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Abstract. Using the results of the WKBI method, two hypothetical gases are intro-

duced, whose graphs in the pressure-density plane and that of the polytropic gas have

contact of order 4 and 5 at the sonic point. This is in contrast to the fact that such graphs

for the Tricomi gas and the generalized Tricomi gas have contact of order 2 and 3,

respectively, to that of the polytropic gas there. Various relations for these gases are

derived and compared to those of the air, the Tricomi gas and the generalized Tricomi

gas. Applicable range of the approximations to the airflow are 0.65 < M < 1.4 for the

first approximation, and 0.5 < M < 1.5 for the second approximation, M being the

local Mach number. This is compared to such ranges as 0.9 < M < 1.2 for the Tricomi

gas, and 0.75 < M < 1.3 for the generalized Tricomi gas. Flow solutions for the hypo-

thetical gases are expressed by the Airy functions.

For practical applications, emphasis is placed in the subsonic range. For such pur-

poses, it is proved that changing the values of integration constants results in the appli-

cable range of 0.45 < M < 1.35 and 0.35 < M < 1.4 for the first and the second gas,
respectively.

1. Introduction. To analyze transonic flows by the hodograph method, the Tricomi

approximation or the generalized Tricomi approximation is widely used to avoid mathe-

matical complication of handling the exact solutions expressed by the hypergeometric

functions. By doing so, the transonic similarity rule is derived, and the solutions can be

expressed by the Airy functions. For details of these approximations, readers are referred

to Ferrari and Tricomi [5]. Unfortunately, the applicable range of such approximations

is rather limited. In this paper, attempts are made to extend the applicable range sub-

stantially without introducing such functions as hypergeometric or confluent hyper-

geometric functions.

2. Fundamental equations. The stream function, SE', in the hodograph plane is

given by the well-known Chaplygin [3] equation:

(d2-*/df) + Kit) (d2*/dd2) = 0. (2.1)

Here, 6 is the angle between the freestream direction and the velocity vector, and the

Chaplygin variable, t, is defined as

* = 7 f (2.2)Po Jc. Q
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where p and q are the fluid density and the flow speed, respectively, is the critical

speed of sound, and the subscript 0 denotes the value at the stagnation point. Using

the local Mach number, M, K is given by

K(t) = (1 - M2)(Pl/P2) = (1 /Q) d2Q/dt2 (2.3)

with Q = q'1. The Liouville transformations

r = - [ K1/2 dt = - f' (1 - M2)1/2 4s , 4,* = Kuiv, (2.4)
Jo J c* Q

reduce the Chaplygin equation (2.1) into the Bergman [2]-Imai [7] equation:

d2t*/dr + d2i*/dd2 = k(r)\p*, (2.5)

with

k = K~Ui d2KU4/dr2 = -K~3/4 d2K~U4/dt2. (2.6)

After further transformations

v = (3t/2)2/3, * = v~1/4r = H(v)% H(y) = (K/r,)l/4, (2.7)

we obtain the Diaz-Ludford [4] equation:

d2\p/drj2 + t) d2\p/dd2 = h(i))4(2.8)

where

h(n) = (1 /H) d2H/d-n2 = kv + 5/(16t/2). (2.9)

Substituting Eqs. (2.4) and (2.7) into Eq. (2.3), and using Eq. (2.9), we obtain

d2y/dri2 - (h + v)y = 0 (2.10)

with y = c^QH/Htfi). In a similar manner, from Eq. (2.2) and from the Bernoulli

equation q dq + p_1 dp = 0, we get

= H^dQ = !Tdy _ldlT
p Q dy y dt] 2 d-q

and

dp = (c|p0/ci) d-n/y2, (2.12)

respectively. Here, p is the pressure, and cx = !II(0) j2. From Eqs. (2.4) and (2.7),

we have

t = - [ H~2 dv. (2.13)
" 0

3. First approximation for transonic flows. Near the sonic point, h is expressed as

h = E Kv"- (3.1)
71=0

Therefore, in the transonic range, h is approximately given by

h = X2 (3.2)

with X2 = X0 . Eq. (2.8) is reduced to

d2\p/dif + 77 d'ip/d62 = \2\p. (3.3)
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T ransf ormations

v = £/X, 6 = \~3/2d (3.4)

simplify this equation into

d"4>/di" + £ d'ip/d-d2 = <p. (3-5)

It is remarked that Eq. (3.3) reduces to the Tricomi equation

d2\p/dij2 + v d'tp/dd2 = 0 (3.6)

if X2 = 0. Such a treatment introduces a hypothetical gas, the generalized Tricomi gas.

Our treatment introduces a hypothetical gas, which includes the generalized Tricomi

gas as a special case, X = 0. In Fig. 1, h is plotted versus tj. The solid line is for the poly-

tropic gas of t = 1.4, 7 being the ratio of specific heats, and the chain lines correspond

to the first and the second approximations of the present paper; the broken line corre-

sponds to the approximation developed by Diaz and Ludford [4].

In this transonic approximation, Eq. (2.9) reduces to d2H/df — H = 0, whose

solution satisfying the condition H(0) = c\/2 is

2.5

0 1 t, 2 3

Fig. 1. The function h{-n) for the air and various approximations.
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H cl/2f cosh £ — ̂ sinh^ , (3.7)

c2 being an integration constant.

From Eqs. (2.13), (3.4), and (3.7), we have

t = — (1/ci) sinh£/(\ cosh | — c2 sinh J). (3.8)

Putting

f = v + X2, (3.9)

Eq. (2.10) is reduced to the Airy equation

d2y/df -to = 0. (3.10)

The general solution of this equation may be written as

y = c3 Ai (f) + c4 Bi (f), (3.11)

where c3 and c4 are integration constants, and Ai and Bi are the Airy functions1 defined by

Ai(f) = ir1/2{/-1/3(!r3/2) - ii/3(tr3/2)} = ~(r/3)1/2K1/3(nn,
7r

Bi (f) = (r/3)1/2{7_1/3(tr3/2) + /i/3(§r3/2)},

/±1/3 being the modified Bessel functions of the first kind.

From (2.11), (3.4) and (3.9), we have

- - kl S i (cosh S - f smh
P Us Ai (x) + c4 Bi (f) \ X /

+ (c2 cosh £ — X sinh Q^cosh £ — ̂ sinhi^|- (3.12)

It is easy to show that y f{, y~~ df satisfies the Airy equation. Thus we may write

y J y 2 df = c5 Ai (f) + c6 Bi (f),

where c5 = — x/(mc3 + c4), c6 = —mc5, m = Ai (X2)/Bi (X2). Since Eq. (2.12) reduces to

# = (c*Po/ci)j/-2 df,

after integration, we obtain

7rc2po Ai (r) - m Bi (f)

P ci(mc3 + c4) c3 Ai (f) + c4 Bi (f)

At the sonic point, i = T = ?/=£ = 0 and f = X2. Assuming that Eqs. (3.11) and (3.12)

are valid here, we have

c3 = {Ai (X2)}-1 — m~1ci , c4 = irjc Ai (X2) — Ai' (X2)} (3.14)

with c = — c2 + Po/(ciP*).

It is noted that p —» 0 as M —> 0 unless X/c2 < 1, in which case p -> =» as

7] —> X-1 tanh-1 (X/c2).

1 For the formulas of the Airy functions, see Abramowitz and Stegun [1]. It is noted that their

formula 10.4.16 for Ai' actually gives — Ai'.
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Now, if K is expanded at the sonic point as

K = -f- -)- a,zt3 -(- cl^4 + • • • , (3.15)

it is easily shown that

= —c\ , a2 = —5cjc2 , a3 = —ci{15c2 + (7/3)X2{. (3.16)

Thus

X2 = (3/35)(5a1a3 - 3a2)/(-aI)8/s, (3.17)

which agrees with the result of the WKBI method obtained by Imai [6]. For the poly-

tropic gas, Diaz and Ludford [4] show that

(3.18)

Qi = ~ (t + 1)(po/p*)3, 0,2 — — (7 + 1)(t + 5/2)(po/p*)\

, - 6y2 + 25y + 31 / poV-(7+i) j y-

If these values are substituted into Eqs. (3.16) and (3.17), we obtain

Ci = (po/p*)(y + 1)1/3, C2 = (27 + 5)/110(7 + 1)1/3}, (3.19)

and

X2 = (2472 + 70y + 85)/1140(7 + 1)2/3}. (3.20)

For the air, 7 = 1.4 and X2 = 0.916645.

In some of the practical applications, closer approximation in the subsonic range

might be needed. Substituting Eqs. (3.19) into Eq. (3.13), and using the relation

<P*/P* = 7, (3.21)

we have p/p* —» 1 + iry/! (7 + l)1/3c4(c3 + m_1c4)} as f . If this value is supposed

to be equal to pT/p* , using Eqs. (3.14) and (3.19), we obtain

Ai' (X2) 1 J 5 - 27
(3.22)Ai (X2) (7 + 1)1/3 I 10 (pM

For the poly tropic gas

Vo/V* = i(7 + l)/2)r/(T-1). (3.23)

Assuming that pT = p0 and putting 7 = 1.4, the right-hand side of Eq. (3.22) becomes

— 1.0068; thus X2 is obtained as X2 = 0.5826.

Relations between p/p^ and q* = q/c# are shown in Fig. 2 by the chain lines for

X2 = 0.5826, 0.7, and 0.916645; also included in this figure are relations for the air (solid

line), and (broken lines) for the generalized Tricomi gas, X2 = 0, and for the Tricomi

gas. In Fig. 3, curves of p/p% versus p/p# are shown in a similar manner. Tierney [8]

shows that, if two fmictions K(t) have the same expansion in positive integral

powers of t up to and including the term in f, the graphs in the (p, p)-plane of the corre-

sponding equations of state have contact of order at least n + 1 at the sonic point

(V* > P*)- Thus, for the Tricomi gas and for the generalized Tricomi gas, contacts of

second and third order, respectively, are obtained. In the present approximation, if the

value of X2 given by Eq. (3.20) is used, contact of fourth order is achieved. Thus the chain

line marked as X2 = 0.916645 has fourth-order contact to the solid line, giving a very
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good approximation in the transonic range. For the subsonic applications, a choice

of X2 = 0.7 or 0.5826 might give better results.

4. Second approximation for transonic flows. In this section, the second term of

the h series, Eq. (3.1), is taken into consideration, namely

h = \2 — in] (4.1)

with n = — Xj > 0. Eq. (2.8) becomes

d~\J//dr)~ + 7} d2\f//dd2 = —(^irj — X2)^. (4.2)

After transformations £ = (p./X2) 77 — 1, t? = (yu/X2)3/20, we obtain

d2t/d? + ($ + 1) d">/M2 = - (X6/m2)^. (4.3)

Equation (2.9) is reduced to the Airy equation d2H/dx — xH = 0, where

3 = _ xVl). (4.4)

1 .6 — \
\ GENERALIZED
\ TRICOMI

TRICOMI

Fig. 2. The density-velocity relation by the first approximation.
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2.0

Fig. 3. The pressure-density relation, by the first approximation.

Therefore, H may be written as

H = a Ai (x) + b Bi (x), (4.5)

where a and b are determined by the conditions H = c1/2 and dH/dri = — c'/2c2 at

7? = 0 as

a = cl/2ir{Bi' (/32) - c2m"'/3 Bi (/32)},

b = cl'Vfc*/,rI/3 Ai (/32) - Ai' (yS2)},

P = \n~1/3.

It is noted that Eq. (4.5) tends to Eq. (3.7) asymptotically as n —» 0.

From Eqs. (2.13) and (4.4) we have t = m~1/3 /?• H~2 dx. Since H J}, H~2 dx satisfies

the Airy equation, we obtain

H [ H 2 dx = c5 Ai (x) + c6 Bi (x),
J $2
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where c5 = —ir/(na + b), c6 = —nc5 ,n = Ai (/3 )/Bi (/3 ). Thus

, _ r Ai (x) - n Bi (x) , .

ix1/3(na + fc) a Ai (x) + b Bi (x)

For the case m ^ 1, putting

r = a - n)1/3u + x2/(i - M)},

we again obtain Eqs. (3.10) and (3.11) for y. Eq. (2.11) becomes

— = ! a Ai (x) + b Bi (x)}2
P

v Air (r) + c4Bi' (f) n _ o/3 , i/3 a Ai' (x) + b Bi' (x)"| . .

Lc,Ai(f) + c4Bi(f) U a Ai (x) + Bi (x) J •

From Eq. (2.12), we have

dp = [C>/{C1(1 - m)1/3}] dl/y\

Now we can write

y J y~2 d£ = c7 Ai (£) + c3 Bi (f),

where c7 = — x/(m*c3 + c4), c8 = —m*c7 , m* = Ai (f0)/Bi (f0), f0 = X2/(l — m)2/3-

Therefore, p is obtained as

v = v -   TC^  Ai (f) - m* Bi (rt f4 g)
c,(l - n)1/z(m*c3 + c4) c3 Ai (f) + c4 Bi (f)

Assuming that Eqs. (3.11) and (4.7) are valid at sonic point, where f = f0 and

x = f}2, leads to

« = 4" 'CM - Bi <4 " aHE) - 3* • (4 9)

c4 =   m)1/3 °) Ai (To)^'

For the case /u = 1, Eq. (2.10) reduces to d2y/drj2 — \2y = 0, whose general solution

may be written as

y = c3 cosh Xtj + ct sinh X?j. (4.10)

From Eq. (2.11) we obtain

p0 ( a * / \ i ^3 sinh X77 -f- c4 cosh A77 1/3 g Ai7 (x) + b Bi' (x)
{a Ai (x) + b Bi (x)} |X ^ CQgj1 ^ ^ Xt? M a Ai (x) + b Bi (x)

(4.11)

Now it is easy to show that y /J y~2 d-q — (c3X)_1 sinh X77. It follows that

v = v + flea Sinh^_   (4 12)
* c^X c3 cosh X77 + c4 sinh X77
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The requirements that Eqs. (4.10) and (4.11) hold true at the sonic point, r\ = 0,

determine that c3 = 1 and c4 = c/X. It is to be noted that results for the case ju = 1 can

be derived from that for the case m ^ 1 by means of the asymptotic behaviors of the

Airy functions.

Now the coefficient <z4 appearing in Eq. (3.15) is

o4 = (ci/12)(196A2c2 - 9a< + 420c\). (4.13)
Thus

M = — (4/75)a7"(14a2 — 35aia2a3 + 25aia4), (4.14)

which again agrees with the results of the WKBI method. For the polytropic gas, it

can be shown that

, 2473 + 13472 + 2837 + 233 (p„Y . n- -(7 + 1) 24 W • (4J5)

If this equation as well as Eqs. (3.18) are substituted into Eq. (4.14), we have

n = (3273 + 90r2 + 957 + 75)/{ 150(7 + 1)1- (4.16)

For the air, y = 1.4 and n = 1.311689.

In the application for subsonic and transonic range, it is possible to select the value

of n in such a way that p/p% —* Vo/V* as ?? —> ». Since numerical experiments show that

such n is less than unity, we obtain, by substituting Eqs. (3.19) and (3.21) into Eq. (4.8),

P/P* —> 1 + (t)/{ (7 + 1)1/3(1 - m)1/3c4(c3 + m*-1c4)}

as 7) —> a> and f —> 00. Assuming that the value of the right-hand side is equal to p0/,

and using Eqs. (3.19) and (4.9), we have

5 27 . ^\i/3/-» \ 1/3 Ai' (fn) 7

—(t + l) (i-ri Xilw = ta/f.) - 1'

For the polytropic gas of 7 = 1.4, using Eq. (3.23), the right-hand side of this equation

is calculated as 1.5678. Thus, 11 is determined as n = 0.81.

Relations between p/p# and are shown in Fig. 4 by the chain lines for p. = 0.81,

1.0, and 1.311689. Also included in the figure are the relation for the air (solid line)

and curves for the first approximation, /n = 0 and X2 = 0.916645, for the generalized

Tricomi gas and for the Tricomi gas (broken lines). In Fig. 5, curves of p/p# versus

p/are shown in a similar manner. By the Tierney result cited in the previous section,

contact of fifth order is achieved in the second approximation, if the value of n given by

Eq. (4.16) is used. It also will be seen that the selection of m = 1.0 or 0.81 gives better

results in the subsonic range.

5. Solutions for the stream function. In this section, solutions for the stream

function are derived. The equation for the reduced stream function is

d2ip/dr]2 + r](d2ip/dQ2) — — (fir] — X2)^. (5.1)

Putting = Y(r])Q(6), we obtain

0(6) = A„ sin nd + Bn cos nd, (5.2)

A„ and B„ being integration constants, and d2Y/dij2 — (m2rj + X2)7 = 0 with m2 =

n2 — m- If m 7* 0, using a new variable £ = m2/3(?j + X2m~2), this equation is reduced
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to the Airy equation d2Y/df — £Y = 0. Thus, Y(£) may be written as

7(1) = C„ Ai (|) + Dn Bi (Q, (5.3)

where C„ and Z)„ are integration constants. If m = 0, we obtain n = ±ju1/2 and

y(jj) = Cn cosh + Dn sinh Xr?. (5.4)

Thus, using Eqs. (2.7), (3.4), (3.7), and (4.5), we may write

* = 2C„A*e±in'/[c\/2{cosh \v - (c2/X) sinh Xv}] (5.5)

for the first approximation, and

¥ = 2C„A V'n7{a. Ai (x) + b Bi (z)} (5.6)

for the second approximation. Here, A* represents any appropriate linear combination

of the Airy functions of J and the hyperbolic functions of X77, and x is given by Eq. (4.4).

It is noted that, for the Tricomi and the generalized Tricomi gases, X = n = 0, we have

1.6

Fig. 4. The density-velocity relation by the second approximation.
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2.0

Fig. 5. The pressure-density relation by the second approximation.

to = n, so that £ = n2nt]) H = c1/2 for the Tricomi gas, and H = c}/2(l — c2rj) for the

generalized Tricomi gas.

6. Concluding remarks. Using the formulas of the WKBI method, the first and

the second approximations for transonic flows have been obtained, the zeroth approxi-

mation being the generalized Tricomi approximation. Applicable range of the approxi-

mation to the airflow is 0.65 < M < \A for the first approximation, and 0.5 < M < 1.5

for the second approximation. This is compared to the corresponding ranges of 0.9 <

M < 1.2 for the Tricomi gas, and 0.75 < M < 1.3 for the generalized Tricomi gas.

Stream functions in these approximations are expressed by the Airy functions and the

hyperbolic functions.

For practical applications where emphasis is placed in the subsonic range, it has been

proved that, changing the values of integration constants, the applicable range of

0.45 < M < 1.35 and 0.35 < M < 1.4 can be obtained for the first and the second

approximation, respectively.

For the second and higher approximations, equations for H and for y are of the
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same type. This is the special merit of this approximate method. For example, for the

third approximation, where h is given by

Hv) = X2 — + vti2,

both H and y can be expressed by the Weber functions. This suggests the possibility

of the improvement of the WKBI method. Detailed results will be reported elsewhere.
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