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Introduction. Electrical, mechanical, and other systems whose behavior is governed

by linear equations with constant coefficients have the property that the only possible

forced periodic oscillations are those whose frequency is exactly that of the forcing

function. In sharp contrast, systems governed by nonlinear equations exhibit a wide

variety of periodic oscillations in addition to those having the same period as the driving

function. Among these is the so-called subharmonic resonance in which the driving fre-

quency is an integer multiple of the response frequency. In radio circuits this phenomenon

is also referred to as frequency demultiplication. Such phenomena have been observed

in numerous experiments (see, e.g., the references in [8]).

The problem of subharmonic resonance has been investigated, among others, by

von Karman [1], whose interest in the problem was due to the fact that certain parts

of an airplane can be excited to violent oscillations by an engine running with a number

of revolutions much larger than the natural frequencies of the oscillating parts. In this

connection Lefshetz [2] describes a commercial plane in which the propellors induced a

double-period vibration in the wings which in turn induced a quadruple-period vibration

in the rudder. The last vibration was so violent that the plane broke up. There have been

a number of mathematical investigations of subharmonic resonances. For a partial list

of these works one may consult the references in [3]-[6]. We mention specifically, however,

the works of Cohen ([7] and [8]) which are most closely related to ours. He considered

the steady-state problem of finding the possible subharmonic resonances.

In this paper we consider the initial-value problem for the slightly nonlinear forced

van der Pol equation in order to see how the subharmonics are generated from arbitrary

initial data and also to determine their stability. Our discussion is clearly applicable to

a large class of nonlinear problems for which the present analysis serves as a prototype.

We find that the solution is characterized by two time scales. One is a fast time, which

characterizes the period of the resulting oscillations, while the other, a slow time, describes

the evolution of the initial data into that oscillation.

An interesting new phenomenon which we find is the possible occurrence of modulated

subharmonic oscillations. These are oscillations whose frequency differs slightly from

that of the subharmonic. Note that frequency perturbation is equivalent to a periodic

amplitude modulation. In the case of modulated subharmonics, the slow time charac-

terizes not only the time of evolution of the solution to its final state, but also the period
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of the modulating amplitude. It is instructive to visualize these oscillations by considering

the phase plane for the amplitude function. In the case of subharmonics, every point

on a certain circle in the phase plane is an equilibrium point and the circle of equilibrium

points is stable. In the case of modulated subharmonics, the circle becomes a limit cycle

and this limit cycle is stable. Employing the Poincar6-Bendixson theorem, Stoker [3]

has proved the existence of such a limit cycle for the problem of harmonic resonance,

though not for subharmonic resonance. In this paper we are able to calculate the limit

cycle, or more generally the eventual steady-state behavior of the system, the approach

to the steady state and its stability.

The modulated subharmonics which we find are related to the notion of subharmonic

synchronization in which the response frequency locks in or is entrained at a definite

frequency, though the forcing frequency may vary in some range. Thus modulated

subharmonics will be obtained for a band of frequencies about the natural frequency of

the linearized equation. It is worth mentioning that subharmonic synchronization has

been found useful for very accurate speed control of electric motors such as those used

in high-precision clocks and similar devices in which an extreme accuracy of speed

control is necessary.

Formulation. We consider the initial-value problem for the forced van der Pol

equation

x — tx( 1 — x2) + u20x = F cos ([nut' -f <>),

x(0) = A, x(0) = B, (1)

where denotes d/dt', e is a small positive parameter, F and <j> are the constant amp-

litude and phase respectively of the forcing term, and n is a positive integer other than

one or three. The reason for excluding the case n = 3 from these considerations will be

discussed below. The constant co in the forcing term is assumed to be close to u0 , the

natural frequency of the system when e = 0. We seek a solution of (1) for small values

of e. For large time, we expect to recover from our solution the steady-state results

previously obtained. In addition to retrieving known steady-state results, we also obtain

steady-state solutions which are apparently new. These solutions are the modulated

subharmonics referred to above.

We treat (1), using the method of multiple time scales [9]. Thus we seek solutions

of the form

*0; e) ~ i; u\t, r)e', (2)
1-0

where

t = ut', (3)

r = d>, (4)

with

CO

co ~ X) «ie' • (5)
>-o

In (2) and (5) the symbol ~ denotes asymptotic equivalence. Then, inserting (2) into (1)

and setting the coefficient of each power of t separately to zero, we obtain the following
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system of initial-value problems to determine the coefficients u' (t, r) and the numbers to,-:

Lu° = c4(u°„ + u°) = F cos (nt + </>),
(6)

u°(0, 0) = A, w0u°(0, 0) = B,

Lul = — 2w0w1u°ll — 2o!0u°It + co0Wi[l — (u0)2] = r, ,

w'(0, 0) = 0, womKO, 0) = -u°r(0, 0) - Wlu?(0, 0),

Lak = r* = -cooper1 + + wf'Kw0)8 ~ 1} + 2mW1 + 2w*tt?,] - P„

(k = 2, 3, 4, • • •),

w (0, 0) = 0, cooMi(0,0) = Q* i (8)

where the quantities Pk and Qk are defined by

t-1 it—2 k-m A-l

Pk = u°t, E Witoi-, + EM<"< E «««.—. + 2 Eu"'1oik-m

— E u? + (w°)2 X w< V-i
m-1 i-1

Jk—1 m 4 —»»

+ co0w? EwV-1-" + E E E^w-v,
p=l m — 2 i — 1 p—0

+ ^r-2 - ukr + E E «rw—(9)
to—2 1-0

& « t*J-1(o, o) + E ^7(0, ok_„. (io)

In (9) and (10) u1 and a>, are understood to be zero for I < 0.

The solution of (6) is

w°(<, r) = a0(j)e" + ao(r)e~" + ye'"' + ye"", (11)

where denotes complex conjugate, y is given by

T = Ft?V2«S(1 - n2), (n * 1), (12)

and a0 (r) is a yet-undetermined function of the second variable t. From (6), the initial

condition for a0(r) is

«o(0) = M04. — 2 Re 7) — i((B/u0) + 2n Im 7)], (13)

where

„ F cos 4> T F sin $
Re7 2co20(l-n2)' Im7 2co2„(1 - n2)' (14)

We note that Eqs. (7) and (8) are inhomogeneous forms of (6). Therefore a necessary

condition for bounded solutions to exist is that their right-hand sides satisfy the orthog-

onality condition

(rt , e") = (rt , e~u) =0, k = 1, 2, 3, • • • , (15)
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where

(J, g) = lim ̂  f jg dt. (16)
T— a> 1 Jo

This condition is equivalent to the usual condition of casting out secular terms. Condi-

tion (15) with k = 1 implies that a0(r) satisfies the following nonlinear ordinary differen-

tial equation*:

«o + [*'«i + 5(l«o|2 + 2 |7|2 — l)]a0 = 0 (17)

with «o(0) given by (13). (|a0| and |y| denote the absolute values of these complex

quantities.) We mention at this point that if n = 3, Eq. (17) must be modified to include

additional terms. We do not treat the case n = 3 here, preferring to defer its consideration

to another time.

To find the solution of (17) and (13) we multiply (17) by a0(r) and add the result to

its complex conjugate. This yields the following equation for the quantity R = |a0|2:

R' + R(R + 2 M2 - 1) = 0. (18)

The initial condition for (18) follows from (13). Thus

R ^ hi2 = (2 |t|3 ~ l)/(5 exp {2 |T|2 - l)r - 1), (19)

where

S = 1 + ((2 M2 - l)/k(0)|2). (20)

Inserting (19) into (17), we find that

a'B + ao[iUl + i(R + 2 M2 - 1)] = 0. (21)

Noting from (18) that

R + 2 M» - 1 = - (l/R)(.dR/dr), (22)

we write (21) as

(dao/a0) + io>i dr — 2 (dR/R) = 0, (23)

whose solution is

<"•(') - * exP <-»">[« exp [I hf - l]r - l] ' (24)

where

5 = 1 + ((2 |7|2 - l)/|a„(0)|s), (25)

k = ao(0)/|ao(0)|, (26)

and 7 and a0(0) are given by (12) and (13) respectively. It is interesting to do a phase

plane analysis of (17). To this end we set

cc0 = u + iv. (27)

* The two orthogonality conditions (15) actually yield a second equation which can be obtained

from (17) by taking complex conjugates.
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Then, from (17), u and v satisfy

u' = —%u(u2 + v1 + 2 |-y |2 — 1) + «itf, £2g)

v' = — \v(u2 + v2 + 2 |-y|a — 1) — wjM.

We note that for ^ 0 the only singular point of (28) is the origin, which is a center for

the linearized problem. From the solution of the nonlinear problem, however, we know

that, in the case 2 |-y|2 — 1 < 0, all solutions move away from the origin and approach

a stable limit cycle which can be gotten from (24). The stability of the limit cycle follows

immediately from Eq. (18) for R = |a0|2 = u + v2 which states that if R is less (greater)

than its steady value 1 — 2 |7|2, then R' is positive (negative), so that R will increase

(decrease) to the limit cycle. When 2 I7I2 — 1 > 0, all solutions approach the origin.

It is of interest to note that a center for the linearized problem does not remain a center

for the nonlinear problem.

In the case cox = 0, with 2 |y|2 — 1 < 0, all the points on the circle w2 + t>2 = 1 —

2 |-y|2, in addition to the origin, are singular points. Each point on the circle represents

a periodic solution. Each has the same period and amplitude and differs only in phase.

Arguing as above, we see that the circle of singular points is stable in the sense that if

any point on the circle is perturbed, it will return to the circle, though not necessarily

to the original point. In this case the origin is an unstable node and the solution proceeds

according to (24) to one of the singular points of the circle. For 2 |'y|2 — 1 > 0, the origin

is a stable node and a0(r) eventually decays to zero.

Employing (12), (13), and (24) in (11), we find that the leading term u°(t, r) in the

expansion of u is given by

. _ F cos (nt + 4>) 1 P 2 M2 - 1 *]1/!l

W T) <4(1 - n2) + |«o(0)| |_S exp [2 |7|2 - l]r - lj

• |^(4 — 2 Re 7) cos (t — «!t) + + 2n Im 7^ sin (t — c^t) J • (29)

The long time behavior of u" is given by

<„), s = F cos (nt + 0) , (1-2 I7|3)1/a

(''T) <4(1 -n2) + |«0(0)|

• |^(A — 2 Re 7) cos (t — ujr) + (~ + 2n Im 7) sin (t — oj,t) J , |7|a < §, (30)

o/, \ F cos (nt + <t>) 1 lj *
^1-.') ■ w >J'

Thus we see that if I7I2 > §, that is if the forcing amplitude F is "large" compared

to n2 (cf. (12)), then the steady-state solution for u° is due solely to the forcing term.

However, if the forcing amplitude is not too large, then there exists an additional steady-

state term. We observe that in the latter case we obtain a subharmonic solution only if

&>i = 0, whereas oil ¥■ 0 corresponds to the above-mentioned modulated subharmonics.

We also note that the periodic function given by (30) represents the steady-state behavior

of the initial-value problem and this periodic solution is stable. The stability of (30)

follows from the fact that a perturbation of (30) leads to a new initial-value problem

which differs from the original initial-value problem only in initial data and the phase <}>
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of the forcing function. Therefore, by our previous analysis, the eventual behavior of

the new initial-value problem is also given by (30) with only the phase being changed

in each of the two terms in (30). In the first term the phase is changed due to the change

in In the second term the quantities (A — 2 Re y) and ((B/co0) + 2n Im 7) are each

changed, though the amplitude of this term, given by

~ mo?'''"' ('-1 - -Re ■>■>' + (| + 2»Im ■>)')'"" 2(1"2 wr"' (31)

remains unchanged. In Eq. (31) we have made use of (13). The fact that the second term

changes only in phase also follows from the phase plane discussion given above. Finally,

we observe from (30) and (3)-(5) that to 0(e2) the frequency of the steady-state solution

(for |t|2 < I) is independent of co, , so that for arbitrary w, the response frequency is

entrained or locked in at w — eco, .

We shall now determine co2 , which yields the deviation of the response frequency

from the natural frequency of the linearized equation. Employing (11) in (7), and solving

the resulting differential equation for u1, we obtain

u\t, r) = a,(r)e" + ai(r)e~" + D(t, r) + D(t, r), (32)

where

t\(i \ _ tap in 1 Tctp7 (2n ~f" 1) •■<2n+i>t . io-cCf (2n l)e

K ' T) ~ 8w0 + co0[(2n + l)2 - 1] + co0[(2n - l)2 - 1]

ia0y(n + 2) _ i(n + 2) t 1 ia0(n — 2) ,(n-2)i

CO0[(» + 2)2 - 1] ^ 0,0[(» - 2)2 - 1]

+ + ^T) W + W ~ ^• <33>

The dependence of D(t, r) on r occurs through a0(r). Initial conditions for <xi(t) can be

derived from (7), but we shall not do so since our purpose is to determine wa . This is

done by examining the long-time behavior of a^j). The equation for <2,(7) is determined

by employing the orthogonality condition (15) with k = 2. We thus find

<x'i + ai[|a0|2 + M2 ~ 5 + &■>,] + 5«o5i = ^ s-2ci + ^{J"' c2 ' (34)

where 5„2 and 8nS are Kronecker deltas and

0 = [to, + Kkl2 + 2 |t|2 - l)][2to, - l + 2(|«„|2 + |T|2)]

+ |«o|2 [-to, + Khl' + 2 ItI2 - 1)] - [to, + Kkl2 + 2 |t|2 - l)]2

— 5 |a0|2 (|«o|2 + 2 |t|2 — 1) + co, + 2a)0w3 — to,(|a0|2 + 2 |t|2 — 1)

^ (2n + 1) |t|4 _ (2n - 1) |7|4 2(n + 2) k|2 |7|2

8 "1" (2n + l)2 - 1 (2n — I)2 — 1 (n + 2)2 - 1

_ 2(n — 2) |oto|a |t|2 , 8mt), |7|2

(n - 2)2 - 1 n2 - 1 '(» - 2)

1 2n - 1 2(ra - 2)
Cl 8 + (2n - l)2 - 1 + (n - 2)2 - 1 '

c, = -i + (n - 2)/((n - 2)a - 1). (35)
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In deriving (34), we made use of the following relation, which can be derived from (17):

<*" = «o[{^i + MM2 + 2 M2 — i))2 + I KI2 (l«ol2 + 2 |7|3 — i)]. (36)

If we multiply both sides of (34) by a0 and use (17) to derive a0a[ = (d/dr) (a0ai) +

(a0«i)t—+ i (l«o|2 + 2 ]-y[2 — 1)], then (34) can be written as

(«0«i) + (aoai)[| hoi2 + 2 |7|2 — 1] + § |a0|2 (a05i)

k!2 ^ , y2at o„2 , 7«o Sn5C2 /o^7\

= 2to0(? + _2^rCi + _2^r' (37)

Let us define m, and w3 by

auai = »! + iw2 . (38)

Then, using (37), we obtain

+ „.[2 W + 2 hrP - 1] - %£ to 0 + Re ̂  [j^l] , (39)

»! + «.[W + 2 hf - 1] - Re G + to ± [ti-'tl] ■ »

Now from (24), (25) and (26), it follows that

lim (2 |a0|2 + 2 |7|3 - 1) = 1 - 2 |7|3, |7|2 < h

= 2 |t|2 - 1, M3 > i, (41)

and

Jim (|«o|a + 2 |7|2 - 1) = 0 , |7j2 < h

= 2 M3 - 1, |7|3 > h (42)

If we take |-y|s < b which is the case when modulated subharmonics occur, it follows

from (39) and (40) that a necessary condition for a^r) to be bounded in r is that the

term on the right-hand side of (40), which is asymptotically (r —» °°) constant, must be

zero. This condition determines as

„ = 1 , H3fl 2(n+2) 2(ra — 2) 1
16co0 2o)0 |_2 (n + 2)s — 1 (n — 2)a - 1J

. Jill T-i - 2n+ 1 2n - 1 4(n + 2) _ 4(n - 2) "1
+ 2a, L 2 (2n + l)2 —- 1 (2n - l)2 - 1 + (n + 2)2 - 1 (» - 2)2 - lj

+£(«0 (43)

where

Sfai) = 0, oi] ̂  0

= Re [275(1 - 2 |7|2)T 5k2 + 7(1 - 2 |7|2)S/T «„], Wl = 0. (44)

It is interesting to note that «a is independent of wj so that the entrainment for wj 0

is valid to 0(e3) at least. In a similar manner to that used in determining w3 , we can
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determine the values a>k(k > 3) uniquely. Finally, we observe that when y = 0 we obtain

the 0(t) term in the steady-state frequency for the self-sustained free oscillation of the

van der Pol oscillator.
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