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Abstract. Approximate asymptotic expressions are obtained for the buckling

stresses and autocorrelation of the lateral displacement of infinitely long imperfect

columns resting on nonlinear elastic foundations. The imperfections are assumed to be

homogeneous Gaussian random functions with known autocorrelation. The formulas

are discussed and compared with previous results obtained by means of truncated

hierarchy and equivalent linearization techniques.

Introduction. In this paper a perturbation scheme is used to study a model im-

perfection-sensitive structure. We consider an ensemble of infinitely long imperfect

columns resting on nonlinear elastic foundations. The stress-free initial displacements

of the columns are assumed to be homogeneous zero-mean Gaussian random functions of

positions along the column. In the analysis, approximate asymptotic expressions that

are applicable for small mean square of the imperfections are sought for the buckling

stresses and the autocorrelation of the displacements.

In an earlier study of this problem [1] Fraser and Budiansky used an equivalent

linearization technique to obtain the buckling stresses for random imperfections with

two-parameter exponential-cosine autocorrelation functions. In a subsequent study [2]

in which other types of imperfections were considered, Amazigo, Budiansky and Carrier

obtained asymptotic expressions for the buckling load by means of both equivalent

linearization and truncated-hierarchy methods. The perturbation scheme used in this

paper appears more satisfactory and yields slightly different asymptotic expressions for

the buckling load. In addition an asymptotic expression is obtained for the buckling

displacement.

Differential equation. The nondimensional form of the differential equation govern-

ing the lateral displacement of an infinite column on a "softening" nonlinear elastic

foundation is

Lw — w3 = — 2\ew'0', — 00 < x < <*>, (1)

where L( ) = ( )"" + 2X( )" + ( ) with ( )' = {d/dx){ ). The nondimensional axial

coordinate x, lateral deflection w, axial load parameter X, and stress-free initial displace-

ment w0 are related to the physical quantities by

x = (kJEiy^X, w = {h/lh)1/2W, X = P/2(EIk1)1/2! (2)
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ew0 = (kz/kiy/2Wa , where e is a small imperfection parameter. In these equations EI

is the bending stiffness of the column. The lateral displacement W(X) of the column is

restrained by an elastic foundation that produces a restoring force per unit length of

fcJF — k3W3 with fcj , k3 > 0. We consider an ensemble of such columns, with each

column subjected to the same axial load P. The initial stress-free displacement (imper-

fection) Wa(X) is assumed to be a homogeneous zero-mean Gaussian random function

of position X along the column.

The load parameter X is defined so that the lowest eigenvalue of the linear problem

Lw = 0 with w0 = 0 is X = 1. The corresponding eigenfunction is

w = cos (x — 8)

where 6 is an arbitrary phase angle.

For the nonlinear, nonhomogeneous equation (1), we seek a relation between the load

parameter X, the imperfection parameter e, and the mean square A2 of the displacement w.

The buckling load of the structure X is the maximum value of X for the branch of the

solutions satisfying the condition X = 0 for A = 0. We seek an asymptotic expression

for X applicable for sufficiently small values of e and A.

Formulation of perturbation scheme. The imperfection function w0(x) is a sample

function from an ensemble of zero-mean, homogeneous Gaussian random functions

with known autocorrelation function i?0o(f). Thus

(w0(x)) = 0, (w0(x + t)w0(x)) = Roo(£), (3)

where the angular bracket (• • •) denotes ensemble average. The power spectral density

of w0 is defined by

Sc>(o>) = ~ J_[ Roo(t)e-'"< d{. (4)1

We consider X to be prescribed and to satisfy the inequality 0 < X < 1, and expand w

in the form

CO

w(x) = 22 e'Wj(x). (5)
; -1

Substituting (5) into the differential equation (1) and equating coefficients of successive

powers of e gives

LWi = —2\Wo', Lw2 = 0, Lw3 = w\ ,
(6)

Lw4 — 3w[w2 , Lws = 3w,w2 + Zw\w3 , etc.

We observe that for X < 1, the bounded analytic solution of Lw2 = 0 is w2 = 0. Conse-

quently wn == 0 for n even. Eqs. (5) and (6) are then equivalent to

w(x) = X (7)
J-l

Lw,, = —2\w'0', (8)

Lw3 = w\ , (9)

1 Unless otherwise specified the limits of all integrals are — °o, <=.
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Lw5 = 3wlws , etc. (10)

Let

A,-,- = (wi(x)wi(x)), (11)

fln(f) = (u>i(x + f)u>i(x)), (12)

and A2 be the mean square of the deflection w, that is,

A2 - (w\x)}. (13)

Substituting (7) into (13) and using (11) gives

A2 = e2A„ + 2e4A13 + e6(2A15 + A33) + 0(£8). (14)

Since the A,-,'s are functions of X, Eq. (14) gives a relation between A2, X, e. In principle,

then, the buckling load should be obtained from (14) by setting dX/dA2 = 0. This

scheme fails because A2 is a multivalued function of X and the series does not converge

for A2 > A2 (the critical mean square).

This difficulty is overcome if we reverse the series (14) and seek the coefficients a,

such that

«2 = ai A" + a2 A4 + a3 A6 + 0(A8). (15)

The reverse series (15) gives A2 as an analytic function of e2, and it uniquely defines A

as zero for e = 0. Note that X = 1 for e = 0.

The coefficients a, may be obtained by using Lagrange's formula for the reversion

of series (see, for example, [3]). Alternatively, substituting (15) into (14) and equating

the powers of A2 gives

= 1/An , (16)

a2 = — 2A13/Ai, , (17)

«3 = 8A23/An - (2A„ + A33)/A^ . (18)

We now consider a two-term approximation which is obtained by retention of only

the first two terms on the right of Eq. (15). Considerations of a higher-order approxima-

tion would tend to obscure the basic ideas of the perturbation scheme.

Two-term approximation. Retaining two terms in the expansion (15) gives

e2 » ai(X) A2 + a2(X) A4. (19)

Maximizing X with respect to A2 and using (16), (17) gives

8(A13(X)/A„(X))€2 = 1 (20)

as an approximate relation between the buckling load X and the imperfection parameter t-

We now seek expressions for An(X), and AI3(X).

The solution of Eq. (8) is

Wi(x) = — 2X J G(x - y)w'0'(y) dy (21)

where

GO-) - V"Mn <fcosar - sin a If l\
^ ~ 46 \ b a J ' (22)
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a = [i(l + X)]1/2, b = [i(l - A)]1/2,

and the Fourier transform Q(co) of G(f) is

Q(w) = J rfr = (« - 2Xc2 + I)"1. (23)

Taking ensemble average of (21) gives (wi(x)) = 0 since (w0(x)) = 0. As in [1], we find

that the spectral density Sn(cc) of Wi is

S„(«) = 4XVQ2(o>)50o(«).

Thus

An = J Sn(u) dw = 4X2 J w4Q2(u)Soo(ui) dw (24)

and Fourier transform Rn of Sn is

Kii(f) = 4X2 J w4Q2(co)S00(a,)e''"f (25)

The solution of Eq. (9) is

w3(x) = J G(x - y)w\{y) dy. (26)

Now since wl is a linear function of the Gaussian random function w0, it is also Gaussian

and hence (see, for example, [4])

(w1(x)w^(y)) = 3A„ Rn(x - y). (27)

We observe that w3 is not Gaussian and hence w is not Gaussian. Thus, multiplying (26)

by Wi(z), taking ensemble average and using (27), (23), and (25) gives

AlS — 12A2An J a4Q3(a)S0o(o>) dco. (28)

Since Eq. (20) for the buckling load X depends only on the ratio A13/Au with X = X,

we need to evaluate the integral on the right of (28) for any given autocorrelation

functions R00(f).

We seek, however, an asymptotic expression for A13/An valid for X —» 1. Consider

the integral

An = J w4[Q(a>)]"£0o(w) du, n > 1 (29)

and, noting that the integrand is an even function of u>, we have

An = 2 f u4[Q(a,)]"S0„(a>) dw.
Jq

X = 1 — %o2 (30)

and make a change of variable u2 = 1 + op; then
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Integrating, using calculus of residues, gives

i _ tt'SqoCI) (n — 1)(2n — 3)! , Off.)] ("311
— g2n-l 92n-3|"^ _ Jj2 U ~T ^(.Ojj. W1 >

Substituting for o2 and using (31) and (28) in (20) for X = X gives the approximate

asymptotic expression for X

(1 - X)5/4 ^ 3(2)-1/4[7T1S0o(l)]1/2Xe. (32)

As in [2], we observe that asymptotically the buckling load depends only on the value of

the spectral density at u = 1. Eq. (32) gives a more conservative estimate of the buckling

load X than the result of [2], namely

(1 - X)5/4 ^ f(|)I/4[1r,So„(l)]1/2Xe. (33)

These formulas are compared in Fig. 1, where X is plotted against the imperfection

measure [jnS0o(l)]1/2«-

Asymptotic expression for the autocorrelation. We seek an asymptotic expression

for the autocorrelation R(£) of the deflection w(x) for the case when 7?00(f) decays

exponentially. Assume that

|fl„o(?)| < Me~at, (M, a > 0). (34)

Substituting (7) into the definition of i2(f), namely R(?) = (w(x + £)w(x)) gives

i?(f) = i?n(r)e2 + {{w^x + t)wz(x)) + (■w1(x)w3(x + f))]«4 + 0(e).

Now we use the integral expression (26) for w3 and properties of Fourier transforms to

obtain

(35)

fl(f) = e2-4X2 f a4[Q(o>)]2Sno(.uy" do,

+ €4-24X2Ah f «4[0(a.)]iSoo(«)e",'",, du + 0(c6).

Consider the first integral on the right of (35), namely

flii(f) = 4X2 J w4[Q^)]2Soo^)e" du. (36)

A similar integral was evaluated asymptotically in [2] and [5]. Noting that S00(w) is

analytic for |Im w\ < a as a consequence of (34), we shift the path of integration below

the poles of the integrand for f > 0. The poles of Q(u) are wlt2 = ±[(1 + X)/2]I/2 —

f[(1 — X)/2]1/2. The integral along the new contour is where [(1 — X)/2]I/2 < G < a.

Hence

Ru({) = — 8t\2i [Residues of integrand at coj , co2] + 0(e~^r) (37)

The case f < 0 is handled in a similar manner and combining these results gives
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Riitt) = exp {-[(1 - X)/2]l/2 |f |! cos f + 0((1 - X)"1) for X - 1.
2 (1 X) (38)

Evaluating the second integral in (35) gives

I o;4[Q(a))]35„„(c)e-i"r da, = 3xX25oo(1)/2u/2(1 - x)5/2;

exp { -[(1 - X)/2]1/2 |f 11 cos f + 0((1 - X)"2). (39)

Since Au = Ru(0), the autocorrelation of the buckling deflection is obtained by using

(39), (38), and (37) in (35) and setting X = X. Thus

fl(f) ~ e
[•

9ffX jSqq(I) 7tX Soq(1) . . . /01x/2
+ 25/2(\ — \)5/2 6 9i/2(1 — X)3/2 eX^ ^ ~~ ^)/2]' If I cos f. (40)

Now X and e are related by Eq. (32), hence the two terms in the square brackets in (40)

are of the same order. Substituting for e in (40) gives

Eq.33 [23

TWO TERM APPROXIMATION"

(Eq. 32)

0.2-

J L
0.2 0.4 0.6 0.8 1.0

1/2

[TTSoo(l)J e
Fig. 1. Dependence of buckling load on imperfection.
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m) « (1 - X) exp {- [(1 - X)/2]1/2 |f |} cos f. (41)

Concluding remarks. In comparing the result of this analysis (32) -with the result

(33) of [2] obtained by means of truncated hierarchy and equivalent linearization, we

note that the nature of the dependence of X on e and <S'00(w) is the same. The only difference

is in the coefficients of [7r<S00(l)]1/2Xe. This difference (2.52 for (32) and 2.39 for (33))

appears very small, as seen in Fig. 1. An analysis not reported here shows that a three-

term approximation does not significantly change the coefficient in (32). This perturba-

tion scheme has also been used to duplicate the results in [2] for modal imperfection.

However, three terms were needed in the approximation.

We observe also that this analysis clearly indicates that w is not Gaussian. In the

method of equivalent linearization w becomes Gaussian as a consequence of the lineari-

zation. For the truncated hierarchy technique w was assumed Gaussian to facilitate

truncation of the resulting infinite sequence of equations.

It is hoped that the perturbation scheme developed here can be extended to solve

problems of buckling of thin shells with random imperfections.
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