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ON THE SOLUTE DISTRIBUTION AT A MOVING PHASE BOUNDARY*

By K. A. HEIMES (Iowa Stale University)

1. Introduction. Consider an infinite rod of homogeneous binary alloy with a planar

solid-liquid interface advancing at constant velocity R. Let D, , v'(x, t) denote respec-

tively the diffusion coefficient and solute concentration in the solid (i = 1) and liquid

(i = 2) regions. For t = 0 we locate the interface at x = 0 and describe the initial solute

compositions by /,(x) for (— l)'x > 0. In order to obtain equilibrium at the interface,

we require

V\Rt, t) = kV\Rt, t),

D1V1x(Rt, t) - D.VliRt, t) = R[V\Rt, t) - V\Rt, t)],

where k is a constant equilibrium distribution coefficient. Assuming no convection in

the liquid, the diffusion equations are DXV'IX = V\ in their respective regions. By putting

C\z, t) = V'(z + Rt, t) we fix the interface at z = 0 and move the rod into the solid

region (z < 0). Consequently, this one-dimensional liquid-solid transformation (solidi-

fication) can be described as

Problem S: For i — 1, 2 let , k, R be positive constants and let /t(z) be continuous

real functions defined for (— l)'z > 0 with /,(0) = kj2(0). Find functions C'(z, t) for

t > 0, (— l)'z > 0 satisfying

(51) DtC*.. + RCl = C\ ;

(52) C\z, 0) = /.(2);

(SO C\0, t) = kC\0, <), ~R( 1 - k)C\0, t) = D2C](0, t) - AC!(0, t).

The corresponding solid-liqiud transformation (Problem M for melting) is the same

as Problem S except that R is replaced by —R in (SO and (S3). Problem S has been

solved for cases Di = D2 and I), = 0 with particular initial conditions in [1] and [2].

In this paper we give sufficient conditions that both the above problems have unique

solutions and explicit solutions are obtained by Laplace transforms methods. Both

problems reduce to solving an integral-differential for the function g(t) = C'(0, t) =

kC2(0, t) which describes the time behavior of solutions at the interface.

2. The reduced problem. We first show that problems M and S are equivalent to

Problem A: Given positive constants K, X and real functions g^x) for x > 0 with

ffi(0) = ?2(0), find u'(x, y) for x > 0, y > 0 so that

(Ai) uxx Up ,
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(A2) u\x, 0) = g,(x)]

(A,) e~'u\0, y) = e"V(0, Xy), (1 - K)e"V(0, y) = e^O, y) + Ke~Xvu\{0, Xj/).

Functions u'(x, y) will be called solutions to problem A when (i) for x > 0, y > 0

they are continuous, satisfy (A2) and estimates of the form \u(x, y)\ < Me"*' on compact

y intervals; (ii) for x > 0, y > 0 u\x and u\ are continuous and satisfy (A,); (iii) for

x > 0, y > 0 u'x is continuous and (A^) holds.

Straightforward calculations verify

Lemma 1. Let u1, u2 solve problem A with K = /c, X = D2/Dx and </i(Xx) = ex7i( — z)>

g2(x) = Ke~*f2(z) where x = Rz/2D2 , y = R?t/AD2 . Then

C\z, t) = exu~vV(—Xx, Xy)

1 (1)
C\z, t) = y)

solve problem M. Similarly, if u , u solve problem A for K — l/k, X = Di/D2 and

<7i(Xx) = eXxf2(—z), g2{x) = Ke~*fi(z) where x = —Rz/2DX , y = R2t/4D1 , then

C'(z, t) = ±e'-u\x,y) (2)

C2(z, 0 = eX(*-"V(-Xx, Xy)

solve problem S.

Lemma 2. For p, 5 £ C[0, 00), solutions to = wv for x > 0, y > 0 with u(x, 0) =

p(x), w(0, y) = <7(2/) are unique.

Proof: This is a standard application of the maximum principle for the heat equa-

tion. Details are similar to those given on p. 48 of [3].

Define the functions

S(x, y) = (47r7/)~1/2 exp {—x/Ay)

U'(x, y) = ^.(x), y = 0,

= f [S(x - r, y) + S(x + r, y)]g<(r) dr, y > 0. (3)
Jo

Then the U' solve (^1,), {A2) with U'x(0, y) = 0 and

U'(0, y) = 2 f S(r, y)gi(r) dr = -y- [ e~"'gi(2uVy) du (4)
Jo VT Jo

(see p. 53 of [3]).

Suppose that u1, u solve Problem A with gx , g2 , g £ C[0, ») n C'(0, <») where

?(y) = e~"u2(0, y) = e~*vu(0, \y) is the interface function. It then follows from Lemma 2

that

u\x, y) = U\x, 1i) + ^ (erfc * ^1/2) Jr [e'gW - U\0, r)] dr ^

m2(x, ?/) = U\x, y) + J (erfc f ^1/2) £ [e'ff(r) - U\0, r)] dr
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where n = 1/X. That is, the right-hand sides in (5) solve (A,) and agree with u'(0, y)

and u\x, 0). Substituting (5) in the last equation of condition (A3), we see that g(y)

solves

(1 - K)g(y) = e~" f" W(y - r)]"1/21 [tf2(0, r) - e'g(r)} dr

+ Ke~* J* - r)]-/21 [^(0, r) - eg^r)] dr. (6)

These steps are reversible, giving

Lemma 3. Let W = C[0, ») f~\ C"(0, <»). For initial conditions g< £ W, Problem A

has solutions u' with u'(0, y) E.W if and only if there exists a function g £ W solving (6)

with 0(0) = ff,(0).
For the trivial case K = X = 1 we see that g(y) = (e~v/2)[[/1(0, j/) + £/2(0, ?/)].

Denote the transform of a function by a superscript *. All the formulas used below

may be found in [4].

From (4) we have U'*(0, s) = g*i(\/s)/Vs. Transforming (6) and solving for g*,

we obtain

g*(s) = D^iKvg^s + 1)1/2) + g%((s + l)1/2)j, (7)

where D*(s) = [((s + 1)I/2 + 1) + K((ns + 1)1/2 — 1)]_1 and p = 1/X. Except for the

easy case K = X = 1 we can write

n*M _ «' + D1/2 + 1) ~ Mgg + 1)'/2 + 1) {Ki

U [S) ~ ((« + 1)1/2 + l)(A(s + 1)1/2 + 5) ' W

where A = 1 — KV and B = 1 — 2K + K2^. Given specific initial conditions gt , g% ,

one would now simplify (7) using (8) prior to inversion. In general we get the convolution

g(y) = ^ Jo dt Jo rVte~T'' D(y - t)[e"g2(2rt) + e~ugx{2^\ rt)] dr, (9)

where

D(s)" TTKvi + " G<»>1 + 2C^ri) [ IW - o« ]«» - » a,

m = [e"x« - e'"]/(W)U2, F(y) = (e"7W"!) - erfc Vj/, (10)

G(t/) = 0 K2 = \

= (e"V(x2/)1/2) - Q exp ((Q2 - l)y) erfc K2 * Q = B/A.

When if/x = 1 we have Q = 1 and F = G so the correct formula for Z) is obtained by

computing lim^i [F(y) - G(y)]/(K» - 1).

From Eq. (9) it follows that if the initial conditions g! , g2 belong to the class of

functions W defined in Lemma 3 and have Laplace transforms, the same is true for g.

The function g(y) in (9) then solves Eq. (6) and provides solutions, via (5), to Problem A.

Uniqueness of such solutions is clear from Eq. (7). Thus we have

Theorem: For initial conditions £,(x) in class W with \gi(x)\ < M, exp (rriiX) for

large x, Problem A has a unique solution with interface function satisfying the same

conditions. The solution is given by (5) for g(y) in (9).
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The formulas in (5) and (9) are less than elegant. However, for any particular problem

one can usually perform some additional simplifications, transform (5) back to problem

M or S using (1) or (2) and study the solutions numerically. Approximations are also

easily accessible. For example, one can choose a simple approximation for g(y) in (9),

select one of the initial conditions g! or g2 and solve for the remaining function (g2 or gt)

using (7). Then Eq. (5) gives solutions to problem A except that one of the initial condi-

tions differs from the original. If the difference is small, an approximate solution is

obtained.

A study of problem M for specific initial conditions using the above procedure is

given in [5].
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