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Abstract. Consideration is given to problems of unsteady forced convection heat

transfer in the presence of either time-invariant or time-dependent surface temperatures.

The transient is initiated when a solid body is exposed to a fluid having a temperature

different from its own. In the first part of the paper, a solution method is developed for

determining the surface heat transfer for the case of steady, uniform surface temperature.

Then, attention is turned to the determination of the temperature history of non-intern-

ally-heated bodies of high thermal conductance, which lose heat by convection to the

fluid environment. A numerical scheme for deducing results for the temperature history is

described, while analytical expressions appropriate to the initial and quasi-steady stages

of the transient are presented. Detailed consideration is given to the case of a sphere in a

low Peclet number flow, for which an exact solution for the temperature history is worked

out. The results from the numerical scheme are found to be in excellent agreement with

those from the exact solution, while the expressions for the initial and quasi-steady

stages, when taken together, serve to establish the general behavior of the solution over

the entire transient period.

Introduction. In this paper, consideration is given to two classes of problems which

involve time-dependent heat transfer between a solid surface and a moving fluid. ODe

of these classes is characterized by steady, uniform surface temperatures. The other

includes non-internally-heated, high-conductance solid bodies having a spatially uniform

temperature which changes 'with time as a result of heat exchange "with the fluid environ-

ment. For both classes of problems, the transient is initiated when the body is exposed

to a fluid whose temperature is different from that of the body.

Upon considering the problem areas just described, it is apparent that the analysis

of the first is less demanding than the analysis of the second. This is because, for the

solution of problems in the first group, it is necessary to consider only the energy equa-

tion for the fluid environment (assuming that the velocity field is known). On the other

hand, for problems in the second group, the energy equation for the fluid must be solved

simultaneously with the energy balance for the solid.

The foregoing observation motivates one of the objectives of this research. A solution

method is to be developed for determining the timewise temperature variation of a non-

internallv-heated solid of high conductance situated in a conducting-convecting fluid
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environment, given the surface heat transfer solution for the same solid but with a

steady, uniform surface temperature. In principle, the method is able to accommodate

arbitrary body shapes.

There are a number of approaches that may be employed to generate the input

information needed to apply the solution method; that is, to obtain the surface heat

transfer corresponding to the condition of steady, uniform surface temperature. These

approaches will be discussed in a later section. In the first section, however, a new series

solution, possessing considerable generality, is presented for problems of steady, uniform

surface temperature.

The second section is devoted to a description of the method for determining the

timewise temperature variation of the non-internally-heated, highly conducting solid.

The method makes use of integral transforms. This section also presents an account of a

highly serviceable numerical inversion technique which facilitates the practical realiza-

tion of the solution. In the last section of the paper, a specific problem is solved to illus-

trate and test the method.

Series solution for steady, uniform surface temperature. Consider a body having

steady, uniform surface temperature T0 ■ At time t = 0, the body is exposed to a laminar

forced convection flow whose initial temperature is uniform and everywhere equal to

. The fluid freestream temperature for all subsequent times is also T„ . The velocity

field is presumed known. For these conditions, regardless of whether the fluid velocity is

steady or unsteady, the temperature field in the fluid about the sphere will undergo a

timewise development from its initial uniform state. In the event that the velocity

field is steady, then, after a sufficiently long time has elapsed, a thermal steady state

is attained in the fluid. It is the objective of the analysis to determine the timewise

variations of the local and area-integrated instantaneous heat transfer rates at the

surface.

To facilitate the analysis, let |, 17, f denote a set of dimensionless orthogonal co-

ordinates (reference length L), such that 77 is directed along the local normal to the

surface, while £ and f lie in the surface y = 0. The local instantaneous fluid tempera-

ture is represented by Tf.(£, 77, f, r), where r is a dimensionless time. The asterisk is

employed to distinguish the case of steady, uniform surface temperature that is now

under study. It is also convenient to define a dimensionless fluid temperature 8f. as

»/.(?, V, f, t) = (Tf. - r.)/(r0 - sr.). (i)

The first step in the analysis is to write the appropriate energy equation. For a

steady, laminar boundary layer flow about a two-dimensional or axisymmetric body and

for steady flow (without boundary layer assumptions) about a sphere or cylinder, the

dimensionless energy equation can be written in the form

1 iry d&f d2df, . , d2df, , . d28f.
~d7 + m'v'f) 77 ~ ~e7~+ 9l(r,) If2' + 9v) "ap"

+ v, t) + g*(£, v, f) (2)

with initial and boundary conditions

Ml, r, 5* 0, r, 0) = 0, *,.({, 0, f, t) = 1, 6,.(S, «, f, r) = 0. (3)

In Eq. (2), the function / includes the Tj-component of the fluid velocity and, depending
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on the particular case, some power of the 77 coordinate which stems from the heat con-

duction term. The functions g, contain velocities and/or coordinates. Evidently, various

of the gj are zero for two-dimensional flow, axisymmetric flow, or boundary layer flow.

The / and <7,- are regarded here as known functions of position.

To initiate the solution, the Laplace transform of the energy equation (2) is taken with

respect to r, with #/,(£, v> s) denoting the transform of the fluid temperature distribu-

tion. Next, to eliminate the term d0r,/d?? from the thus transformed energy equation,

one introduces the $ function as follows:

M*. V, r, s) = ^ r' s) exp fo M, v, r) dr^ , (4)

and with this, the Laplace transformed version of (2) becomes

~2 - [s + h&, m

1 iTr h A \T/ A if/
= 0. (5)+ , 0.G, 17) 0 , MS, 5, f) H , hS, v. r)

In addition, under the transformation, the boundary conditions become

?({, 0, f, s) = 1, ?({, - 0. (6)

The functions A, fej, and are related to the / and g:- of Eq. (2) and can, therefore, be

regarded as known, as can the functional form H.

A series solution of (5) and (6) will now be sought which is valid for large values of s

(large s corresponds to small r). This problem resembles that of the Liouville type [1]

and, correspondingly, an appropriate form for the series solution is assumed to be

n, f, s) = exp (-S1/2v) X 2/.'(£> V, f)s"'/2 (7)
t-0

from which it follows, in conjunction with (6), that

0, f) = 1, yt<£, 0, r) = 0 for i > 1. (8)

The substitution of (7) into (5) and subsequent grouping of terms according to

powers of s yields

2/o(|, v, f) = 1 (9)

where the boundary condition (8) has been satisfied. For the other y* , i > 1, one finds

+ W ( \ ^ Vi — \ /£ \ d Vi — 1 r (i. — l 1 /f. t.\ dyi —
giW-^r , g'Ak, v) sv' at-' j = 0. (10)

Of particular interest to the present study are the derivatives (dyi/drj)vm0, which are

involved in the determination of the local surface heat flux q. These derivatives can be

determined from Eq. (10). Then, by employing Fourier's law, q = —(kf/L)(dT/dri),.0 ,

in conjunction with Eqs. (1), (4), (6), (7), (8), (9), and (10), one obtains

q*L _ _1_ _ f($, 0, f) h(f, 0, r) ,±(dh\ _ A _J_ (dju
kf(T0 — T„) s1/2 2s + 2s3/2 ^ 4s2 Wi.o.r hsl + t/2\dv (ID

i.o.r
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or, after inverse transformation into the time domain,

q*L
-)-<pr~ + *«• °- + 5 -''' ■ <12>k,(T0 - TJ) (ttt) 2 1 4'W/ ' 4Wt.

It can be verified that /(£, 0, f) and /i(|, 0, f) do not contain any convective ingredients

in the absence of surface mass transfer. Therefore, the first three terms are purely con-

ductive, and convection enters in the fourth or subsequent terms.

For later application in the next section of the paper, the Laplace transform of the

surface-integrated heat transfer rate Q = JA q dA is needed. After integration of Eq. (11)

over the surface and introduction of the Nusselt number, there follows

Nujf) = (QJA)(2L)/(kf(To - TJ)

= _2,± f [ J a. A. + JL^"
s1/2 + liJ L S + s3/2 + 2s2 dv.

(13)
dA + 0(s~5/2)

i.o.r

with a corresponding expression in the time domain.

As an illustration of the foregoing, consider flow over a sphere without boundary

layer approximation. For this case, the local heat flux representation (12) reduces to

(with L — r0 , the sphere radius)

 Mn = 1 .-.ggfgV) T+... (14}
kf(T0 - Ta) (ttt)i/2 + 1 16 V dWi.o.r ' 1 j

In (14), Pe is the P6clet number ( = 2raU„/af), r is the Fourier number (= aft/r\), u,

is the dimensionless radial velocity (relative to freestream Um), v = (r — r0)/r0 , and $

and f are the cone and azimuth angles respectively. It is seen that the first influence of

convection is manifested via the wall value of the derivative d2u^/drj2, the magnitude of

which generally depends on surface location. This derivative can be evaluated for the

various flow regimes for which velocity solutions exist, e.g. Stokes or Oseen.

The foregoing solution method was limited to laminar external flows. Provided that

the eddy conductivity for heat is a known function of position, then it appears possible,

in principle, to extend the method to turbulent external flows.

Now that the development of the series solution for the case of steady, uniform

surface temperature is complete, attention can be turned to the main concern of the

paper, that is, solids with time-varying temperatures.

Temperature history of a highly conducting solid. In this section, a solution method

is presented for determining the timewise temperature variation of a solid situated in a

forced convection flow. The method makes use of the heat transfer results corresponding

to the condition that the solid is maintained at a steady, uniform surface temperature.

The temperature history of the solid is controlled by an instantaneous balance be-

tween the conductive-convective heat transfer to (or from) the fluid environment and

the change of internal energy of the solid. It is postulated that the conductance of the

solid is sufficiently high so that its temperature is spatially uniform at any instant of time.

There are no internal sources of heat within the solid. Initially, at time t — 0, the solid

and fluid are at different uniform temperatures, T0 and Ta , respectively. The fluid free-

stream temperature is Ta for all time.

To begin the analysis, dimensionless temperatures are defined as

9.{t) = (T. - T.)/(T0 - Tm), 8XS, v, r, r) = (Tf - T.)/(T0 - T„), (15)
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where T,(t) is the spatially uniform temperature of the solid and Tf(%, r?, f, r) is the

local temperature of the fluid. Temperature continuity at the surface of the solid re-

quires that

9.M = 0, f, r) (16)

for all t > 0.
At any instant of time, the rate of change of the internal energy of the solid is equal

to the rate of conductive-convective heat transfer at the surface, so that

-e--I|(f),./<*■ (17)

in which V is the volume of the solid. When Eq. (17) is recast into dimensionless form,

one gets

^.2 ftajA- f f (jr dA• (I8)dr A JA \d-ri /,.0 LA pjCf

Attention is now turned to the surface derivative of the fluid temperature, dd,/d

and its elimination from the problem. To this end, we note that the temperature 0,(£, rj,

f, t) at any point in the fluid can be represented, via Duhamel's integral, in terms of the

temperature solution v> r) for the case of steady, uniform surface temperature,

that is

0/(£. V, t) = es(\) [#,.(£, jj, r — X)] d\. (19)

The application of Duhamel's integral is well established in heat conduction problems,

but its use in convection problems is much less common. Integration by parts of the

right-hand side of Eq. (19) and application of the condition 0,(0) = 1 lead to

#/(£, V, i", r) = £,.(!, T], r) + #/«(£. v, t — d\, (20)

which satisfies the initial and boundary conditions on 6f . The elimination of 6f and

ddf/drj between Eqs. (18) and (20) yields

(21)

where

- -! L dA ■ (22)

The quantity Nu^(t) represents the Nusselt number for the case of steady, uniform

surface temperature.

Eq. (21) is an integral equation for the time-derivative of the temperature of the

solid. The solution of (21) might be attempted by the application of various available

methods. Here, a different approach, based on integral transforms, is employed. As will

be demonstrated in the next subsection, one of the advantages of the present approach is

that input information on Nu^ (s) (Laplace transform of Nu^ (r)) is needed only for a

discrete number of values of s.
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The basic equation for the new solution method is deduced by taking the Laplace

transform of Eq. (21), which yields

Us) = , . , (23)
VS + SJ\ 11^(3)

where 6s(s) and Nu^is) are the transformed counterparts of 6,(r) and Nu^t). Upon

inspection of Eq. (23), it is seen that the nature of the task of determining 6,(t) is al-

together different from that embodied in Eq. (21). According to Eq. (23), the input

information is fed into the problem in terms of Nu^(s), and the major task is to per-

form the inverse Laplace transform of the right-hand side. The inversion can expediti-

ously be carried out numerically as described later, but in some cases is capable of being

performed analytically. On the other hand, the task embodied in Eq. (21) is the solution

of an integral equation, followed by integration to obtain 6, (r).

Relevant to Eq. (23), it is appropriate to discuss (a) methods for determining the

input function Nu^(s) and (b) methods for inverting the equation in order to find

With respect to the function Nu^s), there are several approaches which appear to

be serviceable. One is to perform a finite-difference solution of the Laplace-transformed

energy equation. Such a transformed energy equation resembles that for steady-state

convection with a heat source proportional to s6f. ■ The numerical solution need be

performed for only a small number of discrete values of s. Another way of generating

Nu%(s) is by a series solution such as that given in an earlier section of this paper.

For solids with relatively small heat capacity (rapid transients for 03(t)), the 9,(r) re-

sults which are deduced from a series input for Nu^is) will cover most of the transient

period. On the other hand, for solids with relatively large heat capacity, the series input

provides a small time solution for

A third approach to obtaining NuAs) is to take

Nu^s) = Nujl.(co)/s (24)

where ArM^.(=») is the steady-state Nusselt number corresponding to the case of steady,

uniform surface temperature. This approach is relevant to the situation in which the

convective heat transfer is essentially quasi-steady. As is shown later, the 6s(r) deduced

by using (24) as input is of satisfactory accuracy over most of the transient period for

solids of relatively high heat capacity and otherwise serves as a large time solution. In

any case, Eq. (24), taken together with the aforementioned series input for Nu^(s),

provides an effective means of establishing the behavior of 6,(t) over the entire transient

period. Finally, in some cases, Nu# (s) may be obtained by an exact solution (see, for

example, [2]).

Attention is now turned to the inverse transformation of Eq. (23) to determine

0,(t). A highly serviceable numerical inversion technique can be utilized for this purpose.

This technique, which is described in the next subsection, appears to be quite promising,

but it has yet to be widely exploited in heat transfer applications. The inverse transform

can be carried out exactly to yield the aforementioned initial-stage and quasi-steady

solutions for a task accomplished in the second subsection. Also, in certain special

cases, the inverse transformation can be performed exactly for all time, as is exemplified

in the last section of the paper.

Determination oj 6,{r) by numerical inversion. If Nu# is a known function of s

then from Eq. (23), 6, (s) is also a known function. The relationship between the known
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0,(s) and the unknown time-dependent temperature 9,(t) is embodied in the definition

of the Laplace transform

0,(s) = f exp (—st)6s(t) dr (25)

Introduction into (25) of a change in the time variable from r to A

r = — a In A/b (26)

along with a new unknown function 9 s which is related to 9, by

6„(t) = b exp (ct)03(&t) (27)

leads to the following:

6,(sb + c) = a f A"'~19s(—a In A) dA. (28)
J 0

In (28), a, b, and c are prescribable real constants selected to facilitate stability of the

solution. Although there exists no theoretical prescription for an optimum choice of

a, b, and c [3], some pertinent observations about their selection, drawn from the authors'

experience, will be given later.

Eq. (28) is an integral equation for 9, . Its solution is found here with the help of the

Gaussian quadrature integration formula. For a preselected number of points N in the

interval 0 < A < 1, the integral is approximated by N terms, each term containing a

known weight w( and known abscissa A,- , where i = 1,2, • • • , N. Experience suggests

that a maximum value of 10 for N is quite sufficient for most applications. The inte-

gration procedure introduces N unknowns, 6 J —a In A,), i = 1, 2, • • • , N. Since one is

at liberty to assign N real values to s, say s,-, j = 1, 2, • • • , N, the N unknown values of

9, are thus found with the aid of N linear equations,

N

9,(s,b + c) = a X) WiA"' 10s( — a In A,), j = 1,2, • • • , N. (29)
i-1

Once the 6, are determined, the dimensionless temperature 0,(t) of the solid is found

with the help of Eqs. (26) and (27).
The authors have inverted numerous functions from the complex s-plane. In all of the

cases investigated, the s,- which appear in Eq. (29) were selected to be s, = 0, 1, • • • , 9.

The constant a, in Eqs. (26) and (29), was taken as one. A numerical value of b was

chosen in order to provide the desired range for r, as calculated from r = —a In A/b

and from the A< of the Gaussian integration procedure. The remaining constant c was

selected by trial and error, in such a way that the 9,(t) results were in agreement for

more than one value of b.

Solutions jor the initial and quasi-steady stages. The series solution for Nu^(s),

Eq. (13), can be used in conjunction with Eq. (23) to generate a representation for 6,{r)

for the initial stage of the transient period. If the l/s1/2 and 1/s terms of the series are

employed, one finds, after inverse transformation, respectively for /(£, 0, f) ^ 0 and = 0,

0,(r) = — [ exp (— x2•>-)[(/(£, 0, f) + vx)2 + 4xTy
* 0 (30)

= exp (4r/p) erfc (2 Vt/p).
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Insights into the range of r for which Eq. (30) is applicable, with particular reference to

the influence of heat capacity, -will become evident during the presentation of results for

the forthcoming example problem.

To obtain the quasi-steady representation, Nu^(s) from (24) is introduced into (23).

This yields, after transformation,

0,(t) = exp [-Nu^(co)t/v]. (31)

Further insights into the utility of (31) will be provided by the example problem.

Sphere in a uniform velocity field. In order to amplify and illuminate the solution

method described in the preceding portion of the paper, application is made to the

problem of a sphere situated in an everywhere uniform velocity field. In the range of low

Peclet numbers, it was shown in [2] that the Nu^t) results from this model are in good

agreement with those corresponding to the Stokes velocity field.

This problem admits an exact solution for the time history 0,(r) of the highly con-

ducting sphere. In addition to those of the exact solution, results for 8,(r) are also ob-

tained by numerical inversion and from the initial-stage and quasi-steady representations.

Comparisons with the exact solution provide insights into the utility of these other

approaches for determining 0,(t).

The initial and boundary conditions for the temperature are the same as those stated

earlier in the paper.

Attention is first focused on the case of steady, uniform surface temperature, for

which the solution is given in [2] for the range of low Peclet numbers. The closed-form

representation for Nu^s), taken from [2] and reproduced here for convenience, is

Nu^s) = i - g ± (- l)"(2n + 1 )ll+1/2[~)KLUsl/2)/K„+l/2(S1/2) (32)

where s = s + Pe2/16. The Peclet number Pe is equal to 2r0Um/af . I and K are the

modified Bessel functions, respectively of the first and second kind, while K' is the

derivative of K with respect to its argument.

Next, consideration is given to determining the exact solution for 0s(r). To this end,

the Nu^(s) of Eq. (32) is introduced into (23), giving

«.(«) = v/(vs + B + S1/2 ± BnKn+3/2(SU2)/K„+1/2(?W2)) (33)

where now

" = (I )(p,c,/pfcf) (34)

and

B = 1 ~ v% ~ Fe to (~!)"(2W + 1)2/Ll/2(?) '

= " <35)

The inverse transform of (33) was obtained by contour integration performed in

the complex s plane. Upon inversion, the result is multiplied by exp ( — PeV/16) to give

0,(t). Since the denominator of (33) possesses a branch point at s = 0, the contour for the

inversion integral does not cross the negative real axis nor the origin. It is a standard
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contour, arising in other applications, and is depicted, for example, by Carslaw and

Jaeger [4, p. 303]. In addition, the denominator may possess, at most, a pole which is

denoted by . If it exists, the pole is of order one and is located on the positive real

axis. Values of Sp and the corresponding residues Res of the right-hand side of (33) are

presented in Fig. 1 as a function of the heat capacity ratio p,c,/pfcf , with the P£clet

number Pe as curve parameter.

The end result of the inverse transformation is

„ . . 2v ( Pe~ \ r . 2 .
8.M = 7 exp r) Jo exp (-x r)

x2 it, BnVn(x)

2
X X £„rn(x)l + f"kx2 — B — x it A"(x)

n-0 J L n-0

(„ Pe2 \
+ Res-exp - — r) ,

-dx (36)

in which r„ and A„ represent expressions which involve the Bessel functions J and F,

that is,

^ \   J n 3 /2 (x) Fn ^l/a(x) Jn+l/2 (x)F„+3/2(x)
r-w j;,„m +  ■ (37)

60 80 100 " 200 400 600 800 1000 2000 4000

ps Cs /pf Cf

Fig. 1. The pole SP and the corresponding residues.
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, / •> Jn+3/2(x)J^l/l(x) + Y„ + 3/2(x)Yn + 1/2(x) + YUM  (38)

Temperature histories, evaluated from the exact solution (36), are plotted as solid

lines in Fig. 2 for parametric values of the ratio p,c,/pfcf ranging from 10 to 4,500 and

for a P£clet number equal to unity. The figure shows that the extent of the transient

period increases significantly as the heat capacity of the solid grows larger relative to that

of the fluid. This trend is reasonable on physical grounds.

The numerical inversion technique described in the preceding section of the paper

was applied to obtain 6,(t) results from Eq. (33). The results from the numerical in-

version, shown as darkened points in Fig. 2, are in excellent agreement with those from

the exact solution. This level of agreement helps to establish the numerical inversion

technique as a viable approach for obtaining results of good accuracy for the tempera-

ture history.

Results for 6, (r) have also been evaluated from the initial-stage and quasi-steady

solutions, Eqs. (30) and (31) respectively. In the first of Eqs. (30), the function /(£,

0, f) = —2, while in Eq. (31), Nu^( <=°) = 2.46 • • • 6, which corresponds to the steady-

state Nusselt number for a sphere in a uniform velocity field with Pe = 1. The initial-

stage and quasi-steady solutions are respectively depicted in the figure by dot-dashed

and dashed lines.

Inspection of the figure reveals that for the smaller values of p,c,/pfcf , the initial-

stage solution provides an accurate representation of 6,(t) over most of the transient

period, and only at the larger p,c,/pfcf is its accuracy limited to the first part of the

transient period. In general, for a given pacjp,ct , this solution is valid for

r < [1.7(psc3/pfcf)]1/2. On the other hand, the quasi-steady solution is virtually in-

distinguishable from the exact solution over the entire transient period when p,c,/pfcf

is large; at the smaller values of pscjprc,, its validity is confined to the final phases of the

100 1000 10000

a,t/r02=r

Fig. 2. Temperature histories for a sphere in a uniform velocity field.
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transient. It is evident that, taken together, the initial-stage and quasi-steady solutions

effectively serve to establish the behavior of 0,(t) over the entire transient period.

Acknowledgment. Fellowship support accorded to N. Konopliv by the Whirlpool

Corporation is gratefully acknowledged.

Refekences

[1] A. Erdelyi, Asymptotic expansions, Dover, New York, 1956

[2] N. Konopliv and E. M. Sparrow, Transient heat transfer between a moving sphere and a fluid, Fourth

International Heat Transfer Conference III, FC 7.4, Paris-Versailles, 1970

[3] R. E. Bellman, K. E. Kalaba and J. Lochet, Numerical inversion of the Laplace transform, American

Elsevier, New York, 1966
[4] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed., Clarendon Press, Oxford, 1959


