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Abstract. The purpose of this paper is to examine the kinematics and dynamics

of a class of motions with constant stretch history. A kinematical result is announced

to indicate the velocity field such a motion may have and two examples, viz. helical-

torsional flow and the helical flow combined with the axial motion of fanned planes,

are discussed in detail. The helical-torsional flow is found to be experimentally realizable,

albeit approximately, and it is shown how an apparatus may be built to measure the

material functions occurring in such flows. Two nonlinear differential equations are

derived to determine the velocity profile when the motion under study is treated as

a nearly viscometric flow. In addition, restrictions on the proper numbers of the first

Rivlin-Ericksen tensor are arrived at so that the motion with constant stretch history

is completely determined by the first two or first three Rivlin-Ericksen tensors. This

permits a reduction in the number of terms occurring in the full expansion of the con-

stitutive equation.

1. Introduction. This article is an examination of the kinematics and dynamics

of a class of motions with constant stretch history,1 delineated originally by Noll [1]. He

analyzed all the possible motions that occur under the classification of substantially

stagnant motions, a discovery of Coleman [2]. What are explored here are MWCSH of

type (ii), as defined in [1J and recollected below in Sec. 2.

The main results of the paper are:

(i) examination of the conditions under which the proper numbers of the first

Rivlin-Ericksen tensor Ax are all distinct or two of them are equal but distinct from

the third, when trace A, = 0.- This permits us to discover when the constitutive equation

is determined by Ai and A2 or by A, , A2 and A3, so that the relationship with the work

of Wang [3] is established (see Sec. 3);

(ii) in Sec. 4, we derive a sufficient condition under which a motion is a MWCSH.

This condition is broader than the homogeneous velocity fields used by Truesdell and

Noll [4, Sec. 118]; attempts are being made to see if this condition yields an intrinsically

unsteady MWCSH, thereby corroborating the conclusion of Yin and Pipkin [5].

(iii) in Sec. 5, a kinematical description of MWCSH of type (ii) is given and condi-

tions under which a (spatial) uniform steady velocity field may be added to an existing

* Received December 22, 1969.
1 In what follows, the phrase "motion(s) with constant stretch history" will be replaced by MWCSH.

The context makes it clear whether "motion" or "motions" is being implied.
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MWCSH of type (ii) so that the resulting motion is still a MWCSH of type (ii) are

explored. In doing so, we find a motion yielding a strain history with finite terms, but

this is not a MWCSH;
(iv) in Sec. 6, the dynamics of helical-torsional flow are explored since this velocity

field is approximately realizable in the laboratory so that the material functions occurring

in MWCSH of type (ii) may be measured;

(v) in Sec. 7, the material functions determined from treating the helical-torsional

flow as a nearly viscometric flow in the sense of Pipkin and Owen [6] are listed from

elsewhere [7] and two nonlinear differential equations are obtained to determine the

velocity field of the helical-torsional flow from the experimental observations;

(vi) in Sec. 8, the combined motion of helical flow with the axial motion of fanned

planes is shown to be a dynamically possible MWCSH of type (ii);

(vii) and finally in Sec. 9, certain reductions in the number of terms in the constitutive

equations (2.6) or (3.17) are made under appropriate conditions on the velocity field.

2. Collection of previous results. According to Noll [1], in all MWCSH the defor-

mation gradient F0(t) relative to a fixed reference configuration at time 0 is given by

Fo(r) = Q(tKk, Q(0) = 1, (2.1)

where Q(t) is an orthogonal tensor and M is a constant tensor. In a three-dimensional

vector space a linear transformation is either nilpotent of order two, or of order three

or not nilpotent. Thus M in (2.1) is either

(i) nilpotent of order two, i.e., M2 = 0—such flows are called viscometric [2]; or

(ii) nilpotent of order three, i.e., M2 5^ 0, M3 = 0; or

(iii) not nilpotent, i.e., M" ^ 0 for all n = 1, 2, 3, • • • .

In MWCSH, the right relative Cauchy-Green strain tensor has the form:

C,(< - s) = e~'LTe"L, 0 gs< «*», (2.2)

where

L = Q(t)MQr(t), (2.3)

L, = L + Q(t)Qr(t), (2.4)

where the superscript T denotes transposition, I,! is the velocity gradient at time t and L

the velocity gradient in a rotating frame of reference [1]. In MWCSH of type (ii), which

will be studied in this article,

C,(< - s) = 1 - sA1 + is2A2 - s3A3 + s4A4 , (2.5)

where A, (i = 1, • • • , 4) are the first four Rivlin-Ericksen tensors. According to

Theorem 2 of Noll [1], MWCSH of type (ii) are isochoric as well. Examples of such

motions are given below.

Now, Wang [3] has proved that in all MWCSH, the extra stress TB in an incompressible

simple fluid [8] is given by

Tb = T + pi = f(A, , A2 , A3), (2.6)

where T is the stress tensor determined up to an arbitrary hydrostatic pressure p and

f(•) is an isotropic function of its arguments. In fact, Wang [3] showed that there exist
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three separate cases under which a representation of the type (2.6) is valid, the three

cases depending on the proper numbers of At . This question will be discussed next.

If a material is incompressible, all motions possible in this material are subject to

the condition

tr A, = 0, (2.7)

where tr is the trace operator. Hence, if A, has three proper numbers which are all equal,

incompressibility demands that = 0, which implies a rigid motion. Thus for a non-

trivial motion to occur in incompressible materials, At must have either (i) three distinct

proper numbers or (ii) two proper numbers equal but different from the third. Not only

this, if the two proper numbers are equal but distinct from the third in a MWCSH, the

matrix of A2 , relative to the orthonormal basis for which the matrix of A1 is given by

[A,] =

a 0 0

0 a 0

0 0 b

a b, (2.8)

must be such that

[A2] 7*

a2 0 0

0 a2 0

0 0 b2

(2.9)

if the MWCSH is of type (ii). Otherwise, the MWCSH will be of type (iii), generated
by a non-nilpotent tensor, and will be equivalent to simple extension [3, 7, 9]. Thus

the next section examines the conditions under which the proper numbers of Aj, subject

to (2.7), are either distinct or two of them are equal.

3. Proper numbers of A,. Let the matrix of A, relative to an orthonormal basis

be given by

k > 0, (3.1)

a,. I m

[Aj] = k I a2n

m n a3

+ ^3 = 0, (3.2)

a\ + a\ + a2 + t + m2 + n2 = 1. (3.3)

Consider the characteristic equation of k_1A, . This reads:

Xs — (1 + a^a 2 — a23)\ + a3l2 + a2m2 + c^n3 — a,a2a3 — 2 Imn = 0. (3.4)

If the three roots of (3.4) are \i , X2 , and X3 , then they obey

Xi + X2 + X3 = 0, (3.5)

^1^2 X2X3 I X3X1 = CX3 d\o*2 1, (3.6)

XxXjXs = 2 Imn + — a3l2 — Onir? — aj?. (3.7)
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Without loss of generality, take Xi = X2 ¥> X3 . Then we obtain

X3 —2X, , 3Xi = 1 -f- did? — a3 , (3.8)

2Xj = a3l2 + a2m2 + a,n2 — a,a2a 3 — 2lmn. (3.9)

Thus Xj = X2 whenever

27 (a3f + a2m2 + a^2 — a,a2a3 — 2lmn)2 = 4(1 + a,a2 — a|)3, (3.10)

where the numbers , a2 , ■ • • ,n obey (3.2) and (3.3).

Suppose there is an orthonormal basis such that the matrix of A, has the form (3.1)

with

d\ ~~ @2 ~ = 0. (3.11)

I2 + m2 + n2 = 1, (3.12)

Thus (3.3) now reads

while (3.10) now becomes

27 l2m2n2 = 1. (3.13)

Together, (3.12) and (3.13) imply that

¥f + m2 + n2) = i (l2m2n2)1/3 = |, (3.14)

must be satisfied simultaneously if A1 has two equal proper numbers. Since the arith-

metic mean is greater than the geometric mean, (3.14)i and (3.14)2 are not consistent

unless [10, p. 17]

I2 = m2 = n2 = |. (3.15)

Hence, in particular, we may read off the results:

(i) if Ai has the form (3.1), a,- = 0 (i = 1, 2, 3) and I, m, n obey (3.12), then it has
three unequal proper numbers if and only if (3.15) is not satisfied; otherwise two of its

proper numbers are equal, but distinct from the third;

(ii) in particular, from the results of Noll [1], one has that the matrix of L, has the

form

[L] =

0 0 0

I 0 0

m n 0

12 -f- m2 -f- tl — 1, (3.16)

with respect to an orthonormal basis, if the motion be a MWCSH of type (ii). Thus in

these flows, the matrix of Ax obeys (3.1), (3.11) and (3.12). Hence if the flow be a MWCSH

of type (ii) and (3.15) is not satisfied, the constitutive equation (2.6) reads

T* = T + pi = f(Aj , A2); (3.17)

otherwise (2.6) is the correct form.

Wang [3] stated that in MWCSH of type (ii), Aj has three distinct proper numbers

or two of them are equal, but the restriction on A1 given here delineates the conditions

under which (2.6) or (3.17) is the correct form. This result was derived by the author

in [7],
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4. A sufficient condition for a given motion to be a MWCSH. It is a well-known

result in continuum mechanics [11] that with respect to a fixed reference configuration

at time 0:

(d/dr) FoW = L.MFoM, (4.1)

where Li is the velocity gradient at time t. Suppose that the material derivative of

Lx(t) is zero, i.e.,

(d/d^L^r) = (d/d^Li + v-grad Lt = 0, (4.2)

where v is the velocity at time r and position x in space. Now, if (4.2) holds, (4.1) can be

integrated to give

F0(r) = erL' (4.3)

since F0(0) = 1. Now, if (4.3) is compared with (2.1) it is obvious that (4.3) represents

the deformation gradient of a MWCSH with Q(r) = 1 always. Thus we have established

a sufficient condition for a flow to generate MWCSH as follows: if the velocity gradient

has a vanishing material derivative, the motion is one with constant stretch history.

The above result is more general than the homogeneous velocity fields considered

by Truesdell and Noll [4, Sec. 118]. Moreover, the condition that = 0 is satisfied

by velocity fields of the type

v = i(t) + g(x), v-grad grad g = 0. (4.4)

It must be noted that (4.4) j is not necessarily a steady velocity field in a non-inertial

frame of reference. On using the concept of equivalent motions [8, Sec. 11], the reader

can verify that

x = ky, y = 0, i = f(t) (4.5)

is steady in a non-inertial frame, while

i = /(0 + exp x, y = z = 0, /(«) ^ 0 (4.6)

is not steady anywhere, i.e., intrinsically unsteady. The above discussion is not irrelevant

to MWCSH because recently Yin and Pipkin [5, Sec. 7] constructed an intrinsically

unsteady viscometric flow, possible over a finite time interval, thereby showing that

Pipkin's assumption to the contrary [12, p. 89] was not correct. It would, therefore, be

of interest to find if there exists an intrinsically unsteady motion such that ti = 0,

for then this flow would yield a MWCSH that is intrinsically unsteady over an indefinite

interval.

Incidentally, (4.4)! represents the superposition of a uniform velocity field onto an

existing velocity field. It may be erroneously assumed that, since the uniform velocity

field f(<) gives rise to a rigid motion by itself, the addition of f(<) should have no effect

on the strain history. That such an assumption is false will be demonstrated by a counter-

example in Sec. 5.

5. MWCSH of type (ii). It is well known through the work of Noll [1] that the
following velocity field

x1 = 0, x = vfa1), x3 = wix1), (5.1)

(where v(-) and w(-) are smooth functions of x1) in a curvilinear orthogonal coordinate
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system Jx*}? is a viscometric flow if the components of the metric tensor g{{ (i = 1, 2, 3;

no sum) do not vary along the path line of the particle. It was established by

the author [13] that under the above restrictions on the coordinate system and the

components of the metric tensor, the following velocity field

x1 = 0,

x2 = —cx2 + ex3, c2 + ej = 0, (5.2)

xz = fx2 + cx2,

where c, e and j are constants, is a viscometric flow. For the path lines corresponding

to (5.2) are obtained by integrating the equations

d?/ds = 0, df/ds = c? - e?, df/ds = -f? - cf, (5.3)

under the initial conditions = xi (i = 1, 2, 3). The path lines are:

t = x\

(5.4)£* = x2 + c f t? da — el £* du,
J o •'o

$? = x3 — f f £2 da — c [ i? da.
J o Jo

On adding (5.4)2 and (5.4)3, and using c2 + ej = 0, we get

j£ + cst3 = fx2 + cx*. (5.5)

Using (5.5) in (5.4)2.nd3 for £2 and £3 respectively, we get

J2 = x2 — s(ex3 — cx2), (5.6)

£ = x3 — s(jx2 + cx3). (5.7)

It is easily verified that (5.4), and (5.6)-(5.7) are the path lines of a viscometric flow.

It will now be proved that the superposition of (5.1) on (5.4), viz.

x1 = 0,

x = t;(x') — cx2 + ex3, (5.8)

x3 — w(xl) + fx2 + cx3,

is a MWCSH of type (ii) provided
(a) the coordinate system {xk\ is a curvilinear orthogonal system; and

(b) the components of the metric tensor gti (i = 1, 2, 3; no sum) do not vary along

the path line of each particle.

It is easily demonstrated that if the velocity field (5.8) is integrated, using the earlier

notation of ? and x, one obtains [13]:

f1 = x\

f + x2 — sKx1) — cx2 + ex"] + |s'[ew (x1) — ctffc1)], (5.9)

f = x3 — s[w(x1) + fx2 + cx3] + ^s2[/f(x1) + cto.(x1)].



MOTIONS WITH CONSTANT STRETCH HISTORY 7

It is a simple calculation to show that the matrix form of F, (t — s) is given by

[F,(< - s)] = [1] - s[L] + ML2], (5.10)

where L has the matrix form

0 0 0

(fc2ff»,)1/V ~c (g^l)U2e

(,9339ll)1/ W' (?339221)I/ / C

[L] = (5.11)

and

v' = dv/dx1' w' = dw/dx\

Also, the motion (5.8) is isochoric and in view of (5.10) and (5.11), it meets all the

conditions of Theorem 2 of Noll [1] and is thus a MWCSH of type (ii), provided

ew' cv', or jv' cw'. (5.12)

If one were to examine the matrix of L2, one finds that if (5.12) holds, then L2 = 0 or the

motion (5.8) becomes viscometric. But as will be seen below, in the examples considered

c = 0 and thus the above condition is not met, and so the flows considered below are

truly MWCSH of type (ii).
Now, the simplest case of a MWCSH of type (ii) occurs whenever conditions (a)

and (b) are met and the velocity field is such that x depends linearly on x, while x3 is

an arbitrary, smooth junction of x1. Such an example was constructed by Oldroyd [14].

This is the Poiseuille-torsional flow, viz., r = 0, d — cz, z = u(r) in a cylindrical polar

coordinate system. Of course, the Poiseuille-torsional flow as well as the example of

Noll [1, Sec. 3] are special cases of (5.8). It is apparent that out of the few kinematically

possible combinations existing in (5.8), the helical-torsional flow, viz.

r — 0, 6 = w(r) + cz, z = w(r), (5.13)

in a cylindrical polar coordinate system with w(-) and u(-) being smooth functions of r,

and c being a constant, provides an approximate, experimentally realizable situation

to measure the material functions occurring in MWCSH of type (ii).

As Oldroyd [14] remarked, the flow (5.13) with a>(r) = 0 can be generated, in principle,

"in a limited region by rotating two porous disks, at different speeds, about a common

axis placed along the axis of a circular pipe of approximately the same radius as the

disks, so as to impose a torsional motion on the liquid flowing down the pipe." Thus the

helical-torsional flow can be generated in between two concentric cylinders by rotating

two porous rings at different speeds in the annular space between the two cylinders,

provided the width of each porous ring is almost equal to the annular space between

the two cylinders (see Fig. 1). It is obvious that the two motions discussed here are

approximately realizable because the boundary conditions are not met on the cylinders.

In the next section, the dynamical equations connected with (5.13) are solved and it

is demonstrated that the material functions occurring in the flow (5.13) can be measured

by the helical-torsional rheometer described above.

Before proceeding further, it is essential to note that (5.8) remains a MWCSH of
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type (ii) if it is replaced by

x1 = Wo ,

x2 = v0 + v{x') — cx2 + ex3, (5.14)

x3 — w0 + w(xl) + fx2 + cx3,

provided

(a) the conditions on the coordinate system and the metric tensor are met; and either

(b) Ua = 0 and apart from the restriction (5.12) no other restrictions on v(xly) and

w{xl) are imposed; or

(c) «o 7* 0 and v(x') = ax1, w(x1) = /3a:1, where a and /S are constants, i.e., v(x1) and

w(zi) are linear in x1, and /Se ca or aj —fie [cf. (5.12)].

What is being stated is that one cannot add an arbitrary uniform velocity field to

an existing velocity field (in the spatial description), and expect the character of the

flow to remain substantially the same. That one of the conditions (b) or (c) is essential

is demonstrated by the following example in Cartesian coordinates:

x = u0, y = x2, i = y, (5.15)

which is a MWCSH of type (ii) if u0 = 0 and not otherwise. Further if Wo = 0, note

that L, = 0, thereby providing an example to the discussion in Sec. 4; and, in addition

if u0 7^ 0, (5.15) is a nonviscometric flow which is not a MWCSH but which has a strain

history with a finite number oj terms in its expansion, viz.:

C,(t ~s) = 1+ Z ((-DVA./n!) (5.16)
* — 1

as can be verified easily by direct calculation. It is believed to be the first example of

this kind available in the literature.

Moreover, as may be anticipated, (5.8) does not exhaust the kinematical possibility
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of MWCSH of type (ii). For example, the following homogeneous motion in Cartesian

coordinates, viz.

x = ay + bz,

y = —cy + ez, c2 + ej = 0 (5.17)

z = jy + C2,

is also a MWCSH of type (ii). For the velocity gradient Li is such that Lj ^ 0, Lj = 0.

6. Helical-torsional flow. Let the matrix of L relative to an orthonormal basis

for a MWCSH of type (ii) be given by (cf. (5.11)):

0 0 0

[L]=K I 0 0, K > 0, (6.1)

m n 0

I2 + m2 —J— 7i2 = 1. (6.2)

Let the material functions occurring in this flow be denoted by [13]:

2i = Te(22) - r,(ll>, s2 = TE(33) - Te( 11), (6

ra = r«<12>, r2 = Te(1S), r3 = T B{ 23),

where TE (ij) represents the physical component of T* in the ijth direction and the

2( (i = 1, 2) and r,- (j = 1, 2, 3) are all functions of k, I, m and n. If L has the matrix

form (6.1), then Ax has the matrix form (3.1) with a, = 0 (i = 1, 2, 3).

For the helical-torsional flow (5.13), it is easy to show that [13]

2, = Tb(zz) - Te(tt), 22 = Ts{86) - TB(rr),

r, = TE{rz), t 2 = TB(rO), r3 = TE(6z).

For, if one were to integrate the velocity field (5.13) and obtain the path lines and find

the strain history C, (t — s), it will turn out that relative to the orthonormal basis of

cylindrical polar coordinate system, L has the matrix form [13]

[L] =

0 0 0

rco' 0 cr

u' 0 0

, do} , du

" =Tr> U =Tr' (6'5)

Thus a rotation of the axes is needed so that the matrix form of the rotated tensor has

the form given by (6.1). It is easy to show that the orthogonal tensor Q with components

1 0 0

[Q] = 0 0 1 (6.6)

0 1 0

will transform L in (6.5), through QLQr, to take the matrix form (6.1) with

d = u', Km = rw', nn = cr. (6.7)
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Now, from Truesdell and Noll [4, Sec. 109], it is known that in MWCSH

T* = g(L) (6.8)

where g is an isotropic function of L, i.e.,

Qg(L)Qr = g(QLQr) (6.9)

for all constant orthogonal tensors Q. Hence, applying (6.9) and retracing the steps,

(6.4) is obtained from (6.3).

The dynamical equations, under the assumption that the body force b per unit mass

is derivable from a potential ^ through b = — grad and by using a modified pressure

function <j> defined through

4> = V + pt> (6-11)

where p is the density of the fluid, take the following form in cylindrical polar coordinates

for the flow (5.13):

— (d<t>/dr) + (3/dr)Tb (rr) + (l/r)(TE (rr) - T E (69)) = 0,

- (1 /r)(d<t>/dd) + (d/dr)TE (r6) + (2/r)Ts (rd) = 0, (6.12)

— (<50/dz) + (d/dr)Tb (rz) + 0-/r)TE (rz) = 0.

Note that the inertia terms have been neglected in (6.12), for otherwise the torsional

flow term crz makes the equations incompatible. Further, since all quantities *, I, m

and n are dependent on r, so are the extra stresses TE and this fact has been used in (6.12).

The solutions are:

4> = —az + h(r), t2 = TE (rd) — M/2irr2,

ti = Te (rz) — —\ar + br~l, h'(r) = (d/dr)TE (rr) — (l/r)23. (6.13)

In (6.13), a is the modified pressure drop per unit length and M is the torque per unit

height needed to maintain the rotation of the cylinders in relative motion. The torque

needed to maintain the upper (or lower) porous ring in rotation yields TB (6z) or the

material function r3 .

Now, from (6.4), we have that

(d/dr)T (zz) = (d/dr)T (rr) + (d/dr)2. . (6.14)

If the body force is assumed to act along the z axis only, we get, on noting that

d/dr = d/dr:

T(zz) = az+ J (i 2, + ^ 2,) df, a > 0. (6.15)

Thus

T(zz)(r) - T(zz)(R1) = f J 2, + 2,(r) - 2,(80, 8t g r g 8, . (6.16)
•>r, z

Hence the thrust on one of the porous rings would yield a combination of 2t and 23 .

Next, using the assumption that the body force acts along the z-axis only, we have

from (6.12)t :

(d/dr)T (rr) = (1 /r)(Ts (69) - TE (rr)) = (l/r)2, , (6.17)
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T(rr)(R2) - T{rr){Rx) = f*' - S2 dr. (6.18)
•Irx r

Thus, (6.16) and (6.17) determine 2X and S2, while (6.13)2 yields r3 ; the torque on the

porous ring, which is

T = 211 f ' t/ dr, (6.19)
J R z

gives r3 . However, before ti can be determined completely, the constant b must be

found. Note that b = 0 in Poiseuille-torsional flow and thus

Ti(ic, u/k, 0, ct/k) = —\ar, k = u'2 + cV. (6.20)

However, for the helical-torsional flow, b cannot be determined from theoretical con-

siderations alone, as will become apparent below.

To appreciate the difficulty, we turn to the helical flow analysis of Coleman and

Noll [15] and note that their procedure uses the following steps:

(i) the constant b is determined from a knowledge of the viscometric shear stress

function t(k) and the rate of shear k;

(ii) since the functions co(r) and u(r) satisfy certain boundary conditions in helical

flow, they are found next.

It is clear that this procedure is not applicable here, for the helical-torsional flow

is the first known experimental situation to measure ri and r2 ; also the torsional flow

term introduces inertial effects which are not balanced in the equations of motion and

the boundary conditions are not exactly satisfied. Thus it does not seem that b, «(r)

and u{r) can be determined from theoretical considerations alone. Hence in Sec. 7, a

pair of nonlinear differential equations are derived to determine w(r) and u(r) by assuming

the helical-torsional flow to be a nearly viscometric flow in the sense of Pipkin and

Owen [6] and that b can be measured experimentally.

For the convenience of the reader, we list below, in physical components form, the

first four Rivlin-Ericksen tensors of the helical-torsional flow:

[A,]

[Aa] =

0 rco' u'

0 cr [A2] =

• • 0

6cr u'u' 0 3cV2m'

0 0

2(r2w'2 + u'2) cru' 2crV

0 0

• 2cY

6cW2 0 0

[A,] =

(6.21)

(6.22)

0

Also, a repeated application of the isotropy condition (6.9) shows that [13]:

2<(k, I, to, n) = Si(ic, —I, —m, n) = Si(/c, —I, to, —n)

= 2{(k, I, —m, —n), i = 1, 2; (6.23)

ti(k, I, m, n) = — ti(k, —I, —m, n) = — n(jc, —I, to, —n) = ti(k, I, —to, — n), (6.24)
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t2(k, I, m, n) — — t2(k, —I, —m, n) = t2(k, —I, m, —n)

= — t2(k, I, —m, —n); (6.25)

t3(k, I, m, n) = t3(k, —I, —m, n) = —tz(k, —I, m, —n) — —t3(k, I, —m, — »). (6.26)

For example, one can prove from (6.24) that

ti(k, 0, 0, 1) = 0, (6.27)

with similar results for other shear stress functions.

7. A procedure to determine u(r) and u(r). Let us assume that the torsional flow

term crz is so small that the helical-torsional flow is nearly viscometric [6]. Then the

author has shown that [7]:

ti = t)u' -}-(</> — v)cr2o)' -)- (It — 2<j>)

. cr w u n . | 2-i cr 03 u r f .
n t— 002323LK I s J t— j(k, s), {< .1;

, ( v\ , V cru'3 . , cr"w'"u
= vru + \4> - 2Jcru - ^ + 2(v - 4>) 2

K

cru'3 . „ r I 2n cr3w'2u' ,, , /- „s
2 SjS2323[k s ] 3 /(k, s), (7.2)

K K

, , , , 3cr3a'2u'2
r3 = jjcr + <j>ru u — i? j 

K

, cru'2(rW — u'2) „0 r i 2-, cr3w'2u'2 . N 2cr3w'2u'2 7, N ^
-I —-3 z 5S1323[k | s2] ^— ff(«, s) ^ A(*c, s), (7.3)

where tj = i)(k), <f> = <£(k), v = k = r2c/3 + it'2,

/(k, s) = 5S,2ii[k | s] + 5Si222[k I s] + k2{5/S1222[k | s"] + 2 S5121i[k | s3]}, (7.4)

^(k, s) = 5 fiS22u[* I s] + 6iS2222[k | s] + k2{2 5S2jh[k | s3] + 5S2222[k | s3]}, (7.5)

fc(K, s) = 5 SSnnfr | s] + 5*S1122[k | s] + *2{2 5<Sain[/c | s3] + 651122[ic [ s3]}. (7.6)

The function 17 is the viscometric viscosity, <j> and v are the normal stress functions and

the 5(S,,u[ •] are linear functionals whose nature has been explored by Pipkin and Owen [6].

Now, we turn to the determination of «(r) and u(r) by examining two cases.

(i) Poiseuille-torsional flow. Note that ti as given by (7.1) is simply W and thus

it follows that the velicity profile u(r) is the same as in the viscometric, Poiseuille flow.

(ii) Helical-torsional flow. If the outer tube is suspended, then the axial force acting

on it can be measured. This gives b, since the axial force per unit length is given by (6.13):

2vR2Q)/R2 — iaR2), (7.7)

where R2 is the outer radius of the cylindrical tube.

Elsewhere [7] the author has conjectured on the basis of reasonable physical grounds

that the value of the linear functional

S-S.323 [* | s2] = -§». (7.8)
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If one neglects the contributions to 1-1 and r2 from /(«, s) in (7.1) and (7.2) and used

(7.8), one obtains:

, (<t> — v)cr2u , 2 ,2 ,2n & or , .
Tt — rfU + 2 /2 , 12 (r u U ) — o ' (7-9)

r co -+■ w r z

,,(<£ — v)cru' , ,2 2 ,2n , v , M /„
rs = ijro> + 2 /2 , >2 (M — rco ) + „cru = jr-r-j- (7.10)

ru + u z zlir

Thus (7.9) and (7.10) lead to two highly nonlinear differential equations for determining

oj(r) and u(r). These will have to be solved numerically, subject to the conditions

u(R<) = 0(i = 1, 2); «(fl2) = G2 , «(JBi) = 0, . (7.11)

The reader's attention is drawn to the fact that even under drastic simplifications,

the material functions r, and r2 are not related as in the helical flow.

Finally, if a simpler constitutive equation such as the BKZ fluid [15] is used, one

would have obtained [7]

t 1 = r]U' + {<t> — i>)cr2co', (7.12)

r2 = vru' + {<t> — T^Jcru'. (7.13)

While the differential equations (7.9) and (7.10) are somewhat simplified by using

(7.12) and (7.13), the solution is still to be sought numerically.

8. The helical flow combined with axial motion of fanned planes. Turning to (5.8),

one can see that the following velocity field

f = 0, 8 — &>(r), z = u(r) + c6, (8.1)

is a MWCSH of type (ii), occurring in a cylindrical polar coordinate system.2 The

physical components of the acceleration field associated with (8.1) are:

a(r) = —o>2r, a(6) = 0, a(z) = ao, (8.2)

and it is easy to see that the equations of motion (5.12) are solved, by inserting the

inertia terms pa(r), pa(6) and pa(z) in (6.12), , (6.12)2 and (6.13)3 respectively and by

choosing

cf> = — az + h(r),

T E(rz) = —jar + br~l + r_1 [ pcRu'fi) dR, A > 0, (8.3)
Ja

h'(r) = pro)2 + (d/dr)TE(rr) - (1 /r)2, .

Note that Si appears in (8.3)3 because the tensor L has a matrix form (6.1) with td = ru',

tern = u' and icn = cr. Thus, from (6.3)i it follows that for the flow (8.1),

2, = TE{66) - TE(rr),

22 = Te(zz) - TE(rr), (8.4)

rx = TE{r9), t2 = TE(rz), t3 = TE(8z).

a The axial motion of fanned planes, described by r = 0 = 0, i = cB, is a discovery of Pipkin [12].
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Hence we have demonstrated that the helical flow superposed on the axial motion of

fanned planes is dynamically possible in an incompressible simple fluid, and further no

inertia terms have been neglected.

9. A simplified form of the constitutive equation for MWCSH of type (ii). It was

established earlier that if the motion be a MWCSH of type (ii) and (3.15) is not satisfied,

then the constitutive equation is

T + pi = Te = f(Aa , A2). (9.1)

Now, a full of expansion of (9.1) contains eight terms if the term involving 1 is absorbed

into the pressure function p.

For the Poiseuille-torsional flow, (3.15) can never be satisfied because m = tw'/k is

zero. Thus (9.1) holds always for this flow. In addition, for this motion the number of

terms in the expansion of (9.1) can be reduced to six [7] and thus we obtain:

Ts = cxjA, + a2Ai + a3A2 + a4A2 + ^(A^Aa -f- A2At) + a6( A*A2 + A|Ai), (9.2)

where the (i = 1, • • • , 6) are analytic functions of the invariants of A! and A2 ,

which were given originally by Rivlin [17], The interesting feature of (9.2) is that it can

be shown to hold for the flow in the Maxwell rheometer as well [7], [18], [19] and [20].

Similarly, it can be shown that when (3.15) holds, the constitutive equation is

given by [7]:

Te = fSjAj -f- /32Ai + &A2 + (34A2 + /S5A3 + /?SA| , (9.3)

where the /3, (j = 1, • • • , 6) depend on the appropriate invariants of Ai, A2 and A3 [7, 21].

The general method of proving (9.2) (or (9.3)) consists in showing that the combina-

tions of kinematical tensors appearing in (9.2) (or (9.3)) are such that the operator

£ defined by:

[£] [M] = [A] (9.4)

is nonsingular. In (9.4), M is the "column vector" consisting of the following six sym-

metric tensors:

[Mi] =

[MJ =

1 0 0

0 0 0

0 0 0

0 1 0

1 0 0

0 0 0

[MJ =

[M6] =

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0

[M3] =

[Me] =

0 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

(9-5)

(9.6)

and A is the "column vector" consisting of Ai , • • • , (AiA* + AjAj), (A* A* + A2Aj)

(orAj, ••• , AI;).
10. Concluding remarks. This paper has explored the kinematics of a class of

MWCSH and suggested approximately realizable experiments to measure the material

functions occurring in such flows. It is clear that one way of estimating these non-

viscometric material functions is to treat the flows discussed here as nearly viscometric

flows in the sense of Pipkin and Owen [6]. Such an attempt has been made and described

elsewhere [7] in full detail, while a selected list of results was presented in Sec. 7 here.
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