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Abstract. Differential-operator representations for the scattered field were given

by Twersky [1], [3], [4], and Burke, Censor and Twersky [2], Essentially, from the data

provided on a circle (in two dimensions) or a sphere (in three dimensions), the field may

be reconstructed for arbitrary distances.

Presently reconstruction of the field is considered from data provided in other regions

of space, e.g., on a ray for the two-dimensional case. These representations facilitate

the investigation of velocity-dependent scattering by collecting the data near the path

of the moving object.

Introduction. The time-harmonic two-dimensional scalar scattered field is given,

e.g., in terms of the special functions representation,

u(i, t) = ± imAmHm(kr)eim*~iat, r > p. (1)
m— — ca

where Am are coefficients, Hm(kr) = H'^ikr) is the Hankel function of the first kind of

order m, and p is the radius of the circle circumscribing the scatterer. Twersky [1], and

Burke, Censor and Twersky [2] (who give a comprehensive review of earlier relevant

results by Sommerfeld, Wilcox and Karp), recast Hm as an asymptotic [1] or an exact [2]

series in powers of m2, and replace it by a differential operator acting on g{<f>), the scatter-

ing amplitude

g(4>) = ± Ameim*. (2)
m= — oo

Thus to obtain the asymptotic representation Hm(kr) is replaced in (1) by the series

H(kr) £ (1 ~ 4m2)(9 - 4m2) • • • ([2» - I]2 - 4m2) _ _m2), (3)

V f=i (i8kr)"v\

H(kr) = (2AVfcr)vV'ir,

and it is noted that

(m2 - dl)eim = 0. (4)

Consequently (1) can be represented by

u ~ e-<ut DQcr; (5)

* Received December 23, 1969; revised version received May 30, 1970.
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If H(kr)g(4>) is known, i.e. if the far-zone field is specified, then by means of (5) higher

powers of 1/fcr might be obtained for nearer regions.

The exact representation [2] is given by

u = [H0(kr)(Regc + R'0 g0) + #1(fcr)(.Ko£'o + R'e g.)]e"°',

9c = h[g(<t>) ± gfr + <A)],

P _ i _ dV + 4) , d2(<32 + 4)2(d2 + 16) ,

2(2p)2 + 4! (2p)4 +

(6)

J>, = d± _ 2 + 4)2 . a;(32 + 4)2o2 + 16)2

' 2p 3! (2pf ^ 5! (2pf " '

p//- d2 +1. (d2 + 9)(d2 + l)2 Q2 + 25)Q2 + 9)2Q2 + l)2
o/i 2p + 3! (2pf 5! (2pf + '' * •

p A- - i _ (d2 + D2 , + 1) (*2 + 9)2 .
o/ 2(2p)2 4! (2p)4 + '

6 - d/d</>, p = /cr.

For three-dimensional vector waves Twersky [3] obtains a dyadic differential operator,

u = e-""h(kr)$)(kr;

S(fcr; D) = £ 25-(5 - 1 • 27)-(Z5 - 2-3/) • • • (5 - [„ - 1],I) ,

h(kr) = eikT/ikr,

D g = + 2<?r + [39(sin ^9) +

+ + sJ g [gB + 2 cos 0d^] - 2d0gr

+ ~ [~g* + 2 cos dd+ge] - -r^ , (7)

I> = — siJ. e [d« + sin 039(sin 0d9)],

where I is the idemfactor dyadic. For the Cartesian components of g, D reduces to DI,

where D is the Beltrami operator; hence (7) contains the three-dimensional scalar case

given before [4].

Two dimensions. Using the same approach, consider the two-dimensional problem

of reconstructing the scattered field from the data given on a ray <j> = 0. For the even

part of the field we write

u. = [u(4>) + u(—4>)]/2 = e"'"1 X imAmHm(kr) cos m<t>. (8)
771

By means of Bessel's differential equation, which is satisfied by Hm(kr), a differential

operator is defined,

BrHm = [kr dkr(kr dkT) + kY']Hm(kr) = m2Hm . (9)
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This operator Br may replace to2, and since it is independent of to, it can be taken

outside the summation symbol. Now recast cos m<t> in powers of to2; this yields

u.
V- I", , toV ,

= e 4. L ~2T + _ir+

flBr+llB' +

im A mHm

(10)

= e "" De(Br ; 4>)u 0=0

where B; = BrBr etc., w^.o is the field measured on <j> = 0.

The derivative with respect to <f> of the odd part of the field again involves cos m4>

dtUo = dt[u(<j>) — u(—<t>)]/2 = e~'"' Z imHmAJrn cos m<t>. (11)
m

Therefore, similarly to (10),

= e~io" D.(Br ; 4>) Z FHmimAm = e~iut D,(d*u) U . (12)

Writing

D. = a4(</» - ^ + •••) = a, D0(Br ; 0), (13)

and integrating both sides of (12) with respect to 4> between the same limits yields

Wo = e~"" .Do(-Br ; 4>) (d*w)|*-o • (14)

Consequently, in order to find u0 it is necessary to measure on 4> = 0 d^u; for u, the

field itself suffices. Summing up, we have,

u = u, + u0 = e~""[D.(Br ;4>)u|,4-o + D0(Br ■ <t>) (fyi)L-o]. (15)

Three dimensions. The solution of the scalar scattering problem in three dimensions

U= Z Z inanmK(kr)P:(coseym*-"", (16)
n—0 m——n

where hn , P™ denote spherical Hankel functions and associated Legendre polynomials,

respectively. The analogue of (9) is obtained by defining an operator Br,} acting on

h„(kr)P™(cos 6),

Br,e = sin2 OdT(r2 dr) + sin 0d«(sin 9de) + fc2r2 sin2 6 = to2, (17)

implied by separation of the scalar wave equation in spherical coordinates. Similarly

to (15) we get

u = u, + M0 = e~'"'[De(Br,e ;^>)w|#_o + D0(BrJ ;4>)(d«u)b-0 • (18)

The Cartesian components of the electromagnetic field vectors satisfy the scalar wave

equation, hence for vector waves substituting u for u in (18) yields the desired repre-

sentation.

Consider now the case of scalar scattering by an obstacle rotationally symmetric

about the direction of incidence of the exciting plane wave. For this case the scattered

field is given by
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u = X i"AnPn(cos d)K{kr)eial ■, (19)
r.-O

i.e., there is no dependence on <j>. We define a spherical Bessel operator analogous to (9)

acting on hn(kr):

Ar = fcV d2kr + 2kr dhT + fcV2 = n(n + 1) = d. (20)

The Legendre polynomials P„(cos 6) may be written (e.g., see Hobson [5]) as a series

in powers of d,

n / , d . 2 e , d(d — 1-2) . 4 e ,
Pn(cos 0) = 1 - tt^-2 sin ^ H  sin r + • • •

u-; - w z (21)

= + 1, -n; 1; sin2= E(d; 0).

It therefore follows that

w = e-*"!£'(vlr ; 6) X) inAJin(kr). (22)
n= 0

But P„(l) = 1; hence the sum in (22) is the value of the field on the ray 6 = 0,

u = e~'"'E(Ar ; 6)u\e.o . (23)

Therefore, by means of (23) the field at an arbitrary point may be reconstructed from

data provided on the line 0 = 0, i.e. the direction of incidence. Obviously the method

fails for 0, which vanish at 6 = 0. Indeed, we could not expect to learn about

a field depending on the azimuthal direction from that on 6 = 0, where the angle 4> is not

defined.

Another possible arrangement is to provide the data on the plane 6 = t/2. For this

case we exploit the representations [6]

pm -(—
#)'

„/2 1 • 3 • 5 ■ ■ ■ (n 1)

2-4 ■■■ n

[\ d 2 , d(d — 2-3) 4 d(d - 2-3)(d - 4-5) 6 ,
"L1 ~ 2!m + 4! M 6! M + '"J

- (-1 Tn 1-3'o V (U ~ !) G-(d' *)• (24)
2-4 ■■■ n

for even n, and

Pniv) (1) (n — I V \ 2 '2 '2,m/

/ -|\(n-i)/2 3 • 5 ■ • • n [~ (d 1*2) 3 (d 1-2)(d 3-4) 5
= (_1) 2-4 ••• (»-l) LM_ 3! M + 5! " J

■ (-')"-"/,2.43:5:(»" d^d, pa
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for odd n. From (24), (25) it is clear that P„(m) for odd n vanishes at 9 = ir/2, while

the even order functions exist, and vice versa for d^P^n). Upon writing (19) as

u = u. + u0 (26)

where u„ contains P„ of even order n, etc., we get

u. = Ge(Ar ; e) Z i"AMkrK-lT/2 X'Z'\ (n ~ 1}
n-0 ' * * 71

= Ge(Ar ; 0 17. (27)

= [l - cos2 0 + Ar(Ar47 2'3) cos4 *-•■•]« \,.r/a , n = 0, 2, 4, • • • .

Here = wls-,/2 has been used. Similarly

Wo = g0(at ■ 6) ErA„w(-D("-I,/!2.43"5. "(n"^ d

= (?o(-4r ; 0)(d,,Wo) \e-T/2 (28)

f „ (Ar -1-2) 3„, (A, - l-2)(Ar - 3-4) 5„ "1,. \ i
= cos e — -—gj— cos e +—  cos e — • (dM«) |s.r/2

n = 1, 3, * • • .

Finally, using the fact that — de/sin d - 3„ = — de at ir/2, we have

u = G.(Ar ; 9)u\e-T/i - Go(Ar ] d)(deu)|4_r/s . (29)

Hence from the knowledge of u and dgu at 6 — x/2 the field may be reconstructed for

arbitrary points in space.

The general solution of the scalar wave equation in spherical coordinates is given

by (16) where

p:(m) = (i - M2)m/2<p„(M). (30)

The representation of sin™ 6 as a series in m is too complicated to be practical; therefore,

instead of pulling sin™ 6 out of the double summation sign (16), the data will be first

Fourier-analysed with respect to em*. Accordingly one isolates um for a certain index to,
CO

um = X inAnv,hn(kr)P™ (cos 0)e~iat. (31)
n— 0

Now by differentiation of Ge(d; 6), G0(d; 6) with respect to p.. The operator equivalent

to PZ is obtained. Thus, for example, by differentiating in (24) Ge (d; 0) m times, where

m is even, say, we get

dZGXd) B) = (-l)"{[d - (to - 1)(to - 2)}[d - (to - 3)(to - 4)] • • • (d - 2-3)d}
2 4 1

l — 2! — m(m + !)] + f; ~ m(m + 1)]M ~ (to + 2)(to + 3)] - • • • j , (32)

but the operator Ar is substituted for d only in the second braces (32); the expression in

the first braces is left within the sum (31). By subjecting G0(d; 6) of (25) to the same

process and noting that for to = even the structure with respect to is preserved, we

can write by inspection
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um = G{:\Ar ■ e)um |e.,/2 - G['\At ■ 6){deUm) |,„

G[e) = sin" 6< 1
Ar — m(m + 1)

2'

[Ar — m(m + l)][Ar — (m + 2){m + 3)] 4 k
+  n ~ ■■■(, (33)

Ar — (to + l)(m + 2) 3
Go = sin™  1 Tj7 m'

[Ar — (to + l)(m + 2)][j4r — (to + 3)(m + 4)] 5
+ " " -

where the superscript (e) denotes that m is even. In particular for m = 0 we have (29)

once again. For odd m, differentiating Ge and Ga , (24) and (25), respectively, and dis-

regarding operators common to all terms in a series (these are left inside the summation

sign, as before), we get

Gl0) = G(0'\ Go0) = G['\ (34)

Consequently for both m odd and even the first line of (33) applies. The case m = 1

is of special interest for scattering of a plane electromagnetic wave, when d = 0 is chosen

as the direction of incidence, as for example in the problem of the sphere [7]. Again, the

Cartesian components of the electromagnetic fields satisfy the scalar wave equation;

therefore in (33) um can be replaced by the vector function um .

Application to velocity-dependent scattering. Scattering of electromagnetic waves by

arbitrary objects moving uniformly in free space has been considered by Censor [8, 9, 10].

Consider the case of a cylinder of arbitrary cross-section, at rest in frame of reference r'.

The incident plane electromagnetic wave is defined in the observer's proper frame r.

Observed from r, frame r' is seen to move with velocity v = vx (i.e., in direction <j> = 0).

Thus in r", similar to (1), the scattered field is given by

«'(r', n = A' f:
TO — — 00

x' = y(x - vt), y' = y, z' = z,

V = y(t -f), 7 = (1 - V = v/c,

where c is the velocity of light in free space, and

T-Z-I-*1-"*"'' <36)

describes the transformation of the amplitude, frequency and propagation constant

respectively, of the incident wave, whose E or H field is polarized parallel to the axis of

the cylinder. Here a. is the direction of propagation of the incident wave in r.

The scattered field measured in F but still expressed in terms of r' coordinates r', t'

is [8]

= A'y X imCmHm{kY)ei^-ia',\
mm.—CO \0 I )

Cn = Am + p (A m + 1 + Am.,)/2.

(35)
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From the fact that (37) and (1) have the same structure, it follows that if dtu|0.o , u\^.a

are expressed in terms of I" coordinates r', t', then (15) is valid in terms of DJBr, ; $'),

D0(Br■ ; <t>'). Hence this representation is very convenient for velocity-dependent problems,

since by using one probe at rest on <j> = 0 and measuring the field in r as a function of

time, we get the same information gathered by an array of probes along <j> = 0 in T'.
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