10 [(3 - 2r2) 1 + r2_

+ 457r [V^W ~ (3 -V)]»S ~~ 10 Sm* ° + ' (100)

r>//j \   4:A0m2 J, 1 T- , (1 7* )ffio 1 • 2 /j"] 2
B(0, m2) - 3?r(3 _ 2t2) \! + 5 L1 + (3 _ 2r2) 2Bm _T3

+ I [' + 3(3-23)']'°! + (I01>

Thereby, the far-field behavior of the displacement field is completely known.

The vector h(0, <p) corresponding to Eq. (55) for the present case is

h(0, <p) = im2[%ml(l — 2 sin2 6) cos <p A(9, m2)0 — cos 6 sin <pB(0, m2)<§]. (102)

On substitution of the values of A (9, m2) and B(9, m2) from (100) and (101) in (102)'

we obtain (in physical units)

„ r ., 128a2m\ f(2r5 + 3) . 2,1 ,in„
Re [e1,h]j_v_0 I35x [_(3  2f2)2 0{m2)J* (103)

2 _ — 4xa2

tti2Aq

As far as the authors are aware, this formula has been derived for the first time.

Finally, we observe that we can find the values of the displacement and stress fields

in the plane z = 0 from the above analysis, as explained in the solution of the previous

problem. To ensure that the crack faces do not make contact during vibration we first

find the value of ujp, <p, z) on the crack faces. These values are

r / m A0m2T*p cos (p J( ffo 2 , (1 + t4) 2\
[w.(p, <P, »)].-o* (3 _ 2r2) \\ 10(3 - 2r2) m2 + 8(1 - r) m7

- 32(tl4/) + (1 t/} (1 ~ p2/4)m2 + (104)

From this it follows that the crack faces would never make contact during vibration if

we superpose on our solution the solution due to a static constant pressure pU) applied

on the crack,, because this pressure gives rise to the following displacement at the crack

faces [10]:

/]   2\ 1/2 («)

[Ui"(P, v, z)]t.0± = > 0 < P < 1. (105)

It is interesting to note that there is no minimum value of p(,) which ensures that

the crack faces do not make contact during vibration; the only restriction on pu) is
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that it is positive. Any constant static pressure, however small, will suffice to do what

is needed.

From the above analysis we can also obtain the solution of the corresponding elasto-

static problem when the prescribed stresses on the penny-shaped crack are

t„, = S cos <p, r„, = — S sin <p, t„ = 0, 2 = 0, 0 < p < 1, (106)

and

u„ = ur = r„ = 0, 2 = 0, p > 1, (107)

where S is known. This follows when we let m2 —> 0 and A0 —> in such a manner that

A0m2 —» S/n] we have verified that the limiting formulas obtained in this way agree

with those given by Westmann [3].

References

[1] D. L. Jain and R. P. Kanwal, An integral equation perturbation technique in applied mathematics-II,

applications to diffraction theory, Appl. Anal. (1972)

[2]  , An integral equation method for solving mixed boundary value problems, SIAM J. Appl. Math.

20, 642-658 (1971)

[3] R. A. Westmann, Asymmetric mixed boWndary-value problems of the elastic half-space, J. Appl. Mech.

32, 411-417 (1965)
[4] A. K. Mai, Dynamic stress intensity factors for a non-axisymmetric loading of the penny-shaped crack,

Int. J. Engng. Sci. 6, 725-733 (1908)
[5] R. P. Kanwal, Linear integral equations, theory and technique, Academic Press, N. Y., 1971

[6] B. Noble, Integral equation perturbation methods in low-frequency diffraction, in Electromagnetic

waves (ed. R. E. Langer), Univ. of Wisconsin Press, 1962

[7] P. J. Barrat and W. D. Collins, The scattering cross section of an obstacle in an elastic solid for plane

harmonic waves, Proc. Camb. Phil. Soc. 61, 969-981 (1965)

[8] G. N. Bycroft, Forced vibrations of a rigid circular plate on a semi-infinite elastic space ond on an

elastic stratum, Phil. Trans. Roy. Soc. London 248, 327-368 (1956)

[9] H. Liebowitz (editor), Fracture, an advanced treatise, Vol. II, Academic Press, New York, 1968,146.

[10] I. A. Robertson, Diffraction of a plane longitudinal wave by a penny-shaped crack, Proc. Camb. Phil.

Soc. 63, 229-238 (1967)


