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1. Introduction. Mann and Wolf [6] proved the existence and uniqueness of an
initial boundary value problem of a one-dimensional heat equation with zero initial
temperature and nonlinear second boundary condition. Their result was improved by
Roberts and Mann [9], and later on by Padmavally [8]. Using Schauder’s fixed point
theorem [10], Friedman [2] considered an n-dimensional linear parabolic differential
equation with linear initial condition and nonlinear boundary condition involving the
conormal.

We use a completely different approach to establish the existence and uniqueness of a
solution for a nonlinear second initial boundary value problem consisting of a semilinear
parabolic differential equation with linear initial and quasilinear boundary conditions.
The arguments, similar to those of Duff [1] for the elliptic case, give the solution by
successive approximations; in each step of the construction, we make use of the solution
of the corresponding linear problem. The method can be used for the more general
parabolic differential equation,

> %u z du du
MZ_I aii(x) t) oz, ax,- + ‘Z_; a.-(x, t) dz; + C(I, t)u - at - g(x; tru):

since for this the strong maximum principle [7] holds, and the Neumann funection exists
[3, p. 155, 4, 5] under certain conditions on the coefficients and the domain of definition.
For simplicity of discussion, we consider here an n-dimensional semilinear heat equation.

2. Statement of the problem. Let D be a bounded convex n-dimensional domain
in the real n-dimensional Euclidean space, D~ its closure and 4D its boundary. For
every point z = (x,, Zz, - *- Z,) of 4D, there exists an n-dimensional neighborhood V'
such that V M 4D can be represented for some ¢z (1 < 7 < n) in the form

xi=h(xl}x2} Tty Tie1y Tisa "’)xn)

and the functions A, D.h, D?h are Hélder continuous of exponent a where 0 < « < 1.
Let D X (0, T] = ©,0D X (0, T] = S, and
~3 9
L=2o o
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Our problem is to find u(z, f) satisfying the semilinear heat equation

Lu =gz, t;u) inQ (2.1)
under the initial condition
u(z, 0) = ¢(x) on D~ (2.2)
and the quasilinear boundary condition
ulz, 1) + Bz, t;u) = f(z,f) on S, (2.3)
M.ty

where ¢g(z, t; w), ¢(x), Bz, t; u) and {(z, t) are given functions, and 7, is the outward
normal to S at the point (z, {). We impose the following conditions:

(i) g(z,t; w) is twice continuously differentiable; g.(z, {; %) is Holder continuous when
(z, ) € Q" and w varies in a bounded set;

0< gz t;u) < = (2.4)

and
g9(z, t;0) = 0; 2.5)

(ii) ¢(z) is continuous in D7;
(iii) B(z, t; u) is twice continuously differentiable when (z, {) € S~ and « variesin a
bounded set; moreover

B,(x, t;u) >0 (2.6)

and
B(z, t;0) = 0; 2.7)

(iv) J(z, t) is continuous on S~.

For n = 3, the problem can be interpreted physically as finding the temperature
u(z, t) of a convex, sufficiently smooth, homogeneous and isotropic body having an
arbitrary initial distribution of temperature ¢(z). Heat is generated in it at a rate pro-
portional to —g(z, t; u), which is a nonincreasing function of % (condition (2.4)) and
satisfies (2.5). Heat transfer between the body at a higher temperature and its sur-
roundings at a lower constant temperature [6, pp. 163-164] is subject to a nonlinear
condition (2.3). Thus f(z, t) — B(z, t; w) is a monotone decreasing function of u (con-
dition (2.6)) [6, pp. 163-164]. If f(z, t) = 0 on S~, then (2.7) implies that the temperature
of the surroundings is zero [6, p. 164].

The main result of this work is the following theorem.

TeHEOREM. There exists a unique solution of the monlinear second initial-boundary
value problem (2.1)—(2.3).

In Sec. 3, we consider three auxiliary lemmas. The proof of the theorem is given in
Sec. 4. If conditions (2.5) and (2.7) are replaced by ¢(z, t; m) = 0 and B(z, {; m) = 0
where m is a constant, then (4.1) is replaced by

u(z, 0;\) — m = Ne¢(z) — m) onD".

Accordingly, we make the corresponding changes in the existence proof; for example,
we start with

Uz, t; N) = u(z, t;0) = m
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in the successive approximations. In effect, the procedures of the proof remain the same.
3. Auxiliary lemmas. Let L. = L — ¢(x, t), where ¢(z, t) > 0 and ¢(z, ¢) is Holder
continuous in Q7. Also let

B, = (D X [0, T) N {t=r}
Q* =D X [0, T), and

Vs = —— 4 8z, 0

Mz, 1)

where B(z, ¢) is a continuous function on S~. To define a Neumann function, we follow
Friedman [3, p. 153].

Definition. A function N(z, t; & 7) defined and continuous for (z, ¢; & 7) € Q7 X Q¥,
t > 7, is called a Neumann function of L.w = 0in Qif for any 0 < 7 < T and for any
continuous function ¢(x) on B, having a compact support, the function

wiz, 1) = f NG, ¢, D@ dt

is a solution of L,w = 0 in D X (7, T] and satisfies

lim w(z, t) = () forz € B, ,
tlr

and Ysw(z, t) = 0on 8D X (r, T

Let N*(z, t; & 7) denote the Neumann function of the adjoint equation L¥w = 0
in Q* corresponding to the boundary condition ysw = 0 on 6D X [0, 7). By Friedman
[3, p. 155, pp. 82-84] and Itd [4], N(z, t; & 7) and N*(z, t; £ 7) exist and are unique,
L.N(z,t; & 1) = 0for (z,t) € Q, LAN*(2, t; £, 7) = Ofor (z,8) € Q% YsN(z, t; 5 7) =0
for (z, ) € aD X (7, T], ¥sN*(z, t; £, 7) = Ofor (z, t) € aD X [0, 1), and furthermore,
N(z, t; & 1), N.(z, t; & 7), N..(z, ¢; & 7) and N,(z, ¢; £ 7) are continuous functions of
(@t &7)inQ X Q% t > 7 while N*(z, t; £, 1), Ni(z, t; £ 7), NA(z, ¢; £ 7) and N*(z, ¢;
¢, 7) are continuous functions of (z, ¢; &, 7) in @* X @, ¢ < . The Neumann function can
be constructed by the parametrix method used by It6 [4, 5].

Let N(z, ¢; £, 7) be the Neumann function corresponding to the case when ¢(z, t) > 0
and B(z, ) > 0, and N°(z, ¢; £ 7) be that corresponding to the case when c(z, t) and
B(z, t) are identically zero. Then,

LemMa 1. N(z, 8 & 7) < Nz, t; ¢ 7).
Proof. In the Green’s identity,
2y fe ( du B )} 3
— ul*y = 2 ow o\ 9
vLau — uL* ; oz, {’ZX v oz, u oz, Y (w),

let u(y, 0) = N(y, 0; ¢ 7) and v(y, o) = N*(y, o; z, t). Integrating this over the domain
D X (r 4+ ¢ t — ¢ and letting ¢ — 0, we have by the boundary condition

N(z, {; & 7) = N*(¢ 2, 0) (3.1)

for any two points (z, t) and (¢, 7) in @ with £ > . An argument similar to the proof of
Theorem 11 of Friedman [3, pp. 44-45] gives for each (¢, 7) in Q%,

N(z,t;¢,7) >0 inD X (r, T]. (3.2)
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From this and (3.1), it follows that

N*(z, t; ¢, 7) >0 inD X [0, 1) (3.3)
for each (¢, 7) in Q.

Let Ny(z, t; £ 7) be the Neumann function of L.w = 0 corresponding to the boundary
condition Y, N\(z, t; £ 7) = 0, where Az, {) > 0. Then the Green’s identity gives

N, ti5, 1) = N, 56,0 = = [ [ N3, 032, 0Nw, 0,8, 7
° {>‘(y) o) — B(yy 0')} dAv do—; (3'4)
which gives
NG, ti,) = = [ N, 032, 0N@, 76 ) 88y, o) A4, do. (3.3
T D

Similarly, let N,(z, ¢; £, 7) be the Neumann function of L,w = 0 corresponding to
Ysw = 0 with b(z, t) > 0. Then

Nie, 65,1 — N, t:6,79) = — [ [ N1, 052, 0N, 038, 7)
T D
: {b(y> ‘7) - C(y) 0')} dV:« do': (3-6)
which gives
NG, 8,1 = — [ [ N, 012, ONW, 035, ) &y, o) dVudo.  (B7)
T D
Thus from (3.2), (3.3), (3.5) and (3.7), N(z, t; £, 7) < N°(z, t; & 7) follows.
In what follows, let &, , k., , ks, - - - , k,; denote appropriate positive constants. For

convenience of reference, we state the following lemma, whose proof can be found in
Friedman [3, p. 146].

Lemma 2. If w s a solution of Law = 0in Q, Yyow = f(z,t) on S and w(z, 0) = ¢(z)
on D7, then for all (z, t) € Q,

[u, O] < k(b lfl + Lub. s,

where k, is a constant depending only on L. , 8 and Q.

LEMMma 3. Let
! 0 0*
PGz )=k [ [ NG ok ING, 02,0 dV, do
T D
+ ka f f No(y; g, £ T)NO'(Z/) 0,7, t) dAu do.
T aD
Then

[ o0z 0ave+ [ [ o6 iz nddear <k,
D 0 -2

where k, is independent of (z, t).
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Proof. Let L* be the adjoint of L. It follows from the Green’s identity that
6*(§, 7; z, t) is the solution of

L*¢*(¢, 732, 0) = —kN*(¢, r;2,8) in D X [0, ¢),
0*¢, 2, t) =0 on @ N {t = t},
and

% .
90*¢E, 737, 8) _ kN, 752, ondD X [0, 1).
an(g,r)

Let w(z, t) be the solution of Lw = 0 in Q, w(z, 0) = 1 on D7, and dw(z, t)/on,., = 1
on S. From Lemma 2, |w(z, £)| < ks, a constant.

In the Green’s identity, let v = 6*(y, o; x, t) and v = w(y, o). Integrating this over
the domain D X (¢, t — ¢), and letting ¢ — 0, we have

[ ooz 0ave+ [ [ € 5 0dd4.dr
D 0 aD

=k [ [0 aN"G 7z, 0aVedr+ ke [ [l DN 52, 0 ddedr.
Hence

[ e oz 0avi+ [ [ o6 iz 0ddcar
D 0 aD

< Ik, fo fD NG, 12, ) dVe dr + koks fo fa N, 5z, 0 dd, dr.

The right-hand side of the inequality is the solution of Lz = —kksin @, 2(z, 0) = 0
on D™ and 6z(z, t)/dn..., = ksks on S. Hence from Lemma 2

lz(x, )| < keks (ks + ks).

Thus the lemma is proved.

4. Proof of the theorem. Uniqueness: Suppose u,(z, t) and u.(z, {) are two distinet
solutions of our problem. Without loss of generality, let us assume that u.(z, £) >
u,(z, t) at some point of Q. Then the function, u(z, t) = us(z, 1) — ui(z, {) satisfies

Lu — g,(z, t; uz)u = 0 in Q,

where u; lies between w, and u, . Since u(z, 0) = 0 on D™, we have by the weak max-
imum principle [7] that it attains its maximum at some point, say (2o , &), of S. Hence
au(xo b) tO)/an(zo.t.) Z O) bUt

du(z, , to)
an(Zo Wto)

by (2.6). Therefore, the solution is unique.
Ezistence: Let X be a parameter such that 0 < A < 1. If u(z, ¢; M) is the solution of

Lu(x; ¢ )\) = g(x; t u(z, X )‘)) in Q,

du(z, t; N
an(z.t)

= Bz, to ;%) — B(xo, to ;u) <0

+ B(z, t;u(z, t; \) = Af(z,t) on S
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and

u(z, 0;\) = Ap(z) on D7, (4.1)
then »(z, t; \) = du(z, t; \)/I\ satisfies

L,v(z, ;) =0 in Q,

l//Buv(x; t7 )\) = f(x) t) on ‘S (42)
and

v(z, 0; ) = ¢(z) onD".
Now if u(z, £; \) is already known, then by the Green’s identity

t
o, 50 = [ N, 650000 dVe+ [ [ N, 65 7016, 7 dd, dr,
D 0 D

where N(z, t; & 7; \) is the Neumann function of (4.2) corresponding to the boundary
condition ¥z, v(z, £;\) = 0 on S. But as \ varies, u(z, {; \) changes, and this in turn affects
the Neumann function. By (3.5) and (3.7), we have

8N(z, t;¢, 7;N) = —f fDN* (Y, 052, NNy, o3&, 75 N) 8g.(y, o, uly, o3 N) dV, do

— [ [ Nt o2 5ON@, 038 75 Bulyoi uy, o3 N) dd, de. (43)

Thus to determine u(z, t; \) and N(z, ¢; & 7; \), we have the following system of integro-
differential equations:

oulz, t;N) P ‘ o

PN - [ N, 450060 aVe+ [ [ Ne b nvie D ddidr @y
and

aN(x‘ g;)\g’ L& )\) = _/: LN*(yy o, ¢ )‘>N(yy G';E) T >‘) agu(y’ o',a?;\(y’ g )\)) dVv do

—f fw N*(y, o; z, t; N (y, o3 £, 73 N) aB"(y’ai;;(y’ SN g4 de @3)

with u(z, ¢, 0) = 0.
By Lemma 2,
oz, t;N)] < k:(l.l;._b. Ifl + l.l;._b. loD.
Hence

ulz, ;N < kv(l-lsl;b- I/l + lub. |¢])

since 0 < A < 1. We now prove the existence in the theorem by successive approxima-
tions.

Let uo(x’ t; )‘) = u(x, t; 0) = 0.Forn = 1: 2) 3> ] let u,,(x, t: O) = 0) and
dua(z, 15N _ £ 0- ‘ _
an = j; N,,_l(il?, t,E, 0, )\)¢(E) de + /‘; '/;D Nn—l(x: t}E} T, x)f(f: 7) dAE dr

4.7



A NONLINEAR SECOND INITIAL-BOUNDARY VALUE PROBLEM 267

where N, (z, t; £ 7; \) is the Neumann function of the differential equation
Loz, t; N) = g.(z, t; u.(z, t; N))v(z, t; M)
corresponding to the boundary condition

ov(z, t; N)
an(z.t)
Thus we can find No(z, t; & 7; N), w,(z, t; N), Ni(z, t; & 7; A), and so on successively.
Since ¢(z, {; ) and B(z, ¢; w) are twice continuously differentiable, we have by (4.6)
that g., and B,, are bounded. Let |g..| < k, and |B,.| < k; . Also let

p(N) = max |u.(z, {; ) — Uu.-i(z, t; N)]. (4.8)
(z.t)EQ

+ B.(z, t;u.(x, t; N(z, t;N) = 0.

Then

lg.(2, & un(z, & N)) — gu(®, & Una(z, £ V)| < Kapa(N)
and

|Bu(z, & un(z, £; X)) — Bu(x, t; taes(, t; N)] < kzpa(N).
These together with (3.4), (3.6), Lemma 1 and the definition of §*(¢, 7; z, £) in Lemma 3
give

INn(xJ t; £ 75 >\) - Nn—l(x; t; £ 7,5 >‘)l < Pn()\)O*(sy %, t)' (4~9)
Let |¢(z)| < ks, |f(z, O)] < ko and ko = max {ks, ko}. Then from (4.7) and (4.9), we
have
Mnss(z, 15N Uz, 5N
oA N

szcmpnm{fp 64, 05z, ) AV + f f 6%, 737, 1) dA, dr}Skmpna)k., (4.10)

by Lemma 3. Since u,(z, ¢; 0) = 0, we have from (4.10)
)N
[Unsr(, £ N) = wz, ;M| < kikso | palr) dr,
0

which is independent of (z, t). By (4.8)
A
prr1(N) < kikyo . pa(r) dr.
Since uo(z, t; \) = 0, we have

() = max |ulz, t;N)].
(z,t)€Q™

By (4.6), p;(\) < k;, . It follows from induction that

kn("h’ﬁo}\)ﬂ_1
P < R (4.11)

Therefore, Z:-o [Unsr(z, §; ) — u,(z, £; N)] converges absolutely and uniformly in (z, ¢).
Let u(z, t; \) be the limit. Except at the point of singularity (z, ) = (¢, 7) of N°(z, t; &, 7),
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it follows from (4.9) that the sequence {N,(z, ¢; £ 7; \)} converges uniformly to a limit,
say N(z, t; £, 7; N). Thus for (z, t) # (& 1), N(z, t; & 7; \) is continuous and furthermore,
from (4.3), it depends continuously on the coefficient of the partial differential equation
and on the boundary condition. Therefore N(z, ¢; £ 7; \) is the Neumann function of
(4.2) corresponding to ¥, v(z, {; \) = 0 on S. Hence from (4.3) aN(z, t; £ 7; \)/o\ is
given by (4.5). Since u(z, t; \) =0, we have from (4.10) and (4.11) that du.(z, ¢; \)/IA
converges uniformly and absolutely. As n — «, (4.7) becomes (4.4). Thus u(z, t; \)
and N(z, ¢; & 7; N satisfy the integro-differential equations (4.4) and (4.5) with
u(z, t; 0) = 0. Hence u(z, t; 1) is the solution to our problem.
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