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Abstract. The relative mean square error in the three-dimensional stress field

predicted by classical plate theory is shown to be OQi/L^)2, where h is the plate thickness

and Lj. is a mean square measure of the wavelength of the midplane deformation pattern.

This improves a recent result of Nordgren who obtained a relative error estimate of

0(h/L*). The improved error estimate, which, like Nordgren's, is based on the Prager-

Synge hypercircle theorem in elasticity, is obtained by constructing a kinematically

admissible three-dimensional displacement field that depends on the solution of the

classical plate equations but which yields an accurate, nonzero distribution of the trans-

verse shearing strain through the thickness.

1. Introduction. In a recent paper [1], Nordgren has considered the errors in the

three-dimensional stress field predicted by the classical, linear, two-dimensional theory

of plate bending. Starting from the (presumably known) two-dimensional stress couple

and midplane displacement fields, Nordgren constructs a statically admissable tensor

stress field 8 and a kinematically admissable tensor stress field 3. The Prager-Synge

hypercircle theorem in elasticity [2], [3] implies that

C[6 - |(3 + 5)] = C[dD], (1.1)

where d is the actual tensor stress field, <jD = |(8 — 3), and C[ - ] a homogeneous, positive

definite quadratic functional representing the stress energy. Nordgren shows that

{C[dD\!1/2 is proportional to the plate thickness h and remarks that this result "is some-

what surprising since the exact solutions for plates in elasticity theory give a relative

error proportional to the square of the thickness."

The reason for the relatively large value of C[dD] obtained by Nordgren, as he himself

points out, is that his expression for the approximate transverse shearing stress |(d° + &")

is not a good representation of the actual distribution which varies nearly parabolically

through the thickness.

In this paper we obtain, by constructing a somewhat more elaborate three-dimen-

sional displacement field than did Nordgren, the improved error estimate

C[dfl]/C[3] = OQi/L^y, (1.2)

where L± is a mean square measure of the midplane deformation pattern, explicitly

computable once the plate theory solution is known. The key idea in obtaining (1.2)
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is the following: even though the transverse shearing strain ya is assumed to be zero in

the derivation of classical plate bending theory from three-dimensional elasticity, once

a plate theory solution has been found, one may go back and construct a nonzero dis-

tribution of 7„ through the thickness that is correct to within a relative error of order

(h/Lx)2. Using such a distribution we are able to improve Nordgren's relative error

estimate from OQi/L#) to 0(h/L^)2.
Working independently of Nordgren, Koiter [4] has just completed a similar analysis

in which he shows that the relative mean square error in the three-dimensional displace-

ment field predicted by classical shell theory is 0(Ji/R + h2/L2)l/2, where R is the mini-

mum over the shell midsurface of the smallest principal radius of curvature and L is

the minimum local wavelength of the midsurface deformation pattern. Koiter's relative

error estimate can be improved to 0(h/R -f- h2/L2), as will be shown elsewhere by my

colleague D. A. Danielson [5]. The reason for a separate error analysis for plate theory

is that its great geometrical simplicity allows for a more explicit, extensive, and precise

error analysis than is feasible for general shell theory.

2. Three-dimensional considerations. Let A denote a plane area in three-dimen-

sional Euclidean space and let its boundary dA consist of one or more closed, piecewise

smooth curves. Let 6", a = 1, 2, denote an arbitrary set of curvilinear coordinates on A

and let r(da) denote the position vector of points on A with respect to a fixed origin 0

situated on A. The covariant base vectors on A are defined and denoted by a„ — t,a ,

where the subscript a preceded by the comma denotes partial differentiation with respect

to 6". The metric tensor associated with the curvilinear coordinates 9" is defined and

denoted by aaB = aa • a3 . All indices will be raised or lowered with respect to aaff .

Covariant differentiation based on aa$ will be denoted by a vertical bar. The unit normal

vector on the positive side of A is denoted by k.

A plate of variable thickness h(r) is defined to be a body which, in its undeformed

configuration, occupies the volume of space

V = {R | R = r + 2k, r £ A, |z| < JA(r)}. (2.1)

The boundary of V consists of upper and lower faces

A± = {R | R = r ± ih(r)k, r£4j (2.2)

and an edge

E = {R | R = r + zk, r E dA, |z| < \h{r)}. (2.3)

Let the components of the three-dimensional stress tensor d in the cylindrical coordi-

nate system (0°, z) be denoted by aaii, <ja, c and let the components of the body force

vector b be denoted by b", b. Then the linear, three-dimensional static equilibrium

equations can be written

+ ba = 0, (2.4)

«r°|. + <r,3 + b = 0, (2.5)

<rai> = cSa. (2.6)

If U denotes the three dimensional displacement vector with components Ua , W,

the components of the linearized three-dimensional strain tensor are

7<*0 = h{U a |0 + Upla), (2.7)
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= i<W.a + Ua. 3), (2.8)

7 = T7.3 . (2.9)

We shall assume that the plate is elastically isotropic, having a strain energy density

of the form

V = E
2(1 + v)

7° 7«is + 2yaya + 72 +1 _ 2v (7« +7) |, (2.10)

where E is Young's modulus and v is Poisson's ratio. The associated stress-strain relations

read

(1 + j-)(1 — 2 v)aaf, = E[( 1 — 2i>)yafl -f vaa0(yl + 7)], (2.11)

(1 + v)ua = Eya , (2.12)

(1 + y)(l — 2v)a = E[( 1 — v)y + vyaa]- (2.13)

To relate the equations of three-dimensional elasticity to those of the bending theory

of plates, we first integrate (2.5) with respect to z from — \h to \h. This yields the normal

force equilibrium equation

QX + V = 0, (2.14)

where

Q° = f a" dz, (2.15)

p = J b dz + q, (2.16)

q = [d„(r, jh) + 6n(9°, -m-K (2.17)

/+ oh/2

= / , (2.18)*>-h/2

and <i„ denotes the stress vector acting on the faces of the plate. (The unit normal vectors

to the plate faces ±A are identically equal to ±k only if h — const.)

Multiplying (2.4) by z and integrating from —\h to \h, we obtain the moment

equilibrium equation

M"\, - Qa + la = 0, (2.19)

where

M° = J z<ral)dz, (2.20)

la = \hma + J zb° dz, (2.21)

m" = W, \K) - <J.(*", -\h)]-a°. (2.22)

The standard reduced equilibrium equation of plate bending theory follows upon solving

(2.19) for Qa and inserting the resulting expression into (2.14):

+ V + l"\a = 0. (2.23)
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Observe that the effects of the applied face tractions and the distributed body forces

enter the reduced equilibrium equation only in the combination

V + l°\a = P- (2.24)

This leads us to define any two sets of prescribed face and body forces as being equivalent

if each set yields the same value for P. Reference to (2.16), (2.17), (2.21) and (2.22)

shows that, in particular, any given set of prescribed face tractions d„(0a, f/i), dn(6", —%h)

and body forces b(0", z) is equivalent to a distribution b^O") of the normal component

of the body force vector alone given by

hb* = f (b + gl"\a) dz + q + Ihm"\a . (2.25)

Thus, any given distribution of face tractions and body forces which produce a state

of pure bending may be uniquely decomposed into the sum of a regular part consisting of

zero face tractions and a body force distribution independent of z given by (2.25), plus

an irregular part1 consisting of the "residual" body force distribution b — Clearly,

it only makes sense to compare the difference between the three-dimensional stress field

predicted by plate bending theory and those associated with regular, three-dimensional

loads.

Henceforth we assume that the given face and body loads are regular, that is b =

6(0°)k, ma = q — 0, and that the reduced plate bending equation (2.23) is satisfied.

This enables us to convert the three-dimensional force equilibrium equations (2.4) and

(2.5) into the integral equations

cr" = If sgn (f - z)*"\, dt, (2.26)

a = | f sgn (f - z){„' \a + b) df, (2.27)

where the signum function is defined by sgn (x) = ±1 if z ^ 0 and sgn (0) = 0. In view

of (2.23) and the fact that, for regular loads, p = hb, we may rewrite (2.27) in the form

* = !/_ Sgn (r - z)a"\adt + (e/h)Maf\al, . (2.28)

3. Statically admissible stress field. To construct a statically admissible stress

field 8, we make the conventional assumption that if"3 vanishes on the midplane and

varies linearly through the thickness. It then follows from (2.20) that

= ^-r». (3.i)

Henceforth, we assume that h is a constant. To compute the remaining components

of 3 we evaluate (2.26) and (2.28) successively, so obtaining

-1 (' - ¥)m"i> ■ <s-2>

2 /, 4z

* = ~2h v ~ jr>M' i»' • (3-3)
This is Koiter's terminology [4].
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4. Kinematically admissible stress field. The Prager-Synge equality (1.1) shows

that the closer 8 is to 3, the smaller the error in the three-dimensional stress field pre-

dicted by plate theory. To obtain a relative error of 0{h/L^)2, it is essential to make

3" close to 8"; in fact, we shall construct a displacement field such that 8° = a". To

this end assume

tia{0\ z) = zfa(9fi) + z3ga^), (4.1)

W(e?, z) = w(e') + t(es, z), (4.2)

where w(6e) is the midplane normal displacement of classical plate theory which is related

to the components of the stress couple tensor through the stress-strain relations

M„e = —2>[( 1 - v)w.af + vaa,V2w], (4.3)

where V2 is the Laplacian operator. From (2.7)-(2.9), the expressions for the components

of the strain tensor associated with (4.1) and (4.2) are

y<xfl ^/(aijS) % Q (a\P) j (4.4)

fa = \{W. a + f.a + /a + 3 Z*ga) , (4.5)

7 = t.s , (4.6)

where T(adenotes the symmetric part of any tensor Taf . The components of 3 follow

from the stress-strain relations (2.11)-(2.13), which we rewrite in the form

E v
= 1 _ v- K1 — + "aajs7x] + J V_ v aa/>&, (4.7)

^ = r+rfa' (4-8)

a = Ey -f- v&l . (4.9)

Following Nordgren [1] and Koiter [4], we choose f so that & is approximately zero.

For this purpose it is sufficient to take

Ey = -va\. (4.10)

From (3.1) and (4.6) we have then

(4-n)

Now substitute (4.11) into (4.5) and choose the functions and ga so that the left-hand

side of (4.8) is equal to the expression for 5a given by (3.2). This yields

U = -w.. + 3(1£^ y) Mi\„ , (4.12)

ga=Yh5 M^" " ■ (413)

Having explicitly determined the functions fa , ga and f in terms of plate theory

solutions, we obtain the following expressions for &a$ and a via (4.3)-(4.9):
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+ 3(f)[M'<"lw + T^2v a">M^J " 2(f)\2M<t"w ~ l+~v M>'

mi\:+ fiff, K - rr. (4.14)

(4.15)

By use of the plate stress-strain relations (4.3), we may express 6ap and a in terms of w

as follows:

d(() 3 - 2(2 - ,)(|) j(v2WU, + aa,V4w) , (4.16)

vD ( z

1-2v\h
3 - 2(2 - ,)(| VV (4.17)

5. Boundary conditions. On an edge E of the plate, defined by (2.3), the virtual

work is given by the expression

f [ 6,-STJdzds = [ f (a"* SUe + <7° SW)va dz ds, (5.1)
" dA ^ " dA * —

where s is arc length along dA, and the va are the covariant components of the outward

unit vector v to dA.

Given a set of boundary conditions over E, our task is, first, to determine the appro-

priate plate boundary conditions along dA and, second, to decompose the given boundary

conditions into regular and irregular parts.

The plate bending boundary conditions are obtained in the standard way by imposing

the Kirchhoff constraint on the kinematically admissible displacement field oU. This

reduces (5.1) to a boundary integral of the form

f (V 8w — M Sw') ds + [M'fvaTf <5iy], (5.2)
J dA

where

V = Q°va + (5.3)

M = Maevavfi , (5.4)

the r» are the covariant components of the unit tangent vector x = k X v, dots and

primes denote, respectively, differentiation with respect to arc length along v and x,

and the last term in (5.2) represents the sum of the jumps of the quantity in brackets

at each of the corners of dA.

For simplicity we restrict ourselves to problems in which either certain components

of the edge stress vector <S, or the corresponding components of the edge displacement

vector U are prescribed.2 From (2.15), (2.20), (5.3) and (5.4) we may compute values

2 The most general type of boundary conditions arise when the plate is attached to another elastic

body of known elastic response. In this case one has in place of stress boundary conditions more general

relations of the form 8„ + JSU = d„ where B is an influence coefficient matrix and 6„ is a prescribed

vector. To carry out an error analysis, the strain energy of the body must be supplemented by terms

which represent the energy stored by the elastic device at the boundary.
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for F or M once certain components of 6, are prescribed. Complementary displacement

boundary conditions for the plate are obtained by setting

w(.r) = W(r, 0), r £ dA (5.5)

w'(r) = - f_ U°(r, z)dz r e dA, (5.6)

whenever the quantities on the right are prescribed.

Once a plate bending solution has been obtained (but not before!), regular boundary

conditions may be defined. We take the expressions for a"" and 5a given by (3.1) and

(3.2) in terms of M"13 and insert these expressions into the relation

5V = (3"eaf + <j°k)ya . (5.7)

This determines a particular distribution of <J„ . On those portions of the edge where d„

is prescribed we define (5.7) to be its regular part. Thus any prescribed stress distribution

3, is uniquely decomposable into a regular part d„ given by (5.7) plus a residual or

irregular part 3, — d„. The regular part of the prescribed edge displacement vector U is

defined to be that part of U with a thickness distribution given by (4.1) and (4.2) with

, ga , and f given in terms of M"p by (4.11)-(4.13).

6. The error estimate. Let us first assume that the plate is subject to edge loads

only, since the error estimate may then be written in a particularly simple, explicit form.

From the plate equilibrium equation (2.23) and the plate stress-strain relations (4.3)

it follows that V4w = 0. Hence a = <r = 0 while (4.16) reduces to

3 - 2(2 - ,)(J V2w\af . (6.1)- z>(f)
The stress energy is defined by

C[d] = JJ J [(1 + ")(<Taf'craf + 2 cr°Va + a2) — v(a°a + <r)2] dA dz. (6.2)

For the case at hand (p = 0), note that

C[d] ^ ^ J [(1 + v)aa^ag — v(02] dA dz

= (6/Eh*) ff [(1 + - v(M"a)2] dA

= iD /£ [(1 - p)v>\«v>\., + KV2w)2] dA

> |(1 - V)D ff w\a*w\afdA.

(6.3)

Furthermore

^ HA l_ ~~ dA dz

= ^(1 - v)H(v)D II V2w\'eV2w\a,dA,

(6.4)
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where

m = (1 ? f r2[6 - (2 - v)ff dt
48(1 -X) Jo (65)

<1, 0 < V < f.

If we define a mean square midplane deformation wavelength L% by the expression

L* ffAV*W\°^2w\°edA = ff w\"fwUdA, (6.6)

it follows that

nt* ~\ tj[.\ < /, 4

(6.7)
C[*D] <H(y)

C[5] l6~ K
To obtain an estimate of the form (6.7) in the general case (p 0), we make use of

the inequahties

(1 + v)(<7af<7ap + 2<r°0-„ + a2) — + <jf > (1 — 2\v){<rae <7 + 2cr"ca + <j2) ^ ^

< (1 - 2, 0 < f < |

and

(V4u>)2 = (aa/iV2wU)2 < 2V2w|^V2io|a3 . (6.9)

From (3.1) and (6.8) it follows that

C[S] > l~I~L fl jf dA dz

= 6(1j&~32") ffA Ma<3Map dA (6.10)

and from (3.3), (4.16), (4.17), and (6.9),

C[6B] < ff f+ [(*" - *")(*., - *.«) + (<r - *)2] dA dz
SE JJA JL (6 n)

< ^ (1 - v)K{v)D ff V2w\afiV2w\a, dA

where

K{v) = 48(1 - vkl - 2v)2 Jo f2{[6 ~ (2 ~ + 2[1 + 4v ~ (1 ~ d

(6.12)

Hence, in terms of the mean square wavelength defined by (6.6),

C[6d\ ^ 1 +v K(v) ( hY _

^r^i-2,~i6"li;J' (6-13)

Incompressible bodies (v = §) require a special treatment which will not be considered

here.
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