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A NOTE ON OSEEN FLOW*

By K. B. RANGER (University of Toronto)

It is known that the stream function for Oseen flow past a parabolic cylinder

(Stewartson; see Wilkinson [4], Kaplan [3]), and the axially symmetric flow past a

paraboloid of revolution can be found in a simple form by employing the Oseen splitting

theorem and then utilizing parabolic coordinates. In the case of the parabolic cylinder

the limiting solution (Burgers flow) for the semi-infinite flat plate can be determined

and this procedure is in fact simpler than the derivation by the Wiener-Hopf technique

carried out by Lewis and Carrier [1] and for magnetohydrodynamic flow by Greenspan

and Carrier [2]. However, in the case of the paraboloid considered by Wilkinson [4] the

limiting solution reduces to a uniform stream. The fluid does not recognize the presence

of the needle and a solution for streaming flow past a semi-infinite needle in which the

fluid velocity vanishes on the needle and the vorticity is nonzero apparently does not

exist. The object of the present note is to show that such a flow can be constructed and

is derived quite simply as a fractional integral of the corresponding two-dimensional

flow. The integral operator, in general, maps two-dimensional potential, Stokes and

Oseen flows into axially symmetric flows in three dimensions, and has been discussed

in [5]. In particular, it is well suited to boundaries which occupy part of the axis or for

thin discs of finite radius. Boundary-value problems of the type considered in this paper

were first solved by Weinstein [6] for the generalized Tricomi equation by finding funda-

mental solutions in the elliptic halfplane which can be analytically continued into the'

hyperbolic halfplane. One of the main results is that the fluid velocity components and

vorticity on the axis are, apart from constant multiples, identical to the corresponding

two-dimensional quantities on the axis. The vorticity is singular at the tip of the needle,

decays algebraically downstream on the axis and decays exponentially upstream. In

view of the fact that axially symmetric problems converge more rapidly than two-

dimensional flows and in view, also, of the central position of the flat plate problem in

steady two-dimensional incompressible viscous flow, the following solution for streaming

flow past a semi-infinite needle would seem to be of some interest. In particular, the

axially symmetric boundary-layer equations for a needle would appear to be a problem

equally as interesting; this, however, is not considered in the present short note. Finally,

it is noted that the method of solution given here is applicable to streaming flow of a

conducting fluid in the presence of an aligned field past a semi-infinite needle.

Let (x, p) be cylindrical polar coordinates. Then the Stokes stream function p)

for axially symmetric flow is defined by
/

U3 = — (1 /p)(dh/dp), v3 = (1/p) (dips/dx) (1)

where q3 = u31c + v3p is the fluid velocity vector. The linearized nondimensionaJ Oseen
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equation for axially symmetric viscous flow is given by

= 0 (2)

where the operator Lk is defined by

Lk a (d2/dx2) + (cf/dP2) + (k/P){d/dP), (3)

which is the axially symmetric Laplacian in a space of k + 2 dimensions. Consider now

the integral operator

where ^2(z, y) may be interpreted as the Earnshaw stream function for two-dimensional

flow in the (x, y) plane and is such that the axis is a streamline; that is, \f>2(x, 0) = 0.

There is a simple inverse transformation of (4) given by

r (r 2 d f ^(x> p)p dp (K\

v-7f • <5)
so that there is a one-to-one correspondence between the axially symmetric and two-

dimensional flow. Now if the two-dimensional flow fluid velocity is q2 = u2(x, y)i +

vs(x, y)j then it is readily verified that

ua(x, p) = /o pX^V)yy/2 , u2(x, y) =2 ^p^dp _ (6a)

Vz{X' p) = p /0 "(f'-yT* ' V2(X> V) = ^ fy I (6b)

and

r (i \ — f LoitJy dy T , . _ 2_ d_ f dp ,
~ I (p2 - y2)1'2 ' Lo{*2) ~ Try dy I (y2 - P2)1/2 ' (6c)

where u2, v2 are prescribed in terms of the Earnshaw stream function by the formulae

w2 = —(d^i/dy), v2 = (d\p2/dx). (7)

In particular, it follows that

u3(x, 0) = |jru2(x, 0), v3(x, 0) = v2(x, 0) = 0. (8)

Now let if/2 be a solution of the two-dimensional Oseen equation

L0(L0 + (d/dx))\p2 = 0. (9)

Then the general solution can be found from the Oseen splitting theorem given by

$2 = u + v (10)

where u and v are general solutions of

L0(u) = 0, (L0 + (d/dx))v = 0. (11)

Again, since

(t 4- - f (L° + (d/dx))^y dy . .
\L~l + bxr ~ J0 (p2 - y2)!/2 ' (12)
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it follows from (6c) and (12) that if i>2 is a solution of (9) then ^3 is a solution of (2).

The x-axis is a streamline for both flows and if the velocity along the axis is known for

one flow then it is known for the other. It will now be shown that a uniform stream in

the (x, y) plane maps into a uniform stream for the axially symmetric flow except the

magnitude of the speeds are different. Set u = (2/it)y, v = 0; then = (2/ir)y, which

is a uniform stream of speed of magnitude 2/ir directed along the negative x-axis, and

the corresponding \f/3 is given by

j. _ 2 f V dV _ in2 /i o\
+* ~ » J0 (p2 - y2)1/2 ~ ~2p ' (13)

which is a uniform stream of speed unity directed along the negative x-axis. Now for

Oseen flow past a semi-infinite flat plate the boundary-value problem is

Ln(La + (d/dx))\p2 = 0,

^2 = ^ = 0, y - 0, x < 0, as x2 + y2 ®, (14)
ay 7r

with \]/2 odd in y. This boundary-value problem maps into the axially symmetric

boundary-value problem defined as follows:

Z,-1(L-1 + to)*3 = °
(15)

with if/3 = (dfa/dp) = 0, p = 0, x < 0, >p3 ~ Jp2 as p2 + x2 —* °°. To solve the boundary

value problem posed by (14) the simplest procedure is to introduce parabolic coordinates

(£, tj) defined by

x + iy = ft + iri)2; (16)

then the equations satisfied by u and v are

W|£ + = 0, v(( + t>„ + 2|t>{ - 2ijt>, = 0, (17)

and the complete solution is found to be

= (4„/*){{ + (1/V*)[exp (-I2) - 1 - 2£ erfc £]}. (18)

The stream function for axially symmetric flow is then found from (4). The vorticity of

the two-dimensional flow is given by (6c),

curl q3 = fs<£ (19)

where f3 = L-1(<j/3)/p and is related to the vorticity of the two-dimensional flow by (6c),

that is

Ux, p) = -f HX' y)lt , f, = L0(h). (20)
p Jo vp — y)

Now from (18)

_ V exp (-f)

^ + ^ , VD

and on the axis f3(x, 0) = f2(x, 0), so that since £ = 0 corresponds to y = 0, x < 0,
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n = (—x)1/2 and ?/ = 0 corresponds to y = 0, x > 0, £ = xi/2, it follows that

f3(x, 0) = (_xy/t > x < °> (22)

= 0, x > 0.

Thus the vorticity on the needle is identical to the vorticity on the flat plate. Although

the vorticity is finite on the needle except at the tip, the quantity ring vorticity I =

L-i(^O/p2 is infinite along the negative x-axis. This quantity is usually finite on axially

symmetric bodies. However, the velocity and its derivatives are finite everywhere except

on the tip of the needle. This is readily checked from (6a), (6b), (6c) and the results

d \t it m_ r (d/dx)\Ln{j2))y dy
[L-M 3)] = [

J0
n J — I / 2 2\ 1/2
dx J0 (p — 2/)

^ IT (! M f (d/dy)(Ij(,(\p2y) dy 1 j ,, ,,
— L_t(^3) = p / —r-2 -2072 r AA^) v-0 • (2d)
op Jo (p — y)

It is of interest to mention briefly that the flow past a paraboloid of revolution can be

obtained simply by the introduction of parabolic coordinates defined by x + ip —

(I + iy)2- The stream function is determined by the same method as before and is given by

= 2,'ff' - + -T~r- If f - 6 f '4^11,
1 r e du *- * J f
I if. u3 J

(24)

where £ > £0 corresponds to the exterior of the paraboloid. Now as £0 —> 0, —s> 2£%2 =

fp2, which is a uniform stream. In this limiting situation the fluid does not recognize the

presence of the needle since the vorticity is zero on the axis and the no-slip condition

on the negative x-axis is not satisfied. The flow locally at the leading edge of the two-

dimensional motion, in polar coordinates defined by x = r cos 9, y = r sin 6, is given by:

/ 4 » o(rY/2( ■ 30 , . 6\ , _
4*2 ~ ^372 yt, = 2y-J l^sm — + sm , (25)

which is clearly Stokes flow since the right-hand side of (23) is a two-dimensional bi-

harmonic function. Since two-dimensional biharmonic functions are mapped into solu-

tions of Li, (yp) = 0, the flow locally at the tip of the needle must be Stokes flow and is

given by

21/24r5/2 sin2 6 / f1/2r

3/2
7r V. [cos 6 + (sin 0 sin A -f- cos 6) ] sin \ d\h (26)4'

where in this case x = r cos 0, p = r sin 6. Also the final form for \p3 expressed in (x, p)

coordinates is, from (4) and (18), given by

7 1 2 1 /2\3/2 f y\exp (-(r + aQ/2)»- 1) dy
*3 = + U Jo (r + x)1/2(p2 - y2)1/2

y2 erfc [(r + s)/2]'/2 dy__l r
ir3/2 Jo 2 (27)

(p2 - y )

where r = (x2 + y2)1
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For a more complete proof when there is a distribution of singularity on the axis,

see Mathematics Research Center T-S R1251, University of Wisconsin, 1972.

Appendix. In this appendix the basic identity required in the note will be proved.

Set

/ \ _ f v(x, y)y dy
W{X' p) ~ J0 (p2 - y2)1/2

where v(x, 0) = 0, and write s = p , t = y . A simple computation gives

d2 , d2 T .. d2 , „ d , d2 r„ 1 r' v dt
L-i — 4s t-"2 + —2 , La = 4< t-2 + 2 — + t~5 , W

= i r vd
2 Jo (sds2 1 dx2 ' Qf 1 " dt ' dx2 ' " ~ 2 Jo (s - <)'

Now

d2W = 1 f d2v dt

and

since = 0. Again,

dx2 2 o dx2 (s - t)1/2

dW 1 I" dv dt-if2 a« (s - <)1/2 >

a2TF l r'dv dt . l dv
ds2 2 I0 dt2 (s - t)U2 2s1/2 a*

+

and

_ ['(s — t + Q aV , 1/2
as2 - 2 io (S - t)1'2 Bt2 dt + dt

■21 7<"+2l + ,l?(,-V*+2'"*«

- 2[" - <>"' I];+ r (2<0 + 1) jr?- " -

-ir(4,f?+2i)(rnp-

o17*"1"2' si

dt

Thus

T fan — - I" LM dt - [' L°(y)y
2 Jo (s- <)1/2 Jo (p2 - 2/2)1/2 '

as required.

Asymptotic formula jor the vorticity distribution. The vorticity distribution ?3(x, p)

is given by

x ,, (r1 - x)u2 exp -(^ \ T )y dy

fa = n*J0 r'(p2 - y2)1/2
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where r1 = (x2 + y2)W2. On making the successive transformations y = pv, p = r sin 0,

x = r cos 0, s = (cos2 0 + v2 sin2 d)l/2 and s = u + |cos 0| , f3 can be expressed as

p-(,/2> rl-|.o.»l {„ + (cog _ cog ( r \ ,

U (2r)1/V3/2 sin d Jo 11 - (« + |cos 0|)2]1/2 GXp \ 2 UJ

By applying Watson's lemma, it is found that for large r

— r oos 0

0 < 0 < H-/2

~ ~~2 , 0 = ir/2
ttt

1/22 |cos 0|
i3/2sin2 0r3/2 ' x/2 < 0 < 7T.
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