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I. Introduction. Let y1 and y2 be distinct linear combinations of the independent

random variables xlt ■ • • , x„. Various relationships between tji and y2 have been used

to characterize normality of the x.-'s. Among these are independence [1, 2], restrictions

on conditional moments [3-6], and restrictions on the distributions [7, 8]. Certain of

these results have been extended to infinitely many random variables [9, 10] and to a

special class of stochastic integrals [11, 12], Concern in the integral case is with conditions

that distinguish the Brownian motion process. A discussion of much of the existing work

on these characterization problems and a number of additional references can be found

in [13].

In the present paper we are concerned with a class of stochastic integrals that are

more general than those considered by earlier authors. Various characterizations of

independence and normality are obtained for a family of these integrals and the rela-

tionship between normality and independence is examined. In addition to extending

some of the earlier results, the characterization problems for the stochastic integrals

are of interest in the study of an important class of processes—the linear processes.

These processes include as special cases a number of well-known processes used as

models of physical phenomena [14], As an application we consider three different series

expansions for the linear processes; it is shown that the random coefficients in these

expansions can be independent only if the processes are normal.

II. Preliminaries: stochastic integrals. Throughout, R will denote a Euclidean

space of fixed but arbitrary dimension, and integration with respect to a probability

measure will be denoted by E.

A random measure X is a family of random variables with the properties:

(1) To every bounded Borel set B of R there corresponds a random variable X(B)

with E |X(B)|2 < oo.

(2) If B1, B2, ■ • ■ are disjoint Borel sets whose union B is bounded then X(B) =

X(B,) + X(B2) + • • ■ where the series converges in quadratic mean.

The random measures considered in this paper are assumed to be real and to satisfy

EX{B) = 0 for every Borel set B.

A random measure has independent components if, for every collection of disjoint

Borel sets Bt, • • • , Bn , the random variables X(Bi), • • • , X(Bnj are mutually inde-
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pendent. If X has independent components, the set function V(B) = E |X(B)|2 is a

Borel measure on R.

The random measure X has stationary components if the joint distribution of the

family X(r + Bx), • • • , X(t + Bn) does not depend upon r. In the case of independent

components, stationarity is equivalent to requiring that X(B) and X(t + B) be iden-

tically distributed for every B and every r. If X has stationary components then V is

a Haar measure and is equal to Lebesgue measure on the Borel sets to within a non-

negative multiplicative constant.

Denote by L2(V) the Hilbert space of real-valued functions which are square inte-

grate with respect to the measure V. For every f £ L2(V) the stochastic integral

/fl f(s)X(ds) is defined as a limit in quadratic mean of sums formally associated with

the integral [14].

Let I be a random measure with independent components and, for every point t

with F({tj) > 0, let X({t\) be infinitely divisible. We will be concerned with the family

of stochastic integrals

y* [ fk(s)X(ds), k = 1, • • • ,n (1)
Jr

where , • • • , /„ £ L2(V). For these integrals we have

Eyk = 0, k = 1, • • • , n (2)

and

EViVk = [ ji(s)fk(s)V(ds), j, k = 1, ••• ,n. (3)
J R

As a consequence of the restrictions imposed upon X, explicit expressions are avail-

able for the joint characteristic function of the random variables , y„. Denoting

this characteristic function by $(«! , • • • , un) we have [14]

$(mi , ■ • • , u„) = exp J J {exp [i\ur-f(s)] — i\uT-f(s) — 1[ ~2 G(cls X (4)

where u and f(s) are the column vectors (ux, • • • , un)T and (/,(s), • • • , /„(s))r, respec-

tively, and the integrand is defined by continuity at X = 0. The function G is a Borel

measure on the product space R X (— 00, ) and is uniquely determined by the random

measure X via the transform

—J^2 In E exp [iuX(B)~] — J J exP [i^u]G(ds X dX). (5)

It is evident from (5) that

V(B) = f f G(ds X d\).
J B J-CD

If a random measure has stationary components then the associated measure G factors

into the product of Lebesgue measure on the Borel sets of R and a finite measure on

(_oo, a>).

Two important random measures are those characterized by normal laws and by
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Poisson laws. In the normal (Brownian motion) case

G{B X A) = V(B), JO} G A

= 0, {0} <£ A,

and in the Poisson case

G(BXA) = V(B), {1} £ A

= 0, {1)C4.

The measure Gi(B X A) = G{B X (if) (0))) is called the normal component of

G. We shall also need the measure G2{B X A) = G(B X {A — {0})). Clearly G = G1 +

G3 . Corresponding to G, and G, we define the Borel measures

7,(5) = [ f Gx(ds X d\) (6)
J B * -co

and

V2(B) = [ f G2(ds X dX), (7)
JB " -co

and obviously V = V1 + V2. We shall have occasion to consider functions, /(s), which

are almost everywhere zero with respect to the measures G2 or V2. These conditions

will be written as f(s) = 0[G2] and /(s) = 0[V2], respectively.

III. Characterizations of independence. Throughout the remainder of the paper,

\Vi > "'" ) Un] is a family of random variables defined by (1).

Theorem 1. In order that the random variables yx■ , yn be mutually independent

it is necessary and sufficient that

f fi(s)jk(s)V(ds) = 0, j v* k = 1, • ■ • ,n (8)
J R

and

fi(s)U(s) = 0[V2], j ^ k = 1, ■ • • , n. (9)

Proof. Using the notation of (4) it is evident that yt , • • • , yn will be mutually

independent if and only if for every Ui, ■ ■ • , un

J J jexp [i'Xu7- -f(s)] — exp [i\ukjk(s)] + (n — 1)| ^ G(ds X d\) = 0. (10)

To establish the sufficiency, observe that for n > 2

| J jexp 0'Xur-f(s)] — 2 exp [i\ukjk(s)] + (n - 1)| ^ G(ds X d\)

< E 2 M { [ muQVAds) [ + [ \fMM F2(ds)| (11)
3-2 *-i U Jr I Jr )

where we have made use of the inequality

exp [it-
L k-i

- 2 exp [i&] + (n - 1)
i-1

< E X UA, (12)
j-2 k-1
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which is valid for all real £1 , • • • , and can be established by induction on n. It follows

from (8) and (9) that both integrals on the right side of (11) are zero, so that (10) holds.

Turning to the necessity, it is clear that, because the random variables have zero

mean and are independent,

Eytyk =0, j t* k = 1, • ■ • , n

which is equivalent to (8). To establish (9), note that (10) holds for any two random

variables t/,- and yk with j k. Thus

/ FJr J-<
[exp 0'Xw,/,(s)] - 1} • {exp [iXw*/i(s)] — 1} ̂ 5 G(ds X d\) = 0,

and, by adding the four equations corresponding to the different combinations of ±u,-

and ±uk, we obtain

J J {1 — cos \u,j,(s) j • S1 — cos \uhfk(s) I ̂ 2 G2(ds X dh) = 0. (13)

This result holds for all «,• and uk and, since the integrand is nonnegative and X = 0

is a point of GVmeasure zero, either /,(s) = 0 or fk(s) = 0 for every s £ R with the

possible exception of a set of (^-measure zero; consequently

[ f l/,(s)/*(s)| G2(ds X d\) = [ \fMh(s)\ V2(ds) = 0
Jr J-co Jr

and = 0[F2], completing the proof.

Corollary. The random variables y, , ■ ■ ■ , yn are mutually independent if and only

if they are pairwise independent.

The next result provides the basic characterization of independence in terms of

moments.

Theorem 2. For the independence of yx, • • • , yn it is necessary and sufficient that

Ey,yk = 0, jV i = 1, • ■ • , n (14)

and

Ey)yl = Ey)Eyl , j 9* k = 1, ■ • • , n. (15)

Proof. The necessity is obvious. To establish the sufficiency we will show that the

conditions of the previous theorem are satisfied. Since (8) and (14) are equivalent, only

property (9) remains. Combining the relationship

Ey)yl = f T f%s)fk(s)X2G(ds X d\) + Ey)-Ey\ + 2E2yiVk
Jr J-a>

with the conditions of the theorem, we obtain

I [ fi(s)fk(s)\2G(ds X d\) = f [ fj(s)fk(s)\2G2(ds X d\) = 0.
Jr J—00 Jr J-co

Since the integrand is nonnegative and X = 0 is a point of (?2-measure zero, it follows

that /,(s)/t(s) = 0[G2] or equivalently /,(s)/t(s) = 0{V2], completing the proof.

If yj and yk are independent, it is clear that E[y, | yk] = 0 and E[y] \ yk\ — Ey).
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The next result shows that these regression properties are also sufficient for the inde-

pendence of Hi and yk.

Theorem 3. The random variables yi , ■ ■ ■ , y„ are mutually independent if and only if

E\yt | yk] = o, j ^ k = 1, • • • , n (16)

and

E[y) | yk~\ = Ey* , j 9* k = 1, • • • , n (17)

Proof. Since the necessity is obvious, we consider only the sufficiency. Using the

hypotheses of the theorem, we have for j ^ k

EyjVk = EykE[Vi \ yk] = 0, Ey)yl = EylE[y) | yk] = Ey)-Eyl

and the independence follows from Theorem 2.

IV. Characterizations of normality. In contrast to the earlier characterization

problems, which have been concerned with distinguishing those random measures that

are Brownian motions, we are concerned here with conditions which are equivalent to

the joint normality of the random variables t/i , • • • , yn.

Theorem 4. The random variables y 1 , • • ■ , yn are jointly normal if and only if

fk(s) = 0[Vo], k = 1, • • • , n. (18)

Proof. It is clear from (4) that yx, • • ■ , yn are jointly normal if and only if

If {exp l>'Aur-f(s)] - f[iXur-f(s)]2 - iXur-f(s) - lj A G(ds X d\) = 0. (19)
JR J-co A

Considering first the sufficiency, observe that the left side of (19) is bounded above by

f f |exp [t'Xur-f(s)] — |[t'Xur-f(s)]2 — i'Xur-f(s) — 1| A G(ds X d\)
JE J-a, X (2Q)

< [ |ur-f(s)|2 V2(ds)-

But since fk(s) = 0[V2], k = 1, • • • , n, it follows that the right side of (20) is zero and
(19) is established.

Turning to the necessity, note that the real part of (19) must be zero; that is,

0= f f {cos Xur-f(s) + |[Xur-f(s)]2 - 1} ̂  G(ds X d\)
Jr j-a> A

= f [ I cos Xur-f(s) + M^ur-f(s)]2 - 1} ~ G2(ds X rfX).
J R J-co A

Since the integrand is nonnegative and X = 0 is a point of G2-measure zero, it follows

that ur-f(s) = 0[(r2]- Finally, noting that u is arbitrary, we have fk(s) = 0[(?2] or,

equivalently, /t(s) = 0[F2] for k = 1, • • • , n and the proof is complete.

Corollary. The random variables yx , • • • , y„ are jointly normal if and only if

their univariate distributions are normal.

The normality of the random variables yi , • ■ ■ , yn can also be expressed in terms

of their moments. We have
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Theorem 5. For the random variables y1 , • • • , y„ to be jointly normal it is necessary

and sufficient that

Eyt = 3E2yl, k = 1, • • • , n. (21)

Proof. The necessity is well known. To establish the sufficiency, observe that

Eyt = JkJ ft(s)\2G(ds X dX) + 3E2yt .

Combining this relation with (21) yields

J f fk(s)\2G(ds X d\) = J J ft(s)\2G2(ds X dX) = 0,

and the same reasoning used earlier shows that fk(s) = 0[V2], k = 1, • • • , n. The joint

normality then follows from Theorem 3.

If the underlying random measure X is a Brownian motion, then every family of

stochastic integrals defined in terms of X is jointly normal. However the foregoing

results indicate that for certain choices of the integrands /x, • • • , , the corresponding

random variables yx , • ■ • , y„ may be normal without requiring that X be a Brownian

motion. Nevertheless it is of some interest to examine conditions under which normality

of the stochastic integrals implies that X is a Brownian motion. One such condition is

given by

Theorem 6. Let the measure G factor into the product of a Borel measure on R and

a finite measure on (— co, co), If at least one of the random variables yt , • ■ • , yn is non-

degenerate and normally distributed then the underlying random measure X is a Brownian

motion.

Proof. According to the hypothesis we may write G(B X A) = V(B)F(A) where

the measure F satisfies F(dX) = 1. Let yk be nondegenerate so that fk(s) 7^ 0[F].

Since yk is normal, we have (from Theorem 4) fk(s) = 0[V2] where

V2(B) = f f G2(ds X d\) = F(B)-[1 - F({0))].
J B J-a>

Thus the only way in which the normality is compatible with the nondegeneracy is for

F({0}) = 1 and this implies that V2 = 0 or equivalently that X is a Brownian motion.

Remark. The most important special case of the factorization of Theorem 6 occurs

when the underlying random measure has stationary components.

V. Relationships between independence and normality. It is clear from the corol-

lary to Theorem 1 that the independence of y^, • • • , yn entails restrictions on pairs

of random variables while, from the corollary to Theorem 4, normality requires restric-

tions only on the individual random variables. Consequently it is possible to relate

independence to normality only if auxiliary conditions are imposed. The present section

is concerned with an investigation of these auxiliary conditions. Our first result repre-

sents a natural extension of the earlier work in the case of a finite or denumerable num-

ber of independent random variables and is closely related to known results in the integral

case [13, p. 128].

Theorem 7. Let y^ , ■ ■ • , yn be independent and let at least one of the products f , (s)/t(s),

j ^ k = 1, • • • , n, be nonvanishing at every point of R with the possible exception of a
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set of V-measure zero. Then the underlying random measure is a Brownian motion and

the random variables yx, ■ • ■ , y„ are normally distributed.

Prooj. Denote by Bik the set Js: /,(s)/fc(s) ^ 0}. Since y,- and yk are independent,

it follows from Theorem 1 that V2(.Bjk) = 0 for j ^ k. Thus B = i*kBit is a set of

V2-measure zero. By hypothesis, the difference R-B is also a set of I'Vmeasure zero

(since it is a set of F-measure zero) so that V2 = 0 which in turn implies that the random

measure is a Brownian motion and that the variables yx , • • ■ , yn are normally distributed.

As a characterization of the normality of the random variables yx, • • • , y„ , Theorem 7

is not completely satisfactory because (i) independence of yx , • • • , y„ is required, a

property that is not necessary for their normality, and (ii) normality is achieved as a

consequence of the stronger condition that the underlying random measure be a Brownian

motion. The next result uses a more suitable independence relationship and does not

require that the random measure be a Brownian motion.

Theorem 8. The random variables yx , • • • , yn are jointly normal if and only if

fi(s)jt(s) = 0[V2], j ^ k = 1, • • • , n (22)

and for every j k the random variables {u,yk + Tky,) and (u,yk — aky,) are independent

where <j\ = Ey\.

Proof. Since the theorem obviously holds for degenerate random variables, it is no

restriction to assume that yx, ■ ■ ■ , yn are nondegenerate. To establish the necessity

observe that if y, and yk are normal, we have, from Theorem 4, /,(s) = fk(s) = 0[F2]

so that /,(s)/i(s) = 0[VJ. Furthermore {i,yk + aky,) and (criyk — aky,) are normal,

and since they are uncorrelated, they are independent.

Turning to the sufficiency, the independence of (o-,?/t + aky,) and (u,yk — a^yi)

implies (from the proof of Theorem 2)

0 = £ [crMs) + vJMYWMs) - <rkf,(s)n*G2(ds X d\)

= LI X dx) + I f fM^2G2(,ds X d\)

- 2*yk [ r fj(s)fl(s)\2G2(ds X d\).
Jr J-<x>

Because f,(s)fk(s) = 0{V2], the last integral is zero and it follows that /,(s) = 0[Fa]

and /4(s) = 0{V2] which, by Theorem 4, implies that y,- and yk are normally distributed.

A similar argument applied to the remaining random variables completes the proof.

The conditions of Theorem 8 can be stated in several equivalent ways. For example,

the independence of the random variables (a;yk + atyi) and (tr,-^ — 0*2/,■) can be ex-

pressed in terms of their moments (Theorem 2) or in terms of their conditional moments

(Theorem 3). Also from the proof of Theorem 2 it is clear that the requirement /, (s)fk (s) =

0[V2] is equivalent to the condition Ey)yl = Ey) ■ Ey\ + 2E2y,yk.

VI. An application. As an application of the relationship between independence

and normality we will consider three different series expansions for the linear processes

[14]. With suitable restrictions on the processes, it will be shown that the random coef-

ficients in the expansions are independent only if the processes are normal. Similar
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results have been reported by Pierre [15] who considered a wider class of processes but

required stronger assumptions to achieve normality.

Cardinal series expansion. For this example the linear process appears as y(t) =

1(t — s)X(ds) where both the integrand and the random measure are real and are

defined on (-<», <=). We assume that the measure V is equal to Lebesgue measure on

the Borel sets. It follows that the process is wide sense stationary and its correlation

function is given by

r(r) = f /(r + s)/(s) ds
(23)

= — J |F(a;)|2 exp [-tor] dw

with F(w) the Fourier transform of /(f).

If y(t) is bandlimited, that is if its power spectral density vanishes outside the

interval [—ft, 0], we have the well-known expansion [16, p. 11]

„(i\ _ v ,, sin 0(f - nT) „ _ . ..
V" Q(f - nT) ' X (

where the series converges in stochastic mean and yn - y(nT) = f(nT — s)X(ds)~

To avoid trivial cases we will assume that r(0) 9* 0.

From (23) it is clear that j{t") is also bandlimited. Suppose that f(t) vanishes on a

Borel set of positive (Lebesgue) measure. There is then a nondegenerate interval con-

tained in this set upon which /(f) also vanishes. Consequently /(f) and all its derivatives

vanish at some point, which implies that /(f) is identically zero. Since this contradicts

the assumption that r(0) ^ 0, we conclude that /(f) vanishes at most on a set of measure

zero.

Now for any n ^ m, it is clear that the product of the integrands f(nT — s)f(mT — s)

is also nonvanishing except possibly on a set of measure zero. Thus, if the coefficients

{?/„} are independent, it follows from Theorem 7 that they are normal and hence y(t)

is normal.

Fourier series expansion. In this example we assume that the random measure

vanishes outside the interval [0, T\ while the integrand /(f) is defined on (- «>).

The linear process appears as y(t) = /(' ~ s)X(ds), and we assume that the measure

V is equal to Lebesgue measure on [0, T].

Let y(t) be periodic with period T. That is, for every f let E | y(t) — y(t + T) [2 = 0.

Because of this periodicity we have

IT If(t ~s) - f(t + T- s)|2 ds = E |y{t) - y{t + T) |2 = 0

for every £, and it follows that /(£) is almost everywhere equal to a periodic function

on (— <», od). Consequently y(t) is wide sense stationary with correlation function

r(r) = Jo 1(t + s)j(s)ds, which is also periodic with period T. We further assume that

r(r) is not a constant function (including the trivial case r(j) — 0). For y(t) we then

have the Fourier expansion [17, p. 91]

2/(0 = Va + 2 X) ylx) cosmoof + y™ sin nu0t, a>0T = 2ir (25)
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where convergence is in the stochastic mean with

y° = f fo y(Q dt>

i rT
2/"' = y J 2/(0 cosnu0tdt, n = 1,2, ••• ,

1 fT
yl2) = f J 2/(0 sin nw0t dt, n = 1, 2, • • • .

Using the periodicity of f(i), we may rewrite the random coefficients

2/o = U f X(ds),
Jo

2/«" = f [/"' cosnwos — sinn«os]X(ds), n = 1, 2, ••• , (26)
Jo

y,2> - f [/»" sinrtooS + /»2) cosnw0s]X(ds), n = 1, 2, ••• ,
*Jo

where /0 , and /i2) are the coefficients in the Fourier series representation of /(£).

Because r(r) is not a constant, at least one of the coefficients or is nonzero and

this, in turn, implies that at least two of the integrands in (26) are nonzero. Clearly

these integrands vanish only on a denumerable set and their product also vanishes only

on a denumerable set which obviously has measure zero. Thus (Theorem 7) if the random

coefficients are independent, they must be normal and y(t) is normal.

Karhunen-Loeve expansion. The linear process y(t) is defined as in the first example,

and we are concerned with an expansion for y{t) on the interval [0, T], This expansion

appears as [16, p. 9]

CO

2/(0 = £ y^it), t G [0, T] (27)
n-1

where convergence is again in the stochastic mean and yn = y(t)<pn(t)dt. The functions

are the nonzero solutions of the integral equation /„ rif- — t')<pn(t')dt' = X„p„(0-

It will be assumed that the correlation function r(r) is not constant on [— T, T] including

the case r(r) = 0.

Rewriting the expression for the random coefficients we have yn = g„(s)X(ds)

where gn(s) = f(t — s)vjt)dt. If f(t) vanishes on a set B, then each gn(s) will vanish

on the set N = {s : [0, T] C s + B}. There is clearly no contribution to the integral

for y„ on such a set and it will accordingly be neglected in the following. It follows from

Mercer's theorem that r(t — t') = XXi , convergence being uniform on

[0, T] X [0, T}. Now because r(0) ^ 0 there is at least one nonzero eigenfunction. Further-

more if there is only one nonzero function, say <pn(t), we have r(0) = Xn^(0 so that

is constant on [0, T], which implies that r(r) is constant on [-T, T] and contradicts the

earlier assumption. Consequently there are at least two nonzero functions <p„{t) and

two nonzero functions g„(s). To proceed further we require knowledge about the zeros

of g„(s) and for this it is necessary to impose additional restrictions on the problem.

Assume that the Fourier transform of j(t) is a rational function. Specifically, let

F(w) = N(iu)/D(iui) where A7(•) and £>(•) are polynomials of finite degree, the degree
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of N(-) being strictly less than the degree of D(-). This condition is frequently satisfied

in applications, and it is then known that the eigenfunctions satisfy the homogeneous

differentia] equation [17, p. 376]

(0, t E (0, T).

Similarly it can be shown that gn(s) satisfies the differential equation

k(s), «G(0 ,T).

Combining these differential equations we obtain

s e <o'

and gn(s) also satisfies a homogeneous differential equation on (0, T). The same procedure

shows that D( — d/ds)gn(s) = 0, s ££ [0, T], and the general solution for gn(s) is obtained

by solving the above equations in their respective regions and properly matching the

solutions at the boundaries. Because F(u) is a rational function, /(£) has continuous

derivatives of all orders except possibly at t = 0 and the set N is either empty or one

of the semi-infinite intervals (— °°, 0) or (T, <»). Consequently gn(s) and its derivatives

are continuous at every point with the possible exception of {0! or \T], which are

boundary points of N.

It is not difficult to show that if gn(s) does not vanish everywhere then, except for

the set N, it vanishes at most on a set of measure zero (the same argument used for the

bandlimited functions of the first example is applicable). Since there are at least two

functions gn(s) which do not vanish everywhere, Theorem 7 shows that, if 2/1,2/2, • • • are

independent, they are normal and y(t) is normal.
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