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Abstract. The problem of two- and three-dimensional small disturbances in a dis-

sipative gas is considered. Explicit forms in terms of known functions are obtained for

the time-asymptotic theory in each case. Although the far field solutions may be non-

linear in one dimension, they are always self-consistently linear for two and three

dimensions.

1. Introduction. In the present paper we consider the evolution of disturbances as

governed by the linearized Navier-Stokes equations. A previous paper (Sirovich [8])

dealt with the one-dimensional case and in the present study the program is completed

by the two- and three-dimensional results. This is therefore an appropriate time to

sum up the results of the linearized theory and to also place it in perspective within the

nonlinear framework.

In this connection we first comment that the main problem has been to find a funda-

mental solution. This solution plays two different roles in the theory. First, it may be

used to construct the solution to an arbitrary initial value problem. This is briefly

discussed in Sees. 2 and 3 below and more completely developed in [8]. A second use is

in describing the solution to the linear problem for t approaching <=. The fundamental

solution without further manipulations yields the solution for large times, at least when

the proper significance is given to the constants that appear. Although the first applica-

tion is the more important one, at least in the sense that it includes the second, we use

the second to illustrate the results thus far obtained and its relation to the nonlinear

theory.
To start this discussion we recall the results obtained by Sirovich [8] for one dimen-

sion. We denote the total mass, momentum and energy addition of the initial disturbance

by m, M, and E respectively. Then the period of final decay to lowest order is governed by

exp (—z74id) qX
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where v = [p, u, T] represents the perturbation density, velocity, and temperature

respectively and q^qj (i = 1, 2, 3) are constant matrices defined in [8]. The normalization

is discussed in Sec. 2. These results have been derived under the assumption that t» 1.

For the large-time asymptotic case, in addition, t is large compared to the time for a

sound wave to traverse the initial disturbance (see [8] and Sec. 6 below).

The solution (1.1) is concentrated in three regions of maximal asymptotic behavior—

the wave regions moving to the right and left and the contact region which remains at

the origin. In view of the fact that the regions are disengaged for large times, we may

write, using an obvious notation,

v ~ v+ + v0 + v_ . (1.2)

The basic assumption characterizing the linearization of the nonlinear Navier-Stokes

equations is that

u-Vu g V2u. (1.3)

(All quantities are dimensionless under a normalization which leaves the Reynolds

number 0(1).) Because our solution decouples (see (1.2)), we need to look at condi-

tion (1.3) in each of the regions. In particular, for the case of the right travelling velocity

perturbation in (1.1),

, , Q exp (—Or — Vyt)2/4(Tt) , .
u(x, t) ~ /— ,. , 1/2 , (1-4)

2 V 7 (4jr<rl)

and condition (1.3) becomes

Q « 1 (1.5)

where

Q = m + "\/y M + xE- (1-6)

The following points should be noted. First, even though u (1.4) is small in magnitude,

it is not valid for all time unless (1.5) holds. Secondly, even if the perturbed initial data

v(x, t = 0) = v0(x)

is small, the linear theory is not valid for t —* » unless the integral of the perturbed

initial data satisfies (1.5). (In this case it is, however, correct on shorter time scales

including the initial instant.) Alternatively, even though the initial data is large point-

wise at t = 0, the linear theory is valid for i if (1.5) holds.

For the case where the convective terms are of the same order as the dissipative

terms, a nonlinear theory may be given which leads to Burger's equation. This is not

surprising, however, in view of the work previously done by Su and Gardner [10], Moran

and Shen [6], Lighthill [5], and Hayes [4]. These results constitute the subject of a

forthcoming paper.

We next consider the two- and three-dimensional solutions. Here the solutions

decouple into two regions of maximum asymptotic behavior—the wave regions moving

outward from the origin and the contact region which remains at the origin. The contact

region consists of two parts, a vorticity region structured by viscosity and an entropy

region structured by thermal conductivity.

Considering the wave region only, the two-dimensional perturbation velocity describ-
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ing the period of final decay is given by

,p f\ Q_ r(f)M(f, $, - ((R -
U[K' l) 8Rw\3/2(at)3/i (1 ?)

+ ^Tjm " V^"'/4'") M(h 1(* " ^,)V4rf)-

For three dimensions we have

wfr, 0 ~ ^ 2r(47rX^ 6XP ~~ 'Vytf/*<>$■ C1-8)

{M(a, b, z) is the confluent hypergeometric function and R and r denote the two- and

three-dimensional radii respectively.) These results are derived below in Sees. 4, 5 and 6

under the same assumptions as in the one-dimensional case. Applying (1.7) and (1.8) to

our criteria for self-consistency of linearization (1.3), we find that the two-dimensional

counterpart to (1.5) is

Q/t3/4 « 1, (1.9)

and for three dimensions

Q/t3n «l. (1.10)

It follows that the flow field is always self-consistently linear for sufficiently large times

in two and three dimensions, independently of the initial disturbance.

We mention in passing that when the time is such that (1.9) or (1.10) is violated,

a nonlinear theory resembling that of Burger's equation has been derived and this

shorter time regime may be analytically described. These results will be included in the

aforementioned report of our work.

Finally we mention that certain aspects of the present study have been considered

by RyJhov [7]. Rylhov examined the decay of perturbations in cylindrical and spherical

sound impulses. In particular, he showed that the structure of waves and the asymptotic

relationships of their decay when time approached infinity were related to the effects

of viscosity and thermal conduction.

2. Formulation. We introduce the equilibrium quantities

/Po tPo > To , a0 — (dpo/dpo)r<, , C, — (dCo/dTo)p

a yet unspecified length scale L and the following normalized perturbed quantities [8]:

t = x/L, I = a0t/L, p = (p - p0)/p0, u = u/a0, T = (c,/alT0)u\T - T0).

We drop all tildes with the understanding that all quantities are now dimensionless.

The normalized, linearized Navier-Stokes equations are

d '
r. u

dt

"o V- 0

+ V - 5VV- — vV' XV

.0 XV- -£V2J

(2.1)
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where

V = n/ipoOaL), 5 = (/3 + m/3)/(po«oL), £ = </(poC,a0L), x = (7 — 1)1/2

(2.2)

and 7 = c„/c, = Co/a* with c0 and a0 being the adiabatic and isothermal speeds of sound

respectively. Symbolically we write (2.1) as

(dv/dt) + A(V)v = 0. (2.3)

We formally solve (2.3) by means of Fourier transforms. Define

v(k) = / exp (+ik-x)v(x) dx.
*/_ 00

Notice that under the transformation V —► —ik, the transformed form of Eq. (2.3) is

(dv/dt) + A(—ik)v = 0.

It is convenient to introduce the fundamental matrix V(k, t) in = 2, 3) which

satisfies

(dV/dt) + A(—zk)V" = 0, V(t = 0) = 1. (2.4)

Then the solution of the transformed problem in an unbounded domain and for arbitrary

initial data

v(t = 0) = v0(x) (2.5)

is given simply by v(k, t) = V"(k, 0vo(k). Fourier inverting, we obtain

v(x, t) = V"(x, 0*vo(x) (2.6)

for the solution to (2.1) subject to the data (2.5). (The asterisk denotes space convolu-

tion.)

3. Nature of the asymptotic solution. It is now convenient to fix the length scale

L by choosing 5 defined in (2.2) to be order unity. On physical grounds we know that

this choice makes the remaining dissipative parameter £ and 77 0(1). (From the point of

view of kinetic theory the scale L is proportional to the mean-free-path.) In this section

we search for the time-asymptotic form of the fundamental matrix V"(x, t). Because of

the choice of the length scale, the normalization time scale may be likened to the mean

time between molecular collisions. Hence large times in the asymptotic sense will be

very small on a macroscopic scale.

From (2.4) we have that

V(k, 0 = exp [-A(-tk)«]

and hence that

V(x, t) = j exp [-tk-x - A(—zk)<] dk (3.1)

where n denotes the number of space dimensions. Also, from (2.6), the solution to an

initial value problem in an unbounded domain is given by

v = V"«v0 = -~y j exp [-tk-x — A(—zk)i]v0(k) dk. (3.2)
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On denoting the matrix of eigenvalues of A(—tk) by D and the corresponding matrix

of eigenvectors by S, we may write

A = SDS-1

so that

v(x, t) = J exp (—■ik-x)Se~D'S~'-v0 dk.

On representing the eigenvectors of A by q* and the corresponding eigenvalues by d',

the symmetry of A gives us the following simplified form:

i "+2 f" n"n"
v(x, 0 = 7^-y. E / exp [—tk-x - <f(k)f] dk (3.3)

»-i J-oo q *q

where as earlier n represents the number of space dimensions.

The precise evaluation of the d" and q" is extremely difficult; however, the perturba-

tion expansion in small k is straightforward. The results for three dimensions are

rf" = X1 + 0(F) = vk2 + 0(ks)

q1 = w1 + 0(k) = [x, 0, 0, 0, -1] + 0(k)

d2 = X2 + 0(F) = vk2 + 0(k3)

q2 = w2 + 0(F) = i[0, fc2 , -fc, , 0, 0] + 0(F)

d3 = X3 + 0(F) = „F + 0(F)

q3 = w3 + 0(F) = i[0, -k,k3 , -k2k3 ,k\ + kl, 0] + 0(F)

a* = X4 + 0(F) = iVric + crfc2 + O(F)

q4 = w4 + 0(F) = z'[—A, ft, Vt, k2Vy, k3Vy, -kx] + 0(k*)

d> = Xs + 0(F) = — i \/-y/: + «rfc" + 0(F)

qS = Ws + 0(F) = i[fc, *, Vt, k2 Vt, fcaVT, fcx] + 0(F)

where

0- = §0? + 1 + (xVr)), v = 1/7. (3.5)

The results for two dimensions are

d} = x1 + OQc3) = vk2 + 0(F)

q» = w1 + 0{k) = [x, 0, 0, -1] + 0(fe)

d3 = X2 + 0(k3) = „F + 0(F)

q2 = w2 + O(F) = i[0, , -k, , 0] + 0(F)

d3 = X3 + 0(F) = iVVc + ok2 + O(F)

q3 = w3 + 0(F) = t[-k, fc, Vt, fc2V<y, -fcx] + 0(F)

d4 = X4 + O(F) = -1V7IC + trF + 0(F)

q< = w4 + 0(F) = i[fc, fcVV, fc2V7, fcx] + 0(F).

(3.6)
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It should be noted that all coefficients above are 0(1) because of choice of our length

scale L.

Following arguments by Sirovich [8] one may show that all d's have nonnegative

real parts and d — 0 if and only if k = 0. Then from a general discussion of integrals of

the type (3.3), under these conditions, the following approximation has been proven

valid [9]:

V = Z 7^ f exp (-tk-x - X'O ̂ dk + 0*(r3*'4)
„_i (Jrj •/_„ w -w ^ ^

= Vk.s. + o*(r3n/4) •

The symbol 0*(t~v) signifies a quantity of 0(2'"") where 5 > 0 is arbitrarily small. (Again

n signifies the number of space dimensions.)

The solution to an initial value problem is given by

v(x, t) ~ VJ,. g. » v0. (3.8)

Again v0 is arbitrary initial data. One easily sees that the second property of (2.4) is not

destroyed; i.e., VN. s. —> lo(x) as 2 —*■ 0 so (3.8) assumes the correct initial data at t = 0.

4. Evaluation of the fundamental matrix for two dimensions. We consider the two-

dimensional case of (3.7):

Vn.s. = X) 7^2 [ exp (-*k-x - X"2) dk = (4.1)
X-1 \^) •>—» W • W U-1

where the eigenvalues and eigenvectors are given by (3.5) and (3.6). We now want to

find the inverse transform L„ (n — 1 to 4).

Consider

Li = 7T"\2 [ exp (—zk-x — vk2t) W W •
\£ir) J - co "y

This can easily be integrated to obtain

= (4J)

where R2 = x\ + x\ .

Next we consider

L2 = I eXP _ vk2t)^-dk (4.3)

where w2 = i[0, k2, —k,, 0]. We observe that all integrals in (4.3) can be obtained from

Ju = 7532 J exp (-ik-x - 77k2t) ^ dk (i, j = 1,2).
(2 ir)

A simple invariance argument shows that

J,.,.(x, t) = Fw(R, + y)fW(r> (4-4>
2

and straightforward calculations show that
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Fll\R, t) = [exp (-R2/4vt)]/4rnt (4.5)

F'"(Tt, !) - ,1_ (I+fe)exp(_|i)]- <4'6)
Hence

L2 =

0 0 0 0

0 *^22 ^12 0

0 J 21 J„ 0

_0 0 0 0.

To evaluate the remaining two entries of (4.1), note that

L3 -f~ I/4 — 2 lie L3 = 2 Re L4

-ft2 Vr/ck -xk2 "

= — 7^T2 [ exp (—ik-x — i\/ykt — ak2t) -72
Utt) 7^

(4.7)

<Zk. (4.8)■\Zylck — 7kk Vrxfck

—x'c2 Vrx^k — x2fc2.

The integrals involved in (4.8) are not straightforward. The following types of integrals

(not unrelated) enter in the calculation:

1 r   ^
M = 777-75 Re / exp (—ik-x — is/ykt — clc t) dk

) J-co

Mi = 777T2 Re [ exp (—zk-x — iy/ykt — o-fc2*) -p dk t = 1, 2 (4.9)
(/x; J_a> /c

1 T 7,

= ^^2 Re J exp (—ik-x — iy/ykt — ak2t) dk i, j = 1, 2.

Consistent with the error estimate in (3.7) a second asymptotic analysis may be per-

formed. This is carried out in the appendix and all the entries of (4.9) are evaluated in

terms of known functions.

We can now write down the fundamental matrix for the two-dimensional dissipative
problem:

V2 _ exp (—R2/4m>t) w'w1

N-s- ~ 4mt y

+

+

0 0 0 0

0 i/ 2J — i/ J2 0

0 — J 21 «^"ll 0

0 0 o 0_

R Vy x XR

Vt x y ̂  Vy X*

(4.10)

+ o*(t~3/2)

xR Vy xx xR

where J a is defined by (4.4), (4.5) and (4.6) and b{R, t) is defined by (A8).
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Irwiscid limit. We now want to inquire into the inviscid limit of the solution (4.10).

First we express the solution of the linearized Euler equations (i.e., setting v, tj, a — 0

in (4.1)) as

.,,11
tt2 W W \ .V% =  8(x) +

0 0 0 0

0 (?22 —Gl2 0

0 —G2\ gu 0

.0 0 0 0

Ox 0

X 0 XX

_0 xx 0 _

H(V^ t - R) _ 1

2ttv^(7 f-RT2 y

wn) o xwiU

0 W 0

,xTFcl) 0 x2Wn\

(4.11)

where

Gfi(x t) = —XiXj/irR* + 5,1/(2tR2) + 5(x) a„/2 i = 1,2, (4.12)

TF,.,(x, t) = btiWw(R, t)/2 + (XixJR2 - S,,-/2)TF<2,(E, 0 i, j = 1, 2

Vy tH(\/y t — fi)

(4.13)

w(I> —  
W 2ir(yt2 - R,y/2

wm = d?' R ~ ^1 > 0

_ (Vyt + 2(yf - R2)U2)R2

2x(yt2 - R2)3/\Vy t + (yt2 - R2)W2)2 '
V7 t — R > 0.

(#(x) and S.-, represent the Heaviside function and the Kronecker delta respectively.)

The inviscid limit may be shown to be equivalent in our case to taking v, ij, a —* 0.

Imposing this limit, we find
~0 0 0 0~

0 (?22  G J2 0

0 -<?„ (?„ 0

.0 0 0 0_

R Vy x xR

lim Vn. e. = — «(*) +
c, 9. i»—»o 7

V7 x y V7 xx

_ x£ Vtxx x2^ .

where Gti is defined by (4.12) and

l(D/d a H(V7 t - g)

0 + 0*(r3/2) (4.14)
tiy

b (R, t) =
±V2ttVr (Vt < - K)*



THE STRUCTURE OF DISSIPATIVE WAVES 143

From (4.11) and (4.14), we observe that the dissipative solution (4.10) does not

fully coincide with the nondissipative solution (4.11), the discrepancy being in the region

behind the Mach cone. However, the nondissipative solution clearly contains terms of

higher order than the error estimate in (4.14). If we consider the region y/yt — R =

0(t1/2), a simple calculation shows that (4.11) and (4.14) agree there. Therefore in a

region of thickness 0(t1/2) behind the Mach cone the inviscid limit of (4.10) and the

inviscid solution (4.14) agree. If we were to consider the dissipative solution written in

terms of Bessel functions, then the nondissipative solution would include the inviscid

solution.

It should be noted that the limit in (4.14) is not uniform in time t since no matter

how small the dissipation may be, the solution is not inviscid for large time.

5. Evaluation of the fundamental matrix for three dimensions. Setting n = 3 in

(3.7) we obtain

Vn.s. = Z 7^5 [ exp (-ik-x - \"t) dk = El- (5.1)
<1-1 w -w »i-i

We now want to calculate the inverse transforms I„ for n = 1 to 5 where the eigen-

vectors and eigenvalues are given by (3.4). The calculation of Ii is direct and leads to

exp (—r2/Avi) wV
A1 ~ (A A3/2 ..

(47Tvt)

where r2 = x\ + x\ + x\

Noting that

1 /,<D J
I2 + I3 = J_ exP (-^-x ~ ikt) p

0 0 0 0 0

0 k\ — fc2 kjtz 0

0 A/jfcj k 2 k k^Jc^ 0

0 kyk^ k2k3 kl — k* 0

0 0 0 0 0.

dk,

(5.3)

we see that all integrals above may be obtained from

H;i = J" exp (-tk-z - vk2t) ̂ dk i,j= 1,2, 3.

A simple invariance argument shows that

H„(x, t) = f Ha\r, t) + t), (5.4)

and straightforward calculations show that

Hw(?, t) = [exp (-r74„Q]/(<W)3/2 , (5.5)

() , _ JL „(_r_) + £a^fi. (5,,
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Hence "00 0 00"

0 Htl - Hm H12 Hu 0

0 H12 H22 - H(l) H23 0

0 Hl3 H21 H3a - Hm 0

_0 0 0 0 0.
To evaluate the remaining two entries of (5.1), note that

I4 Is = 2 Re I4 — 2 lie Is

-k2 Vr kk -xk
Re r exp (—zk-x — i\/y kt — ak2t)

'(2r)3i-„ 7 fc2

(5.7)

dk. (5.8)-\/y kk —-ykk V7 xkk

—xfc2 V7 xkk ~xk2 .

Again we see that the following integrals (not unrelated) enter in the calculation:

N = tttts [ exp (—zk-x — i\/~y kt — <rk2t) dk
\£tt) J-00

Ni = /Prg f exp (—ik-x — tVy kt — <rK2t) ^ dk (5.9)
(^7Ty J-co 10

Nn = 7^3 [ exp (—ik-x — i V7 fci — <rfc2f) dk.
(,27rJ k

Before proceeding further with the calculations, we pause to mention that a finer

analysis of the error terms shows that instead of (3.7) we can write

V3 = VN.S. + cr0(rs/2).

It also shows that this error term vanishes with vanishing viscosity. It is for this reason

that we indicate the coefficient a in the above.

A simple invariance argument states that

Nfi(x, t) = (5„/3)JV(r, t) + (XiXj/r2 - 8„/3)Dm(r, t) i, j = 1, 2, 3 (5.10)

and
N< = (Xi/r)Dm(r, t) i = 1, 2, 3. (5.11)

Using straightforward calculations (Gradstehyn and Ryzhik [3]), it can easily be shown

that

N<r- « " «■> ("fr

= d(r, t) + 0*(r1I/4),

+ exp (-(r-4^,)) + o*(r"")

and

A = ~2r(W)3/2 V iat

iirr'2(4:Trt7t)

n, 0 -exp (-fr-^')')

172 exp ^ — J + 0 (t
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We can now write down the fundamental matrix for the three-dimensional dissipative

problem:

"0 0 0 0 o"

0 Hu - Hw H12 H13 0

0 H12 H22 - Hw H23 0exp (—r2/4y<) w'w1

(4irvt)z/2 y
1 23

0 H13 H23 H33 - Hw 0

0 0 0 0 0. (5.12)

+

1 0 X

0 0 0

be o X2J

d(r, t) +

7

0 0 0

0 Nti 0

.0 0 0

+

0 Vy x 0

Vy x 0 Vy xx

0 V7 xx 0 .

( 1  (— (r — V7 i)'
\4:irr"(4:Trat)l/2y e ^ \ 4fff

(r - Vy t) (-(r - Vy t)2\\ 11/4.
+ awexpl m+ )•

We note that in (5.12) we carry terms of 0(f6/2). However, as we pointed out above,

terms of 0(t~6/2) have already been neglected in obtaining Vl-.s. • There is, however, an

important distinction between terms carried and those neglected. For in fact the latter

can be shown to vanish in the limit of vanishing dissipation, whereas the terms retained

in (5.12) do not vanish in this limit.

The solution appears as diffuse waves travelling outwards with a speed \/y and pure

diffusion modes (entropy and vorticity waves) which remain at the origin. The speed

y/y is just the adiabatic speed of sound in our normalization.

Inviscid. limit. The solution of the linearized Euler equations (i.e., setting v, v, & = 0

in (5.1)) can be expressed as

V| = — 5(x) -

0 0 0 0 0

0 Pn 5(x) P12 P13 0

0 P12 P22 ^(X) P 7Z 0

0 P13 P23 -P33 — §(x) 0

0 0 0 0 0
(5.13)

1 0 x

0 0 0

be 0 x2

c(r, t) +

7

+

0 0 0

0 C„ 0

0 0 0.

0 Vt X 0

Vy x 0 Vy xx

0 Vy xx 0

(6(r — Vyt )/(47rr37) - c(r, t)/ry)
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where

c(r, t) = S'(r — V7 <)/(4irr)

p Su 3x,x, 8ti (5.14)
Pii ~ ~ 4^~ + T5(x)

and

C<, = c(r, 0 + (^ - y)(-c(r, 0 + £2 «(r - Vt 0 - ^ sgn (r - V7 0),

(where sgn (x) represents the signum function).

Performing the nondissipative limit (i.e. v, 17, a —> 0) on the three-dimensional funda-

mental matrix (5.14), we obtain

0 0 0 00"

0 P11 S(x) P12 P13 0

0 P,2 P22 - 5(x) P23 0

0 P[3 P 23 P33 — ^(x) 0

0 0 0 0 0

. < ytS W W » «
lim VN. s. =  5(x) —

^. ij—»o *y

+

0 V7 x 0

V7 x 0 V^y xx

0 V7 xx 0

S(r — V7 Q _ c(r, t)
4rr37 ry

1 0 X

0 0 0

Lx 0

c(r, t) +

7

0 0 0

0 Cl)' 0

0 0 0

+ 0*(r11/4) (5.15)

where

C<;.' = c(r, t) + - ^)(-c(r, 0 + ^J(r - Vt 0) (*, j = 1, 2, 3)

and P., and c(r, <) are defined by (5.14). Again we observe that the inviscid limit (5.15)

does not fully coincide with the inviscid solution (5.13). However, this discrepancy is due

entirely to the dropping of higher-order terms in our fundamental matrix (5.12). It

should again be noted that the limit in (5.15) is not uniform in time t since not matter

how small the dissipation may be, the solution is not inviscid for large time.

The reason the inviscid limit includes the inviscid solution in three dimensions and

not two dimensions is simply due to the difference in properties of the wave equation

in even and odd dimensions.

6. Period of final decay. Consider the solution to the initial value problem for

compact support initial data of the form

v0 = v0(x) =0 for |x| > £/L (6.1)

where £ is a measure of the extent of the initial disturbance in dimensional units. Taking
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the Fourier transform of (6.1), we obtain

v0(k) = [ e,k"*v0(x) dx.
J|X|<£/L

In a straightforward expansion v0(k) = f + 0(ik£/L) where f = v0(x) dx is identified

with the total mass, momentum and energy of the initial data. Applying the same pro-

cedure used in finding the fundamental matrix, we now have for the solution to the

initial value problem (6.1)

v" = n. 8. -f + i 0*(rs"/4) (n = 2,3).

From (4.10) and (5.14), we therefore have v" ~ v* = VJ,. B.-f (n = 2, 3). For dimensional

time, r, t 2> (£/L)3(£/a0). The right-hand side is the product of the time it takes a

sound wave to traverse the initial disturbance with the inverse of a Knudsen number

based on the extent of initial disturbance, r is referred to the period of final decay. In

summary, the period of final decay is described by the fundamental solution v" (n = 2, 3)

associated with the total mass, momentum, and energy addition of the initial disturbance.

Compact support initial data was chosen for convenience. However, by more careful

estimates the same results hold, for example, for initial data which is of exponential

type at infinity. It should be emphasized that the asymptotic solution using the convolu-

tion is less severe, i.e. we can write

V = V"y.s. * v0 + 0*(t~3n/i) (n = 2, 3)

with a modulus in the error estimate of 0(1) instead of £/L.

Appendix: second asymptotic analysis. The asymptotic approximation of integrals

of the type (4.9) has been given elsewhere [9]. Due to certain variations and for com-

pleteness we outline such a discussion here. To evaluate these integrals we first introduce

the position vector x as the reference axis of integration x = Rel in terms of which

we write k = k cos 6 e, + k sin 0 e2 . Then let us first consider M in (4.9). We have

directly

M = ■£- Re [ kJ0(kR) exp (—iy/y kt — ak2t) dk
Zir J o

where J0 is the Bessel function of zero order. We first consider the region R = o(t)

where as usual t —> . This analysis is straightforward and we find M ~1 / (2iryt2), which

is an already neglected order. We therefore restrict attention to R > 0(t). Let p > 0

and consider

Q = — Re / kJ0(kR) exp (—ivr kt — <rk2t) dk;
Ztt J o

then

kJ0(kR) dk.0(Q) < [
Jo

The integral may be directly integrated and we find

0(Q) < Ji(Rt~')/fR.
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Take p < 1; in view of R > 0(t), we can use the asymptotic approximations for the

Bessel function Jx and find 0(Q) < (1 / (R3/2f/2)), which is clearly of neglected order.

Next we consider

M Q = Re [ J0(kR)k exp (—i Vt kt — ak2t) dk.

Since the argument of the Bessel function is large, we may write

J0(kR) = (2/irkR)1'2 cos (kR - (*-/4)) + 0(l/(fc£)3/2)).

Consider

A = ^ Re J £«/<,(&#) — cos — exP (~iVr — ak2t)k dk;

then, using straightforward estimates, we find 0(A) < l/Rt3a~")/2. It only remains for

us to consider

Aw = ^ Re cos ~ j) exp (—1 Vt kt — ck2t) dk,

for which we easily find 0(A(1>) < l/(RI/2t3p/2). Therefore taking, for example, p = §

we have demonstrated that

M = (2Jfl)'/2 /0 fcl/2 cos [kR ~ l)exp kt - dk + o(r3/2). (Ai)

Next consider M{ of (4.9). A simple in variance argument states

Mi = (xJRmR, 0 i = 1, 2, (A2)

and we easily show

B(R, t) = —77^ i f exp (—iy/y kt — ck7t)Jl(kR)k dk. (A3)
^7T J q

The same arguments and estimates used in obtaining (Al) may be applied to (A3). It

suffices to say that we can replace Jx(kR) by its asymptotic approximation and write

B(R, t) = - ,0 5^175 i f" kl/2 cos (kR - 7) exp (-iV^ kt - ck2t) dk + 0(r3/2).
(w7T K) J0 \ 4/ (A4)

Finally, considering Mtj of (4.9), we can write

Ma = ^ M(R, t) + (^§L- y)bU)(R> 0 3 = 1, 2, (A5)

where M(Z2, <) is given by (4.9) and

5m(fl, 0 = f ke-iV^k'-"l"J2(kR) dk; (A6)
^7T J 0

using previous arguments, (A6) becomes

£U)(i?, t)

= (9J^e)1/2 fc1/2 cos (fcR - exp (-iV7 kt - <rk2t) dk + 0(t~zn). (A7)
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The integral occurring in (A7) is the same as that appearing in (Al). Therefore this and

the integral in (A4) are the only integrals which need to be evaluated.

Both integrals may be evaluated using standard integral tables. In an obvious

notation

Ba\R, t) = b(R, t) + 0(r3/2),

we find

hm a _ 1X3/4) (3 1 (R - t)2\
m' tJ ~ 8R1/2T3/2(<rt)3/iM\4 '2' 4a t J

r(5/4)(ft - V7 t) exp (-(R — V7 t)2/4crt) 3 (R - Vy t)
8Rl/2ir3/2(at)

■ v-v  V I -1  v^. v , y / ^ V ^ A 3 (ft V7 Q2\ . .

1 \4 ' 2 ' 4ai / '

where Af(o, 6, 2) is the confluent hypergeometric function [1]. A similar argument for

B(R, t), (A4), shows

B(R, t) = -b(R, 0 + 0(r3/2).

In resum6, we have shown M = 6 (ft, t) + 0(t~3/2),

(A9)

Afi = -g 6(ft, 0 + 0(t~3/1) i = 1,2,

Afi,- = ^ 6(ft, 0 + 0(r3/2) i, j = 1, 2.
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