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Summary. In this paper a theory of conjugate approximations is developed which

provides a fundamental basis for most methods of continuous piecewise approximation.

It is shown that for a given finite set of base functions used in an approximation there

corresponds another set of conjugate functions which play a significant role in approxi-

mate methods of analysis. In the case of finite-element approximations, it is shown that

the domain of the conjugate functions includes the entire assembly of elements, and,

consequently, the established method of computing stresses locally in elements based

on displacement approximations is not strictly valid. Indeed, the domain of such "local"

stress fields is the entire connected system of elements. Procedures for computing

derivatives and discrete analogues of linear operators which are consistent with the

theory of conjugate functions are also discussed. For a given linear operator equation,

the significance of the conjugate approximations in connection with the adjoint problem

is also discussed.

1. Introduction. In a recent paper [1] the idea of "conjugate fields" in connection

with finite-element approximations of a given function was introduced as a generalization

of the concept of generalized forces and displacements familiar in Lagrangian mechanics.

Basically, the idea follows from the observation that in applications of the finite-element

method we generally encounter, together with the primary function /(z) which is to be

approximated by a discrete model F(x), another function g(x) and a linear functional

qU(x)i ?(z)]. We say that the function g(x) is conjugate to /(x) with respect to g[ ].
It is assumed that the function F(x) can be defined in terms of its values F" = F(xk)

at a finite number G of points. The usual procedure is to construct a corresponding

approximation G(x) of g{x) so that X)* F(xk)-G(xt) and q[F(x), g(x)] coincide. Archer [2]

first used this procedure to derive "consistent" mass and force approximations in certain

structural dynamics problems. We shall also refer to the function values G(xk) so com-

puted as consistent with the approximations F(x) with respect to the functional g[ ].

In this paper, we explore the concept of conjugate approximation functions in detail,

and show that these functions possess certain properties which are fundamental to

approximation methods in general, and to the finite-element method in particular. Our

investigation is based on the fact that the functions g(x) are elements in a space

which is the conjugate space (dual space) of the space S7 to which f(x) belongs. We show

that while the primary function F(x) may be defined only locally, i.e., only over specific

finite elements, their corresponding conjugate approximations are defined globally.

This means that the often-used procedure of calculating stresses locally in finite elements
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using locally-defined displacement fields is not strictly correct, and that only a global

description of the stress field may be consistent with the displacement approximation

with respect to (say) the potential-energy functional. We cite a simple example to

demonstrate this point.

Following this introduction are three sections devoted to developing the general

concepts of conjugate approximations. We then show that such approximations provide

the best approximation of a given function /(x) in the sense of a metric defined on SF.

Sec. 6 of the paper deals with basic properties of conjugate approximations which

pertain to their relation with the Dirac delta function when it is admitted into J. This

is followed by a discussion of discrete models of derivatives of functions. Sees. 9 and 10

of the paper demonstrate the application of the general theory to finite-element repre-

sentations and include an example to emphasize the importance of conjugate approxima-

tions in stress calculations. We also address ourselves to the problem of determining

consistent approximations of linear operators defined on linear function spaces. We

show that for certain classes of equations the conjugate functions appear in approximate

solutions to the adjoint problem.

2. Finite projections of function spaces. Consider a complete, normed, linear space

5F (a Banach space) the elements of which are functions defined on a bounded domain (R

of an n-dimensional Euclidean space. Elements of CF are denoted f(x), g(x), • • • where

x is a point in (R. We also assume that there is an inner product p defined on f X 5

denoted (/, g), and we shall use the natural norm ||/|| = (/, /)1/2 with respect to p.

In most applications we are concerned with the special case in which SF is the space

of square integrable functions on (R. Then the inner product of two elements /(x),

g(x) £ JF is given by

(j,g)= f Kx)g(x) da. (2.1)
J a

where integration in the Lebesgue sense is implied and /(x) and g(x) are orthogonal
if (/> 9) = 0. In this case

(/,/)<+» (2.2)

for every f(x) £ 5.

Let <i> denote a linear subspace of CF of dimension G which is spanned by a set of G

linearly independent functions <p*(x); k = 1, 2, • • • , G. In the following we confine our

attention to the case in which $ contains only continuous functions; the interesting

case in which <J> is expanded to include functions with finite discontinuities is to be the

subject of a later paper. Thus JF is regarded as the direct sum of two subspaces $ and T:

JF = $ © T with $ P\ r = 6, 6 being the null space, such that each element f(x) £ SF

can be represented in a unique way as the sum of a function F(x) £ $ and a function

fix) E T:

f(x) = F(x) + /(x). (2.3)

By construction,

(/,?*)= 0 k = 1, 2, • • • , G, (2.4)

so that T is the orthogonal complement of
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It follows that (2.3) and (2.4) define a projection operator II: JF —* $ such that

F(x) = H/(x). (2.5)

Since the functions <pt(x) are linearly independent, every element F(x) E * can be

represented as a unique linear combination of <pi(x), <pi(x), • • • , <p0(x):

F(x) = FV,-(z), (2.6)

where the repeated index k is to be summed from 1 to G. The multipliers Fk are referred

to as components of Fix).

It is important to realize that the functions <p*(z) are not necessarily orthogonal.

Indeed, we shall introduce the symmetric G X G matrix

C,i = (<Pi , <Pi) i, j = 1, 2, - • ■ , G, (2.7)

which is referred to as the fundamental matrix of <E>. Then the ip<(x) are orthogonal if

and only if C<,- = c(<) 5,-,- , where 5{S is the Kronecker delta; that is, if C,, is diagonal.

Since the set \<pk\ is linearly independent and is prescribed in the definition of $, the

matrix Ca is regular and can be generated directly by means of (2.7). We denote the

inverse of C,, by C":

(C\,rl = C" (2.8)

CuCik = 5* , (2.9)

where i, j, k = 1,2, • • • , G. The matrices C,, and Cu play an important role in the

theory of conjugate approximations.

3. Conjugate subspaces. Let q(J) denote a linear functional defined on J; that is,

the operator q defines a linear mapping of the elements / £ JF into the real (or complex)

number field. The collection of all such linear functionals on is itself a linear space JF*

called the conjugate space (or dual space) of SF. Since q: JF —> R is linear,

q(S) = q(F) + <?(/), (3.1)

where

q(F) = q(Ilf) = Fkq{Vk). (3.2)

Thus the conjugate space IF* can also be decomposed into the direct sum of two subspaces,

5* = $* @ r*, where 4>* is the G'-dimensional subspace conjugate to $>. Indeed, if j*(x)

is an element of $F*, the subspace f>* is obtained as a projection II*: ff* —♦ $* and every

element F*(x) (E is the image of the projection; F*(x) — II*/*(2). To describe F*(x)

further, we must identify a basis for the subspace <£*.

In order to generate the subspace $* which is conjugate to we introduce a system

of G linearly independent functions <pk(x), k — 1,2, - • • , G defined by

(v, <P~) = 8* . (3.3)

In order that the set <p{x) be uniquely defined, we impose the condition

(/,/) = 0. (3.4)
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Then each <pk(x) can be represented as a linear combination of the functions <pk(x):

v\x) = G%„(a:). (3.5)

Thus <pk(x) £ which means that the subspaces $ and are identical. The set of

functions <pk{x) is referred to as the conjugate basis of the set <pk{x). The two sets of

functions f>k(x) and <pk(x) are said to form a biorthogonal basis of

We shall now show that since (3.3) and (3.4) define a unique conjugate basis, the

matrix Gkm is equal to Ckm, the inverse of the fundamental matrix defined in (2.8).

Simply take the inner product of (3.5) with <pr(x):

0vk, -Pr) = «?"V. , Vr) = Gk-(<pm , <pr) = GkmCmr = . (3.6)

Therefore, instead of (3.5) we have

<p\x) = CkmVm(x). (3.7)

By virtue of the positive definiteness of CmT , which will be demonstrated subsequently,

it can be shown to follow that (3.5) defines a unique set of functions <p*(x) satisfying (3.3).

Another important property follows from (3.7). Observe that

(/, *') = (Ck\m , Vr) = Ckm(Vm , Vr). (3.8)

Thus

(**,„•) = Ckr = (Ckry\ (3.9)

Therefore, the inverse of the fundamental matrix Ckr of the subspace $ is the funda-

mental matrix of the conjugate space $>*.

Multiplying (3.7) by Crt and taking into account (2.9), we also find that

<pk{ x) = Ckm<pm(x). (3.10)

Additional properties of the functions <pk(x) and <pk(x) are to be explored in later sections.

4. Conjugate approximations. If the functions <pk(x) are suitably chosen, it is under-

stood that the functions F(x) defined by (2.6) can be used as approximations to the

original functions /(z) £ SJ. Explicit equations for the components Fk of Fix) and for

the projection F(x) = II/(x) can now be obtained using the biorthogonal bases {<pk(x))

and {/(x)!- Taking the inner product of F — Fk<pk(x) with <pm(x) and introducing (3.3),

we get
Fk = (F, <pk). (4.1)

Furthermore, this result suggests that we also compute a set of conjugate components

using the functions <pk(x)

Fk = (F, <pk). (4.2)

It follows from (3.4) and (3.8) that

Fk = (F, Ckm<pm(x)) = CkmFm , (4.3)

Fk = (F, Ckm<pm(x)) = CkmFm. (4.4)

Thus the fundamental matrices Ck„ and Ckm have the property of "raising and lowering"

indices on the components Fk, Fk. Furthermore, the projection F(x) can now be written

F(x) = F\k{x) = Fk<pk(x) (4.5)
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wherein, as usual, the repeated index k is summed from 1 to G. The form of (4.5) suggests

that Fk and Fk be called contravariant and covariant components of F{x), respectively.

Let F(x) and G(x) denote two elements of the subspace $>:

F{x) = Fl<pk(x) = FkVk(x) and G(x) = Gk<pk(x) = GuV\x). (4.6)

Then the inner product of F and G is given by

(F, G) = (FkVk , G"Vm) = {F%k , Gm(pm) = (Fk<o\ Gm<p") (4.7)

or

(F, G) = CkmFkGm = FkGk = CkmFkFm . (4.8)

In particular,

\\F\\2 = (F, F) = CkmFkFm = FkFk = CkmFkFm > 0, (4.9)

where ||F|| = (F, F) is the natural norm of F on $. Eq. (4.9) demonstrates the positive-

definite character of Ctm mentioned previously.

In certain applications when 5 is a Hilbert space with an inner product given by (2.1),

it is convenient to also introduce quantities Mk and Mk defined by

Mk = [ <pk(x) dCR, (4.10)
•/(R

Mk = f v\x) = CkmMm . (4.11)
J (S{

Then

" F(x) d(R = FkMk = FkMk. (4.12)
/J (R

5. Best approximation. We shall now show that for a given element/(z) £ and a

given projection defined by a prescribed set of functions <pk , the "best" approximation

to j{x) in the subspace $ is that function for which the components are given by (4.3)

(or by (4.4)). By the "best approximation," we shall mean the element in $ closest to

/(x) in the sense of the natural metric d\j(x), g(x)} = ||/(x) — g(x)|| defined on J.

Let A* denote an arbitrary collection of G quantities such that \k<pk(x) £ <i>. We are

concerned with determining the A* so as to minimize the functional

J(A*) = (J - AkVk , / - AkVk), (5.1)

which, since J(Ak) = (d[j(x), Ak<pk(x)])2, is a measure of the distance between f(x) and

Ak<Pk(,x). Noting that

(J, AVt) = Ak(j, <pk) = AkFk (5.2)

and introducing (4.9), we find that (5.2) can be recast in the form

J (A*) = ||/!|s - ||F||2 + Ckm{ Ak - Fk)( A" - F"). (5.3)

It is easily seen that the functional J{Ak) assumes minimal value when

Fk = A". (5.4)
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Thus, the components Fk computed using (4.1) provide the best approximation of / in $

in the sense of (5.1). We observe that the mean-square error, in the sense of J(j), induced

by representing j(r) by its projection F(x) = 11/(a:) is

E(Fk) = ll/ll2 - \\F\\2. (5.5)

In view of (2.3),

ll/ll2 - « = ll/ll2+ 2(F,f) = ll/ll2, (5.6)

since F and / are orthogonal. Thus

E(Fk) = H/ll2. (5.7)

Since in general ||/|| may be unbounded, E{Fk) is small only for / close to the subepace $>.

6. Some properties of conjugate approximations. Suppose that we enlarge the space

3 so that it includes distributions such as the Dirac delta function1 S(x — a); x, a G (R,

defined by

S(x — a) = 0 f S(x - a) <*R = I. (6.1)
= od x = a Ja

Let A{x — a) denote the projection of d(x — a) on the subspace 3>. Then

A(x — a) = U5(x — a) = Ak<pk(x) = Ak<pk(x), (6.2)

where, according to (4.1) and (4.2),

Ak = (5(3 - a), <pk(x)) = <pk(a), (6.3)

Ak = (5(x - a), <pt(x)) = <pt(a). (6.4)

Hence

A(z - a) = <pk(a)<pt(x) = <pk(a)<p(x). (6.5)

Thus the values of the functions <pk (or <pk) at an arbitrary point a£(R are the components

A* (or At) of the projection of the delta function <5(2 — a).

Observe that while the function S(x — a) assumes a nonzero value only at a, the

projection A(x — a) may take on nonzero values almost everywhere in the domain of

functions in However, the essential properties of 8(x — a) are preserved under the

projection II: J —* $. For example, note that

(A(x - a), F(x)) = (<pt(a)<pk(x), F\m(x))

= (66)

= Ma)Fk

= F(a).

Also if F(x) = 1 is an element of <i>, then

(A(x - a), 1) = 1. (6.7)

To demonstrate another property of the functions <pk(x), suppose that we identify

1 We recognize that — o) is not square integrable. Thus our conclusions concerning the best

approximation of elements of JF do not hold. However, the projection Ht>(x — a) is well defined.
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in (R a finite number G of points am;m = 1,2, ■ • ■ , G. We shall refer to such points as

nodal points or simply nodes. Further, suppose the function <pk(x) has a value of unity

at node ak but is zero at all other nodes:

<pk(am) = 5^ • (6.8)

Then the projection of the delta function in (6.5) becomes

A(x — am) = ft(a*)f>'( x) = <pm(x). (6.9)

We shall refer to base functions <pk(x) with property (6.8) as being normalized with

respect to the G nodes a". In Sec. 9 we discuss the procedure for computing such nor-

malized base functions for finite element approximations. Eq. (6.9) shows that the

conjugate functions <pk(x) represent the projection of the delta function o(x — ak) at

node a\

Assuming that F(x) =16$, note that in addition to (6.8) the functions <pk(x)

satisfy the stronger condition

= 1. (6.10)
-fc- 1

Then the quantities Mk of (4.11) become

Mk = CkmMm = Ckm [ E VrdfR = Ckm Z (*- • Vr), (6.11)
J <R r r

but (<p„ , <pr) = Cmr , by (2.7). Therefore

Mk = t.CkmCmr = i; 8* = 1. (6.12)
r-1 r-1

Similarly,

M„ = f(ft, *) = Z - (6.13)
r-1 r-1

Observe that

T,M„ = [ !>*(*) dm = f dfr = 2 E - -0, (6.14)
i-1 J(R i-1 •'« i-1 r-1

where "0 is the volume of (ft.

In view of (6.12) and (4.12),

[ F(x) da = £ F* . (6.15)
« <R fc-1

We observe that if the <pk(x) satisfy (6.8) and (6.10) then

F(am) = Fm = Cr**1* . (6.16)

77iws the average value of F(z) oyer ffl. as given by the integral in (6.15) is not the sum of the

values oj F(x) at the nodes am; rather it is the sum of the conjugate values Fk = CkmF(am).

We see that Fk is the value of F(x) at node ak, but Fk represents an average value of F(x)

in the neighborhood of ak.

7. Derivatives of conjugate approximations. We now examine properties of deriva-

tives of the conjugate approximation functions. Let d/(x) denote the partial derivative
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of a function /(x) £E 7- We shall assume that dj(x) exists and that the derivatives of

the base functions <pk(x) also belong to the subspace $: d„<pk £ (The latter assumption,

of course, is not always valid.) We begin by introducing the array

DT = (v", a^m). (7.i)

Then, according to (2.5) and (4.1),

noy^)) = £>£>„(*), (7-2)

A fundamental question now arises: under what conditions can the projection (7.2)

be used as an approximation of the derivatives of the conjugate functions <f>*(z)? In

other words, when is it legitimate to set

d,vk(x) = DT^Jx)? (7.3)

The answer to this question is provided by the following theorem.

Theorem 7.1. The following conditions are equivalent to (7.3):

(a) dJI = na„ on the space $,

(b) C
(c) $ is the solution space oj a system of linear differential equations in Xr with constant

coefficients.
Proof. Briefly, the proof follows by showing that (7.3) implies conditions (a) and (c),

that (a) implies (b), and that (b) implies (7.3). To wit,
(7.3) => (a); ndM<p*(a;) = Dl"<pm(x) = d,1<pk(x) = d„(Il<pk(x)) for each <pk(x) £ $.

(a) => (b); for d„(<I>) = = n(3M3>) and n(dM$>) C "5, by definition.

(b) => (7.3); the fact that <?„($) C $ implies that d„</(x) is a linear combination of

the functions <pt(x); as indicated by (7.3).

(7.3) => (c); this follows immediately from the fact that the set {<pk(x)} is a complete

solution of the equation d„Xk = CkmD"rXr .

Finally, (c) => (7.3) because a system of linear differential equations of order n can

always be transformed into a system of first-order equations. Hence da<pt(x) is contained

in $. This completes the proof.

Assuming that the conditions of the theorem are met, we can use (7.3) to obtain the

derivative of an arbitrary element F(x) = Fkipk(x) £ <f>:

d„F(x) = DkumFt<p„(x). (7.4)

However, the relation

n dj(x) = Dl"F k<pm(x) (7.5)

need not hold irnless the following stronger conditions are imposed on $:

(a) = nd„ on

(b) <u$) = $,
(c) Dk„" is regular.

It can be shown that conditions (7.4), (a), (b), and (c) are equivalent.

Under the assumption that these stronger conditions are also met, the action of a

differentiation dM in JF can be completely described in our approximation by the array

Dk™ of (7.1), and higher derivatives may be represented as well using powers of Dk~ .
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Indeed, introducing the discrete operators

di: = Dk;cr, Dr (7.6)

and

Bl: = Dk; DTC„ , (7.7)

it is easily shown, for example, that

dMx) = Dk;,Ft<P„(x), (7.8)

div a = d.a" = DfAfo^x), (7.9)

div a dot = Dk™AukMm , (7.10)
i

(J, dj) = D;kFkGm , (7.11)

(dj, d,g) = Bk:xFkGm , (7.12)

f grad /-grad g d(R = Bm^FmGk . (7.13)
J<X

We also note that it is possible to use other types of discrete operators such as

B>„,kv, = , <pm) = CkrCm, D", (7.14)

D'*m = C„r D'k = Ck' D,.rm , (7.15)

D'km = Cmr Dl; = Ckr D„mr . (7.16)

Then

d*<Pk(x) = B>„ikm<pm(x) = D"k<pm(x), (7.17)

V(x) = = Z):>m(x), (7.18)

dpF(z) = F* D„.kmVm(x) = DkmFkVm(x). (7.19)

Clearly (7.14)-(7.16) can be used to obtain a variety of alternate forms of the examples

(7.8)-(7.13).
Derivatives of higher order than the second can be computed, in general, by the

formula

a, • • • axF(x) = c,Am • • • cVQcT, d'J Dk/ ■ ■ - d? dtf^x). (7.20)

It should be noted that the stronger conditions (a), (b), and (c) (and even the weaker

conditions (a), (b), (c)) are rarely satisfied in applications. However, we hope that the

dimension G can be taken sufficiently large so that these conditions are satisfied in some

approximate sense. If these conditions are not met, it is interesting to note that the

derivative of the projection of a constant need not be zero!

8. Linear operators. As an extension of the ideas covered in Sec. 7 on derivatives,

we now consider the properties of approximations to a linear operator £: J —> $F. In

general, the action of £ on $ will be described by the matrix

Lkm = (£/, p"). (8.1)
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Then

H£tpk(x) = Lkm<pm(x)- (8.2)

In general

£f(x) = £F(x) + £f(x) (8.3)

and

H£f(x) = II£F(z) + II£/(x) = LkmF^Jx) + II£/(x). (8.4)

Therefore, to simplify the analysis we once again assume commutativity of £ and II

II£ = £11. (8.5)

It is understood, of course, that (8.5) may hold only approximately in many cases, the

difference £11 — £11 being a measure of how well the subspace 3> corresponds to the

problem at hand. With the commutativity (8.5) in effect, we can set

ILC? = £11/ = 0 (8.6)

and

n £/(*) = LmkFm<pk(x). (8.7)

The adjoint operator £ of an operator £ is defined by

(£/, g) = (£g. /)• (8.8)

In our approximation,

LkmFkGn = (ri£F, G) = (II£G, F) = LmkFkGm (8.9)

or

Lkm = Lrk. (8.10)

Thus, as expected, the matrix of the adjoint operator is the transpose of the matrix of £.

Consider now the two eigenvalue problems

£/ = X/ and £,g = \g. (8.11)

For our approximation, these equations can be represented by

(Lkm - \Ckm)Fm = 0 (8.12)

and

tLkm - \Ckm)Gm = 0. (8.13)

But it is well known that a matrix and its transpose have the same sets of eigenvalues.

It is further possible to choose biorthogonal sets of eigenfunctions, these be:ng uniquely

defined when all eigenvalues are distinct. Thus, if F'ma' and G'J' denote eigenvectors

corresponding to eigenvalues \a and of Lkm and Lkm, then

LkmFla) = \aCkrFla), (8.14)

LkmGT = X.C'G'/' (8.15)

and we have

Fia)Gkm = CmkFla)G[" = 5a$ . (8.16)
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In particular, if the junctions <pk(x) are eigenfunctions of a linear operator £ on 5, the

conjugate functions <pk(x) are eigenfunctions of the adjoint operator £. That is,

£Vk{x) ~ ^ (®) = (x)• (8.17)

If, then, £ is self-adjoint, the eigenfunctions coincide: <pk(x) = <pk(x) (within a constant).

9. Applications to finite-element approximations. In order to apply the theory of

conjugate approximations developed thus far to finite-element approximations, it is

necessary that we identify the character of the base functions <pk{x) for general finite-

element representations of the function f{x). This requires some modifications in notation

and the incorporation of additional structure in our approximations of /£x).

Toward this end, we begin by representing the domain (R by a domain (R which consists

of a collection of E subdomains r. , each usually being of relatively simple shape, con-

nected appropriately together so as to approximate (R. The subdomains r, are called finite

elements. The union of the disconnected subdomains is denoted (R*; i.e. (R* = Uf- r. •

The description of relationships between (R and (R* involves certain concepts which

are fundamental to finite-element approximations. To proceed further, it is convenient

at this point to introduce the idea of nodal points discussed previously. In finite-element

approximations, however, we make a distinction between local nodal _points identified

in the finite elements and global nodal points in the connected domain (R. To distinguish

further between local and global approximations we follow the notation of [1] and use

upper-case Greek indices for discrete global quantities and upper-case Latin indices for

discrete local quantities. For example, denotes the local coordinates of node N of

element e while AA denotes the global coordinates of node A of the connected model.

The connectivity of the finite-element model is established by E embeddings A of

local nodes in the disconnected element r. into appropriate global nodes in <R defined by

the Boolean transformation

("A X, = A*, (9-1)

where

u> A a- = 1 if node A of the connected model is incident with node N

of element e (9.2)
= 0 if otherwise.

In (9.1) the repeated index A7 is to be summed from 1 to N. , where N. is the total number

of nodes of element e, A = 1, 2, • • • , G, and, for simplicity, the local coordinates £(,, and

global coordinates x are assumed to coincide. The mapping te)A describes an embedding

of rt in (R. Note that A = A can be used to describe, alternatively, a mapping

of (R* into (R.

The transpose of (e>A.v is denoted and defined a mapping of nodes in <R into

nodes in r, :

(9.3)

The definition of is thus the same as <e)A£ :

= 1 is node N of element e is coincident with node A of

the connected model (9.4)

= 0 if otherwise.
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Clearly, the arrays <j>Oa and U>A£ , can be used to form the composition 'AU)S2 = IT, ,

Ir. being the identity matrix:

(e)A% = bl . (9.5)

We now turn to the finite-element approximation of an element /(i) G !F. We recall

that the projection II: $ describes a G dimensional subspace of JF, spanned by the

functions <pa(x) (denoted previously <pk(x)), in which /(x) is approximated by

f(x) = F(x) = FVa(z). (9.6)

Let Pte) denote a projection of SJ into an Ar,-dimensional subspace ^<e> of functions with

domain r. which is defined by introducing a system of N. linearly independent local

base functions (Q, £ being local coordinates, with the properties

rft

= o" £ VN'\i) = 1. (9.7)
AT-1

Then locally

1(x) = /<e>© = fliK'Ka) (9.8)

where

/?., = /"'(f)- (9.9)

To relate the local functions i/>'(£) to the global functions <p±(x), we require that ^"'(S)

be the restriction of <pA (x) to element r, described by

K'y(x) = (e)A W*)- (9.10)

In (9.10) and in results to follow, we do not distinguish between £ and x unless confusion

is likely. This relation defines a mapping <e) A: $ —» and also follows from the fact that

the values of (x) and <pA(x) are in one-to-one correspondence with points in their

domains r. and Si, which are related by (9.1) and (9.3). It follows that for x r, , we

also have the relation defined by

P4(x) = (e)0 JM?'(z). (9.11)

and, almost2 everywhere in (R,

Mx) = Z "'Q,U»\x). (9.12)
« — 1

Eqs. (9.10) and (9.11) define fundamental relationships between the local and global

base functions which are needed in finite-element approximations. From the definitions

of P° and II it is clear that

pm = t.)An< (9.13)

With the same provisions that apply to (9.12), we see that (9.6) can now be written

' This relation holds everywhere except on a set of Lebesgue measure zero, since at an inter-element

boundary point common to m adjacent elements the value of (9.12) is to instead of unity. We shall

nevertheless use formulas of this type in further developments, with the provision that a factor 1 /to be

introduced when boundary points are considered, because such sets of zero measure do not contribute to

Lebesgue integrations over (R.
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F(x) = F*Mx) = Z FL U)al^\x) = ± = Z / (9.14)
e ™ 1 e — 1

wherein we have used the transformation

fM = mUnaFa. (9.15)

With the basis <pA(x) now described for the finite-element approximation, we can

proceed to apply the theory of conjugate functions developed previously. Introducing

(9.12) into (2.7), we see that the fundamental matrix of 3> for finite-element models

is given by

c™ = (*r , vt) = Z Z (,,02fW£\ *i?). (9.16)
« /

Since, for the connected model,

(W, W) =0 e*f (9.17)

(9.16) can be written

CTA = ± <"12? f,)QJ&'i , (9.18)
0

where is the local component of Cri relative to element e:

tilr = (^\ *£'). (9.19)

/In important observation is that the local matrices c^ cannot be used to generate local

conjugate junctions in a manner analogous to that used earlier to compute <p{x) since we

have limited $ (and $*) to continuous junctions. We have designed the functions (x)

so as to give continuous base functions <pA(x) on (9^5), but we have no reason to expect

that Z« (cm)"V« W will also be continuous on (R.

We now direct our attention to the important problem of determining conjugate

approximations for finite-element representations. We begin by considering a linear

functional obtained by forming the inner product of the function

/(*) = FVa(*) = Z lt)QUZXx)F* = Fa9\x), (9.20)
e

and an arbitrary function G{x) £ $ which is also the sum of E local approximations g(" (x):

G(x) E g"\x) = GA<p\x). (9.21)

We have

(F, GO = F*Ga = FaGl = F*(Z W'(x), GO, (9.22)
m

wherein

G* = «?,va) = Z "]W, (9.23)

and we have defined

fflr" = (G, *<,*>)■ (9-24)

We see that, unlike (9.15), the global values GA at a global node A are obtained by

slimming all of the local values g„" at local nodes incident on A.
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Returning to (9.21), we can now define systems of local conjugate base functions, for

G(x) = Z "WW) = Z t\*)- (9-25)

Thus

where, from (9.25),

or, in view of (9.12),

gMto = K^)gs\ N = 1, 2, • ■. , N, (9.26)

*?.,(*) = "^1<p\x) = mqZC"Mx) (9.27)

VUx) = "'alcAT it l"nUX\x). (9.28)

The form of (9.28) is significant; it shows that the "local" conjugate base junctions for

dement e are linear combinations oj the base junctions <Ph\x) oj all E finite elements. Thus,

the junctions ^f,)(x) need not have local support; indeed, the support of each local function

^f„(x) is the entire connected domain (R. This means that the usual procedure of calculating

local values of conjugate approximations by taking local averages of the nodal values g(N"

(e.g., computing element stresses from a displacement approximation) is not strictly

correct. In order that the local conjugate approximation be consistent with the linear functional

defined on $ (e.g. energy), it is necessary that it be referred to a basis which has as its domain

the entire collection of finite elements. We shall demonstrate these properties of local

conjugate approximations by means of an example in the following section.

Observe that
E

(>?., , *'«") = £ '"oJW, *i")
/-i

Thus

Also note that

= "}QTaCat . (9.29)

Z (*?., , fir') '"Of Av = Si . (9.30)
• -1

<p\x) = CAr ± (9.31)

With the base functions <pA(a:) and <pA(x) determined for finite-element representations

by (9.11) (or (9.12) and (9.31), it is now a simple matter to generate other quantities

needed in finite-element approximations. For example, from (4.10) and (4.11),

= [ Mx) deft = £ (,)W = E Cir , (9.32)
Ja «-l r-l

M

where

m~N = f *n\x) dr. , (9.33)
J re

MA = Car E = 1. (9.34)
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Also, if we define a local discrete operator by

dn.xM = , ifrW), (9.35)

then, according to (7.14) and (7.1),

•D,.Ar = ^2 ' 'fir dp'yjf , (9.36)
«-i

D*r = C^CTa f) U>Qa mQ? CU • (9.37)
• -1

Thus, for example,

3.F(x) = E "'a? d'^vFVto. (9.38)
e

Since and B% can be obtained immediately for finite-element models by intro-

ducing (9.37) into (7.6) and (7.7), it is a simple matter to write relations such as (7.8)-

(7.13), (7.17)—(7.19), and (8.1) in forms appropriate for finite-element approximations.

We omit these details here, but consider an example in Sec. 10.

10. Examples.

10.1 Stress calculations. To demonstrate the significance of the conjugate functions

described in the previous section, we present in this section a simple example

involving the computation of stresses in a model based on approximate displacement

fields.
Consider a nonhomogeneous bar for which the stress <j{x) is given by the formula

<t(x) = k(x) (du(x)/dx). (10.1)

Here u(x) is the displacement field, and the modulus k{x) is assumed to vary linearly

according to

k(x) = k0( 1 -(- x), (10.2)

k0 being a material constant.

For simplicity, we shall employ a rather crude finite-element representation consisting

of only three one-dimensional elements, each of unit length. To simplify matters further,

we take for the local base functions ^(x), corresponding to a typical element e the

linear forms

*!"(£) = 1 - €, = & (10.3)

£ being a local coordinate, so that the local fundamental matrices are

~2 f-(«)   / I (e)
Cnm ~ KVn I YM ) ~ g

1 2
(10.4)

Determining, by inspection, the incidence operators MC2% and introducing (10.4) into

(9.14), we get

C -iC4r - 6

2 10 0

14 10

0 14 1

0 0 12.

and Cir = jz
4o

26 -7 2 -1

-7 14 -4 2

2 -4 14 -7

-1 2 -7 26

(10.5)



80 H. J. BRAUCHLI AND J. T. ODEN

The conjugate base functions can now be computed with the aid of (8.25):

#„(*) = -h[26^\x) - 7(*?\x) +

= A[-7^"(®) + 14(^l>(a) + t?\x)) - 4(^2)(x) + ti3\x)) + 2*J"(s)] 0)

"At 2)(%) — *P(3)(%)

= A[2tfl)(s) - 4(^2>(x) + tf\x)) + U(i?\x) + ^'3,(x)) - 7tf\x)),

*«>(«) = + 2(^u(x) + *?\x)) - 7(^(x) + t?\x)) +[26^>(x)].

The forms of the functions ^'(x) and ^f#)(x) are shown in Fig. 1.

- /4-//S ~al'S

23/15-

1//%)' lis'ex)W V-SL

Zgtej--:j*sr

-14/15

Fig. 1. Local base functions ^ \x) and their conjugate base functions ^(e)(i).
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We shall now assume that the bar is given a prescribed quadratic displacement

field of the form

u(x) = «(1 - (x/3)2), (10.7)

where a is a small constant. Clearly, the exact stress distribution is

<t(z) = (—2afc0/9)i(l + x). (10.8)

However, the displacement field, as represented by the finite-element model, is piecewise

linear:

U(x) = (a/9)[9<pi(x) + 8<f2(x) + 5<p3(z)], (10.9)

where

<Pi(x) = <p2(x) = ip2](x) + <Ps(x) = t'i"(x) + ^i3,(x). (10.10)

If the usual procedure for computing stresses in finite elements is used, we simply

introduce (10.9) into the constitutive equation (10.1) for each element. This results in a

discontinuous stress distribution which exhibits a finite discontinuity at the juncture

of each element (Fig. 2). Further, the maximum stress computed in this manner is

16.7 percent in error.

A quite different profile is obtained if the proper conjugate approximations are used.

Introducing (10.9) into (10.1) gives, as before, a local stress field (x) for each element.

The conjugate (nodal) components 1 are then obtained with the aid of (8.21):

= (cM{x), *£>(*)). (10.11)

Therefore, the conjugate-function representation of stress is given by

c(x) = crx'tpu)(x), N = 1,2. (10.12)
e-1

This conjugate stress profile is shown in Fig. 2 along with the exact solution and the

discontinuous distribution obtained using common procedures. We see that the distri-

bution obtained using conjugate approximation functions is continuous at the junction

of adjacent elements and that it indicates a maximum stress which is less than 6.5 percent

in error..

10.2 Piecewise linear approximation functions of one variable. As an explicit but

simple example to the foregoing discussion, consider the piecewise linear approximation

functions arising by dividing an interval I in N equal subintervals of length h, and

requiring <pt(x) to vanish at all nodes except node xk = hk, as shown in Fig. 3. Then

M0 = Mff = fa <po d(R = h/2, Mk = /« <pk clSi = h for k = 1, ■ ■ ■ , N — 1 and the

fundamental matrix is
^2 1 0 • ■ • 0

1 4 1 ••• 0

Ckm = / <Pk<Pm dG{
,

0 1 4 ••• 0

0 ••• 4 1 0

0 ••• 1 4 1

0 • • • 0 1 2

(10.13)
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Z5-

O O Conventional

Z0- Conjago-ha Func+ions

*<

x

b
o»
i

<0

Pjg. 2. Comparison of stress distributions computed conventionally with conjugate function approxi-

mation.

Define the n by n determinants

4 1

1 4 1

1
' • 1

O 14 1

1 4

satisfying the recurrence relation

An+1 - 4An + 4„_, = 0. (10.15)

An =
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cp(x)

E

h Zh ■ ■ ' (E-l)h Eh

Fig. 3. Base functions <pii.x) for finite-element representation of interval on real axis.

Since

2 1 0

1 4 1

0 1 4
B. = '

2 1 0

1 4 1

0 1 4

Cn =

4 1

1 2

(10.16)

O 4 1

1 4

are linear combinations of Ak

Bn = 2An- An,2 = A„ - 2A„_, , (10.17)

Cn = B„ — 2= 3A„_2 . (10.18)

They also satisfy (10.15). Now (10.15) admits two independent solutions in geometric

series ak = a, bk = ak where a = 2+VS = 3.732050808 and (a-1 = 2-VS = 0.267949191)

satisfies the quadratic equation

2
a - 4a + 1 = 0. (10.19)

Ak and Bk are then linear combinations of a and a"':

Ak = y(ak — af*~2) Bk = §(a* + a'k), (10.20)

where y = a/(a — a~l) = 1.077350269. The beginnings of the series At , Bt are repre-

sented in Table 1 below in which the relation

A2Ak = Ak+l - 2At + A,., = 2Ak (10.21)

has been used.



84 H. J. BRAUCHLI AND J. T. ODEN

TABLE 1

c*~ = 1
390h

Now the inverse of the fundamental matrix is

Ctm = (-1 k < m. (10.22)

The elements for fc > to being given by symmetry, Ckm = Cmk. As an example, for TV = 6

' 1352 -362 97 -26 7 -2 1

-362 724 -194 52 -14 4 -2

97 -194 679 -182 49 -14 7

-26 52 -182 676 -182 52 -26 (10.23)

7 -14 49 -182 679 -194 97

-2 4 -14 52 -194 724 -362

1 -2 7 -26 97 -362 1351.

The corresponding conjugate functions are shown in Fig. 4. As a check, we can verify

Mm = MlCim = 1 = /„ <pm(x)2 M. Using (10.20), (10.21) becomes

C"" = (~l)t+" ~ + a y* " + * ^ , k<m. (10.24)
ft a — a

or in the limit G —» <», k ~ m ^ N/2

Ckm^ (-iyk-m\Vz/h)a-,''-ml, k, to arbitrary, (10.25)
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or

Fig. 4. Conjugate functions corresponding to base functions in Fig. 3.

r,km Vz

h

1 —a a —a

-1 i -1 -2
-a 1 —a a —a

—a 1 1 —a-1 a~

1 —a

(10.26)

For an analytic function f(x) = anx" we may obtain explicit formulas for the

components Fh. Since for 0 < fc < N

f xn<pk d(R = (hn+1/(n + 1 )(n + 2)) A2F+2, (10.27)
</«

we obtain

Fk = (1/A) A2/("2,(fcA), (10.28)

where /(_2) = (a„xn+i/(n + l)(n + 2)) is a second antiderivative of /(z) and A5
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denotes a second difference operator. The corresponding formulas at the boundaries are

Fo = (l/h)f-"(h), F„ = f-"(Nh) - (1 /h) Af~2)(Nh), (10.29)

/'~n being a first antiderivative, A the first backward difference. In the limit Ar —► m

(10.28) may be replaced by

Fk = hj(kh). (10.30)

Since the derivatives dtpk(x) are discontinuous, the commutativity condition 513 = lid

(see Theorem 7.1) is clearly violated. Yet it makes sense to introduce matrices Dkm and

Bkm in analogy to (7.1) and (7.7),

Dkm — f fk d<pm d6\, Bkm = f d<pk d(pm d(R. (10.31)

While Bmk is symmetric, Dkm is almost antisymmetric, because

i >pk d<pm d(R = — / <pm d<pk d(R for 0 < k, m < A".
J (R J®

Numerically

Dkm =

-110 0

-10 10

0-1 0 1

-1 0 1

0 -1 1.

1-1 0 0

-1 2-1 0

0-1 2-1

-1 2-1

0 -1 1_

Now (7.13), i.e.,

[ dfdgcKR = BkmFkGm (10.33)
J at

is a reasonable approximation, while (7.5), i.e.,

3/ = DkmFk<pm(x) , (10.34)

will be rather crude. This is illustrated by Fig. 5, where Dkm is applied to a base func-
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-F(x)

Fig. 5. Projection of derivative.

tion This explains why computing Bkm out of Dkm by (7.7) would give a false

result. On the other hand,

I <pk d2<pm d(R = — f d<pk d<pm dOi, 0 < k, to < N, (10.35)
* fit •'(R

suggests that —Bkm may be used to compute second derivatives

d2f(x) = -BkmFk<pm(x) (10.36)

instead of (7.6), (7.8). In fact,

II d~<pk = II[(l//i) S(x — kh — h) — (2/h) o(x — kh) + (l//i) 8(kh + h)]

= (1A)^"1 - 2<p + ^'+I)

yields

f <Pk 3Vm d(R = — Bkm . (10.37)
^<R

10.3 A two-dimensional example. Essentially the same procedure outlined previously

can be used for two- and three-dimensional finite elements. As a final example, we outline

briefly the construction of the conjugate approximation functions corresponding to a

two-dimensional network of triangular elements.

Consider a triangular element in the Xi , x2-plane, the vertices of which are the local

nodal points. The local interpolation functions \p'N"(x), wherein x = (xi , x2), are linear

functions of Xi and x2 and satisfy i/v' (aM) = o% ; M, N = 1, 2, 3. Introducing these
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functions into (9.19), we obtain for the local component of the fundamental matrix Cri ,

2 1 1

Cvi = / WQMXx) dA = ~ 1 2 1

1 1 2

(10.38)

wherein A is the area of the triangle. We observe that (10.38) is independent of the

included angles a, (3, y formed by sides of the triangle. However, discrete models of

various differential operators may depend on these angles; for example, for the triangle

shown in Fig. 6a,

<°)

(b)

Fig. 6. Two-dimensional network of triangular elements.
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dyii = J grad ̂ "(x) grad if>'u(x) dA

cot /S + cot 7 — cot i — cot 0

— COt T COt 7 + cot a —cot a

— cot — cot a cot a + cot (3_

(10.39)

To demonstrate the character of the conjugate approximation functions for a specific

finite-element representation, consider the network shown in Fig. 6b. In this case, we

Fig. 7. Representative conjugate functions.
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have from (9.16) or (9.18),

Car — (<Pc> , <Pr) — jr>

1 0 1 0 0 0 0 0

6 1 2 2 0 0 0 0

4 0 2 1 0 0 0

6 2 0 1 0 0

12 2 2 2 0

6 0 2 1

Symmetric
4 1 0

6 1

2

(10.39)

A being the area of an element. Inverting this matrix and making use of (3.7), we obtain

the conjugate approximation functions <pA(x). Since, in the present example, the func-

tions <p&(z) are linear, <pA(x) are also piecewise linear and it is sufficient to merely calculate

the values of the conjugate functions at each node. Rather than to write out the entire

collection of functions, we cite as representative examples the nodal values

<p\A&) = j [.580, - .080, .009. - .080, .027, -.009, .009, - .009, .009]

<p\Aa) = j [.027, - .027, - .045, - .027, .116, - .027, - .045, - .027, .027] (10.40)

<P*(A") = -j [-.009, .000, .027, .018, - .027, - .054, -.045, .214, - .080]

These functions are illustrated in Fig. 7.
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