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Abstract. A small-amplitude plane sinusoidal wave is propagated in an isotropic

nonlinear viscoelastic material Subjected to a Static pure homogeneous deformation.

The wave is polarized along one of the principal directions for the pure homogeneous

deformation. The normals to the planes of constant phase and amplitude for the wave

are perpendicular to each other and lie in the principal plane normal to the direction

of polarization. It is found that the complex slowness for such a wave is independent of

the orientation of the direction of propagation in the principal plane. The three complex

slownesses corresponding to a particular class of waves of this type polarized along the

three principal directions satisfy a relation which is independent of the detailed form of

the constitutive equation.

1. Introduction. In a previous paper [1] the propagation of a plane sinusoidal wave

of small amplitude in an isotropic viscoelastic solid subjected to an initial pure homo-

geneous deformation was discussed. The secular equation was obtained for a plane wave,

for which the normals to the planes of constant phase and planes of constant amplitude

are not necessarily parallel and are arbitrarily oriented to the principal directions for

the pure homogeneous deformation. It was assumed that the Rivlin-Ericksen constitu-

tive equation for an isotropic viscoelastic solid was applicable and that the material

was such that when it was held at constant deformation, although stress relaxation may

initially take place, a state of constant stress was eventually reached. It can be shown

that for the deformations considered the constitutive equation for an isotropic solid with

memory may be reduced to the Rivlin-Ericksen constitutive equation, subject only to

limitations which are of a physically insignificant nature.

In the present paper, these results are applied to the case when the wave is linearly

polarized in one of the principal directions for the pure homogeneous deformation and a

particular case is considered when the planes of constant phase and amplitude are

orthogonal, the normals to these planes lying in the plane normal to the direction of

polarization. For the wave considered, the component of the complex slownesB along

the normal to the planes of constant amplitude (which is imaginary) is i {= y/— 1)

times its component (which is real) along the normal to the planes of constant phase.

Relations for the slownesses of such waves which are independent of the precise form

of the constitutive equation are obtained. In the particular case when there is no initial

pure homogeneous deformation, we are concerned with the propagation of sinusoidal

waves in a linear isotropic viscoelastic solid. This has been discussed by Lockett [2],
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In another paper [3] an expression for the mean energy flux vector, the direction of

which is the ray direction for the wave, was obtained. This is applied to waves of the

type considered in the present paper and it is shown that the ray direction is, in general,

parallel neither to the normal to the planes of constant phase, nor to the normal to the

planes of constant amplitude.

2. Basic equations. We consider the propagation of a plane sinusoidal wave in an

isotropic viscoelastic solid subjected to an initial pure homogeneous deformation with

extension ratios Xi , X2 , X3 and principal directions parallel to the axes of a rectangular

cartesian coordinate system x. It is assumed that the material is such that when it is

held at constant deformation, the stress may relax initially, but eventually attains a

constant value which depends only on the constant state of deformation at which the

material is held.

In the pure homogeneous deformation, a particle which is initially at £a in the system

x moves to XA , where

Xl = ^l£l > X2 = , X3 = X3£3 . (2.1)

Suppose that the wave is polarized in the direction of the x3-axis and that the normals

to the planes of constant phase and constant amplitude for the wave, which are not

necessarily the same, lie in the ZiX2-planes. Suppose, also, that as a result of the wave,

the particle which was initially at ija moves to x{ in the system x. We write

Xi = Xt + tut , (2.2)

where, using the usual complex notation,

Ui = t/5,3 exp + 1S2X2 — t)]. (2.3)

U may, without loss of generality, be taken to be real and then tU is the amplitude of

the wave, t denotes time, u is the angular frequency of the wave and (1S1 , S2 , 0) is the

complex slowness vector for the wave.

The Rivlin-Ericksen constitutive equation for an isotropic viscoelastic solid is

assumed to be valid. Using this constitutive equation, it has been seen in a previous

paper [1] that for the wave considered the components of the slowness vector are related

by the equation

*3 iS\ + = P (2.4)

where p is the density of the material in the state of pure homogeneous deformation

considered and are constitutive functions for the material which depend on X®, X*, X|

and to and are given by1

= X2a, + (X^Xjj + X*)a2 + a3 + (X^ + X^)a4 + (Xj + X^)a5 (fi 7^ 7). (2.5)

a! and a2 are real functions of the strain invariants Ix , I2, I3 for the pure homogeneous

deformation (2.1), defined by

/, = xi + x32 + X32 , h = + X2X? + , Is = X?X2X23 , (2.6)

and a3 , a4 , as are real functions of these invariants and of io>. The relation of the a's to

the constants occurring in the Rivlin-Ericksen constitutive equation are discussed in [1].

1 I11 the previous paper [1], the quantities which we denote ai, at, ■ • •, a6 are denoted by di, at,

and those which we denote Ii, h, Is are denoted by h, h, 7S.
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3. A particular class of waves. For the wave described by (2.2) and 2.3), the planes

of constant phase are2

+ (SjXj = constant (3.1)

and the planes of constant amplitude are

S^Xi + S~2X2 = constant. (3.2)

These are orthogonal if

s\s; + s+2s; = o, (3.3)

i.e. if

sys; = — s~js2 = x (3.4)

where X is real. We consider here the particular case when X = 1. Then

S2 = iS\ (3.5)

and, introducing the notation Si = h3 , (2.3) becomes

Ui = f75,3 exp [iuh3(Xi + iX2) — t\. (3.6)

Introducing (3.5) into (2.4), we obtain

^(*31 - *32) = P • (3.7)

For waves of analogous types polarized in the Xi and x2 directions, the displacements

tUi are given respectively by

Ui = eSi 1 exp [iuhi(X2 + iX3) — t\

and (3.8)

Ui = (8,2 exp [iwh2(Xs + iXi) — t\,

where hi and h2 satisfy the equations

^(^12 - *13) = p

and (3.9)

^(*23 - *21) = P-

From (2.5), we see [1] that

*3! + *12 + *23 = *13 + *2! + *32 • (3.10)

From (3.7) and (3.9), we obtain, using (3.10), the universal relation

(1 /h\) + (1 /hi) + (1 /hi) = 0. (3.11)

In a previous paper [1] the propagation of principal transverse waves has been

discussed. We denote by Sap the complex slowness vector for a wave polarized in the

direction of the z„-axis, for which the planes of constant phase and planes of constant

amplitude are both normal to the zraxis (a ^ /3). It was shown in [1] that

  = p/*a, (a * &). (3.12)

* The superscripts + and — are used to denote the real and imaginary parts of a complex quantity.



3(56 M. A. HAYES AND R. S. RIVLIN

From (3.7) and (3.12), we obtain

(l/h$) = (1/Sl) - (1//S32). (3.13)

Analogously we have the two further relations

(1 /h\) = (1/^3) - (1 /si), (1 /hi) = (1/S212) - (1 /si). (3.14)

4. Elastic material. If the material considered is elastic, then [1]

a3 = a4 = a5 = 0 (4.1)

and a! and a2 are derivable from a strain-energy function, 2, per unit mass. The latter

is a function of Ii , I2 and I3 , and a, and a2 are related to it by the formulae

a, = 2p((32/d/]) + I^dX/dQ),

a2 = — 2p(d2/3/2).

Using (4.1), Eq. (2.5) becomes

= Kai + + K)a2 (P 7* y)- (4.3)

Then, with (4.2),

*3, ~ *32 = (Xi - X*)(«i + hcc2) = 2p(Aj - X=)(32/370. (4.4)

With (3.7), we obtain

1 /hi = 2(Xj - X=)(32/a/1). (4.5)

Analogous results can be obtained for 1 /h\ and 1 /h\ and they enable us, in principle, to

determine 32/d/j for specified values of Xi , X2 and X3 and, hence, for specified values

of Ii , I2 , 13 from measurements of ih , h2 , or h3 for waves of the type considered. We

note, from (4.5) and the two analogous equations, that

hl(\l - \l) = hl(xl - X?) = hl(\l - XI). (4.6)
It is not, in fact, necessary to make assumptions on the material as stringent as those

implied by ideally elastic behavior in order to arrive at Eq. (4.6). From (2.5) we have

*31 ~~ *32 = Oh ~ XDfci + Ii<*2 + <*t + (A? + X^aJ. (4.7)

We see that if a5 = 0,

■^T2 _ + 7i«2 + (4.8)
Ai A2

and from this and two analogous relations, we obtain, with (3.7) and (3.9), the relations

(4.6). However, from a physical standpoint, the imposition of the restriction a5 = 0

seems somewhat arbitrary.

5. Energy flux. The mean energy flux vector (RB is defined in the following manner.

(Ri is the rate, measured per unit area, at which energy crosses an element of area normal

to the Zj-axis. Analogous meanings attach to (R2 and (R3. With this definition it has been

shown (see Eq. (6.11) of [3])3 that for the wave described by (2.3),

= ieV exp [-20,(3^ + S^m^Sy 8Bl + (*32^2)+ SB2]. (5.2)

3 To bring the notation in Eq. (6.11) of [3] into conformity with that of the present paper, replace

'<Ra by &b, <Sa by SA, Xj by XA and A by U.
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We note that this vector is parallel to the vector with components [(S^Si)*, (^32'S2)+, 0].

For the wave described by (3.6), we take (Si , <S2) = (h3, ih3). The vector (RB is then

parallel to — O^Aa)", 0}.

We note that for the wave described by (3.6), the planes of constant phase are normal

to the vector (h*3 , —h~3, 0) while the planes of constant amplitude are normal to the

vector (h~t , h\ , 0).
In the particular case when h~a = 0, i.e. h3 is real, the normals to the planes of constant

phase and constant amplitude are along the Xi and x2 directions respectively, while the

mean energy flux vector is parallel to (¥at , ^ , 0). Thus, even in this case the ray

direction is not, in general, in the direction of the normal to the planes of constant phase,

nor in the direction of the normal to the planes of constant amplitude. It is seen that,

in this case, the expression (5.2) for (RB becomes

(Rb = co exp ( <2uih3A 2) (^31 fijji ^32 ^52)^3 • (5.3)
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