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Abstract. Nonlinear systems having the form

x = —Ax + By

y = Cx - j(y),

where dj/dy is a symmetric matrix, are considered. Such systems include the class of

nonlinear reciprocal networks where the nonlinearity is voltage (or current) controlled.

Also included, provided cTb 9^ 0, are the equations of nonlinear feedback systems,

x = Ax + bf(cTx),

considered by Aizerman [1], A type of stability called bounded global stability is con-

sidered which requires that all bounded solutions decay as t —* to the set of equilibrium

points. A necessary and sufficient condition on the linear parts of these systems for their

bounded global stability is given. It is also shown that this condition insures the existence

of at least one stable equilibrium point.

1. Introduction. In 1947, Aizerman [1] stated the following conjecture:

Aizerman's Conjecture. The system

x = Ax + bf(cTx) (1)

is absolutely stable for all f(y), k^ < f(y)/y < k2, if and only if the system

x = Ax + hbcTx (2)

is absolutely stable for all h, fci < h < k2 .
This conjecture stood for eleven years until Pliss [2] in 1958 constructed a counter-

example. A simpler counterexample was constructed later by Willems [3], Thus the

attempt completely to characterize the behavior of the nonlinear system (1) in terms of

its linearized counterpart (2) failed.

In this paper we consider a class of nonlinear systems for which a result similar to

Aizerman's Conjecture holds. These systems were considered by Moser [4] and have

the form

x = —Ax + By ^

y = Cx - j(y)
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where df/dy is symmetric. This class includes nonlinear reciprocal electrical networks

where the nonlinearity is voltage controlled (or current controlled). Such networks have

differential equations with the form

L di/dt = —Ai + av ^

C dv/dt = -aTi - f(v)

where A, L, C and df/dv are symmetric (see [5]). The transformation1

'x\ = \L1/2 0 1IY

-y\ ' 0 C1/2J U_

maps these equations into the form (3).

The differences in the Eqs. (3) from the feedback equations (1) considered by Aizer-

man are that in (3),

(a) f is not necessarily scalar.

(b) No restriction of the form fci < f(y)/y < k2 is imposed.

(c) The type of stability that is considered is that all bounded solutions decay to

the set of equilibrium points.2 Thus more than one equilibrium point is allowed as well

as unbounded solutions. The absolute stability considered by Aizerman required that

all solutions decay to the single equilibrium point x = 0.

(d) A symmetry condition, C(A + iuI)~1B symmetric for all w, is imposed. If / is

scalar this is no restriction.

(e) If i is scalar and b ^ 0 in (1), then (1) can be transformed into (3) by a non-

singular linear transformation if and only if cTb ^ 0. Then f(y) = fiy + cTbj{y) for

some constant /3.

The main result of this paper is

Main Theorem. Given A, B, C, where e~At £ L2[0, <»), and C(A + iwI)~1B sym-

metric for all a, then the following statements are equivalent.

(i) The system (3) is bounded globally stable for all f(y), df/dy symmetric.
(ii) The linearization of (3) with f(y) = Dy is bounded globally stable for all D, D

symmetric.

(iii) For all u ^ 0 and all f ^ 0,

fT(I + C(A2 + c2/)"1^ > 0.

Thus if cTb 0 and no restriction is made on f, then Aizerman's Conjecture is

valid for the type of stability considered in this paper.

The motivation for guessing that (i) and (ii) are equivalent, even in view of the

fact that Aizerman's Conjecture is false, is that in [5] the following two results were

proved.
Result 1. [5, Theorem 3, p. 19.] If [|] < 1, B = —CT, and A positive definite,

then (3) is bounded globally stable.
Result 2. [5, Theorem 6, p. 30.] If B = —CT, A symmetric, and f(y) = Dy,

D symmetric, then any nonreal eigenvalue X of

1 L and C are positive definite.

2 This type of stability will be called bounded global stability in this paper.
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'-A B
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with eigenvector (*) must lie on the circle

|X|2 lA-'xl2 + 2 Re (Vx'A-'x = {A^By? - |x|2.

Further if ||A_1jB|| < 1, then this circle must lie in the plane Re (X) < 0.

Thus the condition ||A~\B|| < 1 which guarantees bounded global stability for the

nonlinear system also guarantees that the eigenvalues of the linearized system can

never be purely imaginary. That this is the same condition suggests that our main

theorem might be valid.

The proof of the main theorem is given in Sec. II. In Sec. Ill, this result is applied

to nonlinear reciprocal networks and it is shown that (i), (ii), and (iii) are also equivalent

to

(iv) the linear 'part of the network, as viewed by the nonlinear part, appears capaci-

tive at all frequencies.

In [4], the condition (iii) was given by Moser and shown to be sufficient for bounded

global stability.
In Sec. IV we show that this same condition implies that there must always exist

at least one stable equilibrium point of the nonlinear system (3). By constructing an

example where the capacitive condition (iii) fails and where the nonlinear system has

three equilibrium points which are all unstable, this condition is shown to be necessary.

II. Proof of main theorem. It is clear that (i) implies (ii) since the case f(y) = Dy

is included in (i).

To demonstrate that (ii) implies (iii), we assume that (iii) does not hold. Then there

exist f 0 and to 0 such that

P(J + C(A2 + u2iylB)S < 0.

Since as oj2 —» I + C(A2 + ca2I)~1B becomes positive definite, there must exist

o)2 > «2 such that

det (J 4- C(A2 + u?I)~1B) = 0.

Here we have used that C(A2 + is symmetric since

Im C(A + icoiy'B = -tcC(A2 + o>7)-\B.

Let <p be the zero real eigenvector, i.e.

(/ + C(A2 + tflY'B)? = 0.

Let D = C(A + w2A~1)~^B which is symmetric since

Re C(A + iuiylB = C(A + ^A^y'B.

Then the system

x = —Ax + By, y = Cx — Dy,

which is the linearization of (3) with f(y) = Dy, has a nonconstant periodic solution.

This follows since it is easily computed that
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■A B

C —D

(A + i&T) lB<p
= 10)

(.A + ia>D~lB<p

i.e. the matrix (c-zD has a purely imaginary eigenvalue. Thus a linearization exists

(with D symmetric) which is not bounded globally stable.

To prove that (iii) implies (i), we use the following result of Moser [4].

Lemma (Moser). Assume that e~At £ Z/2[0, c°) and CA~lB and df/dy are sym-

metric. If there exists a 8 > 0 such that

ra + c(a2 + w2/)-i5)r > «?rr (5)

for all ^ 9^ 0 and all «, then any bounded solution y(t) of (3) has y(t) £ L2[0, °°), and y{t)

approaches the bounded part of the limit set of the system z = f(z) — CA~1Bz.

In fact, in the result given by Moser it is assumed that the function G{y) = /" f(y) dy

— %yrCA~1By has the property that G(y) —> c° as |?/| —» <». However, it is easy to see

that this is only used to obtain boundedness and is not necessary if the boundedness

of y can be obtained by some other means or is assumed as in the lemma as stated above.

Now assume that (iii) holds. This is equivalent to (5), since + frC(A2 + o!27)_1Bf

is continuous in w2 and approaches f as co2 —> co. Since C(A + iwI)~1B is symmetric

for all <a, then CA~1B is symmetric. Using Moser's lemma, any bounded solution y(t)

approaches the bounded part of the limit set of the system z = f(z) — CA~*Bz. The

function

L{z) = - f f(z) dz + \zTCA-'Bz,
J 0

satisfies dL/dt = — zTz < 0; hence, L(z) is a Liapunov function in the sense of LaSalle [6],

The set z where dL/dt = 0 is the set where z — 0; i.e., f(z) = CA~1Bz. Hence, by LaSalle's

theorem [6], y(t) approaches the set of points y where f(y) = CA~1By. From (3) we have

x(t) = e~*'x(0) + A~1By{t) - A"e~A'By{Q) - [' A~xBy{T) dr.
Jo

Since y £ L2[0, =°) and e~Ai £ L2[0, °°) the integral must approach zero with t —» <»

and, hence,

lim x(t) = A~lB lim y(t).
t—»co t—»a>

Thus x —* 0 as t —» , and

lim y = lim [Cx — f(y)] = lim [CA'"By — f(y)] = 0.
<—»00 t—»co t-* CO

Hence, any bounded solution of (3) approaches its equilibrium set. Q.E.D.

Note that condition (ii) does not rule out eigenvalues of (c-d) in the right half plane.

In fact, since D is arbitrary, it is always possible to find a —D large enough which makes

the above matrix unstable. If we call this matrix M(D), the condition (iii) is the require-

ment that the only way the eigenvalues of M (D) can cross from the left-halfplane to the

right-halfplane is through the origin (see Fig. 1).

III. Reciprocal networks and the capacitive condition. Now we shall see how

reciprocal networks fall into the domain of our main theorem. Let L, Cl , C2 be positive

definite symmetric constant matrices. We assume that the nonlinearities are controlled
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Fig. 1. Eigenvalues as functions of D.

by the voltages v2 and enter only in the v2 equations. Thus, the equations of motion are

L di/dt = — Axi + y{ox + y2v2 ,

Gi dvjdt = —y— y3v2 ,

C2 dv2/dt = —yT2i — y\vl — g(v2), (6)

where L, Cj , C2, Ax , Bl and dg/dv2 are symmetric. We have neglected constant terms

which can be removed by translating i, v1 , and v2 . Using the transformation

71/2 j ~

X = y = CY2v2 ,
LCJ/2

we have the system (3), where A - —JMi , B — JM2 , C = M\ and
r

j =
~Ir 0

0 I,
Mi =

L~1/2A1L~l/2 -L"1/27lCr1/2

I-C\U2y\L~"2 C^B.C:

M = c;1/2g(c:l/2y), m2 =

1

-!/2 , n-vAL~wy&

CT1/2y3C71/2.

Here, r and s are the dimensions of i and . Note that M1 and df/dy are symmetric.

To apply our theorem, we have to check that C(A + iwI)~1B is symmetric for all w.

But this is

+ iujy1M2 ,

which is symmetric since Mt and J are symmetric. Then if eJMlt £ L2[0, °°),3 we have

bounded global stability if and only if

+ !tMt2(M1JM1 + u*J)-xM£ > 0 (7)

for all f 0 and cj.
This condition has a network interpretation in terms of reactive power. In (6) replace

g(v2) by —7(f) where lit) is periodic with period w. If (6) then has a periodic solution

with period «, we can take the Fourier transform of (6) and solve for F(F) in terms of

F(V2)(F( ) denotes the Fourier transform). Computing the reactive power, we have

Reactive Power = (l/«) Im F(v2)F(I)

= -F(v2)CY2[I + Mt2(M1JM1 + u2J)-1M2]C12/2F(v2).

3 This is really no restriction for physical electrical networks with positive resistors since it is

equivalent to the system (6) being stable for v2 a constant.
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Hence, the condition (7) is simply that the reactive power is negative for all w. In other

words, if we look into the linear part of the network through the ports that are connected

to the nonlinearities, the network appears capacitive.

This result agrees with a well-known situation. Suppose we have a reciprocal network

with no inductors, only capacitors and resistors. Then the equations are [5]

C(v) dv/dt = dP/dv. (8)

Clearly, P(y) is a Liapunov function and, hence, we have stability in the sense of

LaSalle [6]. Our theorem says simply that if the network appears capacitive to the non-

linear resistors, then the situation is analogous to (8), and there exists no other situation

in which we can have a stability condition independent of the nonlinearity.

Finally, we specialize Theorem 2 to the case described in [5, Theorem 3, p. 19], and

restrict L{i), C(v) to be constant positive symmetric matrices. Then J = — I, and (7)

becomes

frf - + co'ly'Mj > 0

where is symmetric and positive definite. Since + u2I)~1M2£ takes its

maximum at co = 0, the requirement is that

lIMr'M.n < l.
Since M1 = L~U2A1L~1/2, M2 = ~L'l/2y2C~21/2 this condition is

\\LU2A:ly2C-Ui\\ < 1,

which is the condition given in [5, Theorem 3, p. 19]. Therefore, this condition is necessary

and sufficient for bounded global stability when L and C are constant.

The condition C(A + iuI)~1B symmetric can be interpreted as the requirement

that the linear part of the network at the nonlinear ports appears reciprocal. Thus the

network can be allowed to have nonreciprocal components as long as they do not appear

nonreciprocal to the nonlinear ports. Note that if there is only one nonlinear port,

then this condition is automatically satisfied since then C(A + iwiy^B is a scalar.

Hence, any network {reciprocal or not) with only one nonlinearity is bounded globally

stable if and only if all linearizations are bounded globally stable.

IV. Conditions which guarantee at least one stable equilibrium point.

Theorem 2. There always exists at least one stable equilibrium point for the equa-

tions (3) under the assumptions that

(i) df/dy, and CA-1 B are symmetric,

(ii) So Ky) dy - iyTCA~lBy -* «> as \y\ -» ®,
(iii) f rf + ?rC(A2 + co2I)~lBS > 0 for f ^ 0, w M 0, and
(iv) e~At £ L2[0, co).

Remark. This theorem would seem to be necessary, since under these assumptions

Moser [4] showed that all solutions of (3) were bounded and decayed to the equilibrium

set. This is probably not possible if there are no stable equilibrium points.

Proof. Let G{y) = f(y) dy — \yTCA'1 By. Then the equilibrium solutions of (3)
necessarily satisfy the equation dG/dy = f(y) — CA~lBy — 0. Since G(y) —> ® as

\y\ —> co, G(y) must have a minimum. At this minimum, say y = ya , we have that
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Fio. 2. Equilibrium points.

(df/dy)(y0) — CA~1B is positive semidefinite. Therefore, all of its eigenvalues are > 0.

Let D0 = (dj/dy)(y0). Now we will show that the matrix

M(D) =
— A B

C -D

for D = D0 has all its eigenvalues < 0, which will prove the theorem.

From assumption (iii) and the first theorem, we know that M (D) has no purely

imaginary eigenvalues. The only way eigenvalues of M(D) can cross over from the

left-halfplane to the right-halfplane as D varies is that the eigenvalue pass through the

origin. But the matrix N(D) = D — CA~lB has a zero eigenvalue if and only if M(D)

has a zero eigenvalue since

det M(D) = det (-A) det (-D +

and A is nonsingular.

Further, for D very large, M(D) has all its eigenvalues in the left-halfplane. We let

D = D0 + al. The eigenvalues of N(D) as functions of a can only pass from left to

right through the origin as a increases. This can be seen by the following argument.

Let {Do + al — CA~1B)y = \y where X and y are real since (D0 + al — CA~1B) is

symmetric. The derivative with respect to a yields

(D0 + al — CA 1B)ya + y = \ay + \ya .

Evaluation at any a0 such that X(a0) = 0 yields

(D0 + a0I — CA 1B)y0a + y0 = X0a2/o

Since yT0(D0 + a0I — CA^B) = 0 we have yToy0 = \0ay o2/o i-e. X0a = 1 > 0. Hence,

since N (D0) > 0, then N (D0 + al) > 0 for a > 0.

Now suppose that M (D0) has an eigenvalue X with Re X > 0. Since M(D0 + al) < 0

for a large erough and M(D0 + al) can have no purely imaginary eigenvalue, then
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there must exist a > 0 such that det M(D0 + &I) = 0. But then det N(D„ + &I) = 0

which is a contradiction. Q.E.D.

It is interesting that if assumption (iii) is not imposed, then the conclusion of Theo-

rem 2 can be false. The following example illustrates this:

x = — ax + by, y = cx — f(y),

where x and y are scalars. The equilibrium is given by (cb/a')y = f(y). Choose a > 0

and cb < 0 so that cb + a2 < 0. Let f(y) be such that /'(0) = d0 and f(±ye) = (±y,

are the other equilibrium points as shown in Fig. 2) where d„ < cb/a < di < —a. One can

easily compute that the matrix (associated with the linearization at ±ye) (7° -dj has

two positive eigenvalues and the matrix (associated with y = 0) (~a td„) has one positive

eigenvalue. Hence, all three equilibrium points are unstable. However, if the condition

1 + c(a2 + u2)~1b > 0 of Theorem 2 were imposed, i.e. a2 + cb > 0, this situation could

not happen.
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