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1. Introduction. Interest in elastic wave propagation in nonlinear media has grown

considerably in recent years. This is probably due to the increasing number of sophis-

ticated applications in engineering and science where the simple linear theory breaks

down. Until now, most of the existing literature on waves in nonlinear solids (see [1]

and its references) considers only the propagation of one-dimensional longitudinal or

transverse waves. They are solved either by the method of characteristics for a system

of two reducible first-order hyperbolic partial differential equations with two independent

variables, or by related methods.

In this paper the simultaneous propagation of periodic plane harmonic longitudinal

and transverse waves (with angular frequency u known) in isotropic nonlinear dis-

persive elastic media of infinite extent is studied. The dispersion comes from the equiv-

alent body forces which are assumed to be functions of the displacement vector u and

its various partial derivatives. This kind of mathematical model can be realized ap-

proximately for wave propagation in a medium composed of a soft nonlinear elastic

base material -with stiff reinforcing structures imbedded in the base. Our analysis is

based upon a generalized version of the iteration method previously employed to con-

struct solutions of the eigenvalue problem of simpler nonlinear partial differential

operators [2, 3]. One interesting feature of this method is that it yields no secular terms.

In Sec. 2, the equations of motion for wave propagation in nonlinear dispersive

elastic media are derived in the third approximation. In Sec. 3, the problem of simul-

taneous propagation of periodic plane harmonic longitudinal and transverse waves

in an infinite isotropic nonlinear dispersive elastic medium is analyzed by using the

above-mentioned iteration scheme. General formulae for the iterated displacement

vector and propagation constants are given; the first iteration is carried out explicitly

in See. 4. Effects of the equivalent body forces and the nonlinearity of the medium

on the interaction between longitudinal and transverse waves and on their respective

dispersion relations are discussed in the last section.

2. Basic equations. In nonlinear elastic media, the strain tensor can be expressed

""-Kt + g + St)' I.*. 3. (2.1)
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where u, and x, are the ith components of the displacement vector u and position vector x,

respectively. If thermodynamic effects are negligible, the elastic energy of an isotropic

body in the third approximation has the general form [4]

S = nvZj + {\K — + \-A.UijUikUjit + BiiijUkt + \Cu\k , (2.2)

where

K = X + (2.3)

is the modulus of hydrostatic compression, X, p. are Lam6 coefficients, and A, B, C

are parameters which characterize the nonlinear elastic media. By substituting (2.1)

into (2.2) and keeping the terms of proper order, we obtain a more explicit form of the

elastic energy:

s - *"(£+£)'+- w(g)'+<*+S £ g

I Id dM,- dUj dllt , 1 p(dUk\ (ty J\

+ *B dx, dx< dxk + Ad J ■ (2-4)

Once the expression of elastic energy is known, the stress tensor a,, can be derived from

the relation

'(£)•= 3S/51 (2.5)

Then the equations of motion are

pd2U{/dt~ = dcra/dXj + F, , (2.6)

where F, is the ith component of a body force F and p is the mass density. It would be

too cumbersome to write out the corresponding equations of motion in their explicit

forms. However, they will be explicitly written out for a special case in the next section.

In this paper, we shall only consider the special type of nonlinear dispersive elastic

media in which F is a function of u and its various derivatives. Thus

Fi = r.M,- + P,(u, || , fy , • • •) , r. ^ 0, (2.7)

where I\Mf is the only linear part of F,-. This type of mathematical model can be realized

for physical problems in the following manner. Consider the case in which the elastic

medium is composed of a soft nonlinear elastic base material and stiff reinforcing struc-

tures imbedded in the base. On the one hand, one can solve the problem of wave propa-

gation in this type of media very crudely by using the method of averaging or smoothing.

There the averaged or effective elastic constants are used and the interaction of the

soft nonlinear elastic material with the stiff reinforcing structure is completely elimi-

nated by the averaging process. On the other hand, one can try to solve this boundary

value problem exactly. However, this approach is much too complex to yield any useful

results. Nevertheless, a combination of these two approaches can be used, if one under-

stands what the stiff reinforcing structures really do to the base material. In reality
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these reinforcing structures mainly serve as constraining forces on the motion of the

base material. Thus, in forming a better model for the problem, the effects of the rein-

forcing structure on the base material can be incorporated into the equations of motion

for the base material alone as equivalent body forces F. Because these equivalent body

forces come into effect only if there is any displacement of the base material from its

equilibrium position, F must be a function of u and its various partial derivatives.

3. General formulation. For plane harmonic elastic waves propagating in the

Xi direction, the equations governing the displacement field can be deduced from (2.4)-

(2.7):

I T^\ d d 1l\ , dU\ d U\ . Sll2 d U2 i . rt / \ rv
(w + K) 5-r_p^r + ai — + — ^- + rlMl + Pi(ui , u2 ,•••) = o,

dju2 d2U2 , (du2 d2Ui , dill d2U2

dXi

(3-1)

where

a, = 4m + 3K + 2A + 6B + 2 C, (3.2)

a5 = In + K + U + B. (3.3)

Pi(0, 0, • • •) = P2(0, 0, • • •) = 0, I\ > 0 and r2 > 0. For simplicity, I\ and r3

are assumed to be constants. If we seek a solution of (3.1) which is periodic in both

Xj and t, it is convenient to introduce the new variables:

x = kiXi , (3.4)

y = k,xx , (3.5)

r = oj t, (3.6)

where the angular frequency to is regarded as given and kt and kt , the propagation

•constants of the longitudinal and transverse waves respectively, are to be determined.

Then the system (3.1) in the new variables takes the form

,2 d2u a2 d2u ,3 du d2u ,3 dv d2v . .
k'dx*-71d? + y'u + (Slkld~xd7 + l3*k'didx! + Mu'v-

(3.7)

d'u . du d?v\

: dy2 + dy dy2)

,2 d2V 012d2V I o 7 s(dv V u, vu, v u I , . n
k, t~2 — ~2 -r~2 + ytV + p3k,\ r~2 + — t~2 I + p2(w, v, • • •) = 0

where

dy' ct Bt "'"Xdydtf dy dy'

u(x + 2^r, r + 2ir) — u(x, r), (3.8)

v(y + 2tt, t + 2t) = v(y, r), (3.9)

Ci = [(b + K)p~l]U2, (longitudinal sound velocity), (3.10)

ct = (up-')"2, (transverse sound velocity), (3.11)

y, = r,&i + K)~\ (3.12)

7, = IV"1, (3.13)
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V^ = Pi(!m + iQ_1, (3.14)

p2 = P2M~\ (3.15)

ft = <xi(b + K)-1, (3.16)

ft = «5(Im + £)"\ (3.17)

A = asM-1, (3.18)

u = uj , (3.19)

v — u2 . (3.20)

Note that w = = 0 is a trivial solution of (3.7)-(3.18).
Finding the values kt and k, such that the homogeneous system (3.7)-(3.9) has a

nontrivial solution (u, v) is a nonlinear eigenvalue problem. Hence, the iteration method

developed in [2], [3] can be used here. Let sequences {Q„), ' S„}, {&,„} and be the

sequences of u, v, kt and k, respectively.

Let

Un = u„ — un_! , (3.21)

Vn = Vn - , (3.22)

= ktnkin , n — 0, lt 2, 3, • • • , (3.23)

such that

G-! = u.j = = v_! = 0. (3.24)

Then the modified Newton's iteration method [2] gives

l2 d2E/„ a>2 d2{7„ . Tr ,2 d2U„-1 , co2 d2w„_i . „ l3 62w„_,

1?" ~ cT17" + 7iC/" = ~kl" + ~ M'" IT ~a?~

- Ml ^ ^ > «U, ,•••)« X. , (3.25)

7J u*d°v„ , T7 72 a2s„-, , «2aV,

<0 ay2 e? ar2 fc'» ^ - pa(«-i . ■••)

7.3 fdfln-1 $ Wn_i . d"Un_i 5 #n_i\   -r^ /O op\- "37- + -^- 17-j = Y- • (3.26)

C/n(x + 2x, r + 2tt) = t/„(x, T), (3.27)

F.(x + 2r, r + 2x) = Fn(x, r), (3.28)

w»(z, r) = un(c^y, r), (3.29)

*>.&. t) = c„(ff„i, r), n = 0, 1, 2, 3, • • • . (3.30)

From (3.24)-(3.28), the initial approximation (U0 , F0) satisfies

,2 d Up to d Up . j. _ _

,0 3a:2 ~ c? 3r2 + yiU° ~ ' ( 3 *
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r2 a2F0 u2d2v0
Ko V22 - 72 V-,2 + 7< ̂ = 0, (3.32)

dy c, ot

U0(x + 2ir, t + 2t) = t/0(x, r), (3.33)

70(</ + 2tt, t + 2tt) = V0(y, r). (3.34)

A propagating wave solution of (3.31)-(3.34) is

U0 = u0 = € cos (2 — t), (3.35)

Fo = fo = 8 cos (y — t + <p), (3.36)

provided

= u/tf + 7. , (3.37)

tfo = u/c\ + 7l , (3.38)

where e and 5 are amplitudes and <p is the phase difference between U0 and V0 . Note

that if 71 = 71 = 0, then cos f (2 — r) and cos t)(y — r) for any constants f and ij still

satisfy the respective equations (3.37) and (3.38). In other words, both k}0 and k]0,

the eigenvalues of the linearized problem, have infinite multiplicity. This often implies

the nonexistence of periodic solutions [5] which leads to the appearance of shock waves.

Since nontrivial solutions to the system (3.25)-(3.28) exist, the necessary condition

for the existence of solutions to the system (3.25)-(3.28) is that the right sides of (3.25)

and (3.26) be orthogonal to U0 and V0 • These orthogonality conditions give the equa-

tions for {&,„} and {&,„}

U0Xn dx dr = 0, (3.39)If Jo Jo

[" f" V0Yndydr = 0, »= 1,2,3, (3.40)
Jo Jo

Furthermore, U. and Vn can be made unique by requiring

[ [ U0Un dx dr = 0, (3.41)
Jo Jo

/t2r p2r

/ V0Vndydr = 0, n = 1,2,3, • • • . (3.42)
J 0 J 0

The generalized Green's functions for (3.25)-(3.28) can be derived as

<7,(8, 0 = =± f: £2 7 2 -2 2 —2 -2
T ,_0 i-0 Kq01 ~ O! Cs ] — 7,

(i. 1)^(1,1)

• (cos iz' cos iz cos jr' cos jr + sin iz' sin iz cos jr' cos jr

+ cos iz' cos iz sin jr' sin jr + sin iz' sin iz sin jr' sin jr), (3.43)

where «0 = i, «i = e2 = «3 = • • • = 1, and q = I, t. Hence the formal solutions of

(3.25)-(3.28), (3.41) and (3.42) are

>>2t ,!r

U.= -[T[X Xn(x', r')G,(x, r; x', t') dx' dr', (3.44)
J 0 Jo
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F, = - [" r YnW, r')Gt(y, r; y', r') dy' dr', n= 1,2,3, •••. (3.45)
J 0 Jo

The reason for (3.44) and (3.45) being formal solutions is the lack of a convergence

proof for the infinite series.

4. First iterate (n = 1). To obtain the first iterate of k] and k\, we substitute

(3.35) and (3.36) into (3.39) and (3.40) respectively, with n = 1, and perform the

integration to get

fcn = k2l0 ~ 27p £' J*' UoPl(Uo ,V0,---)dx dr, (4.1)

fcu = - ttt-2 r VoPziUo ,V0 ,---)dy dr. (4.2)
i-7T € J o J 0

These equations show that the first correction to k20 and k2t0 is due only to the nonlinear

part of the equivalent body forces.

Next, upon performing the necessary integration in (3.43)-(3.45) with n = 1, we

obtain

Ut = 7772  sin 2(x - r) + S%k3n j£ ^ jh~=* 
4(k,0 — Ci <o ) — 7, 2?r ~i klot - 4w c, — 7j

(Ioil sin ix cos 2r — 70<2 sin ix sin 2r + J0i3 cos zz cos 2r — I0ii cos ix sin 2r) — h,

(4.3)

i r t
V, = jr- (kn ^u) 53 j.2 -2 - (^o>5 COS iy 10,6 sin {?/)

2x L i-o — 7t

+ (fcn + fcd) X) '2—2 (Hi7 cos Z7/ cos 2r
,_o Aiot — 4w c, — 7,

+ /o<8 sin iy cos 2r — Jj<9 cos iy sin 2t — Ilno sin iy sin 2r) J — I,

i[sin 2(2tt<j„ + <p) — sin 2<p]

(4.4)

where

^ nil — ' 4a! ~ ? ' (4-5)

7r cos 2<p, <jn =

i[cos 2(2ir<rn + <p) — cos 2<p]

jfnt'2 — • 4<r„2 - i2 ' * 2*' (4.6)

—7r sin 2<p, tr. =

— 2<j„[cos 2(2xo-n + <p) — cos 2<p] , , .
  - 5* -jz,

/„.3 =

=

4cr„2 - i2 ' (4.7)

7r sin 2^>, <rn = fi,

2cr„[sin 2(2xo-„ + <p) — sin 2^] , ,.
4<72 - i2 ^ 2h (4.8)

t cos 2<p, u« =
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Ji _ — (i — jg^Mcos (27t;V~1 — <p) — cosy] , .

(1 - jV:1)2 - i2 ' (4-9)

Ti _ -z[sin (2xjg;1 - y) + sin <p\
lnie (i - ja:Y - i2 ' (4-10)

T' - — (! + jO[cos (2-rja~l + <p) — COS y] .

(.1 + J<T» ) — i

Ti _ t[sin (27rj(7:1 + g) - sin g] ,

(l + K1)2 - t2 ' ( )

rf _ (1 + jVr')[sin (2irjir'1 + <p) — sill y] ,, .

(i + jv;1)2 - ** ' (4-13)

_f _ i[cos (2irj<j~l + <p) — cos tp] n = 0, 1, 2, 3, • • • , T .>
* »*10 — /I , • -In2 -2 ,

<1+f-)"» i- 1,2,3,-,

/« = f" r <?«(«, r; x', r')Vx[U0{x', t'), Vo^x', t'), ■ ■ •] dx' dr', (4.15)
J o Jo

I, = r r Gt(y, r; y', r')V2[U0(^y', r'), V0(y', r'), ■ • •] dy' dr'. (4.16)
J 0 ^0

Since 0 < a'1 < 1 for all reasonable physical situations, there is no danger that the

denominators of Pnis , ■ ■ ■ , /J,I0 are zero.

Let us now collect the above results and reintroduce the original variables Xi and t.

The propagation constants for longitudinal and transverse waves are then

fc? ~ i + 7. - ttt-2 f!T [" UoPiiUo ,v0,---)dx dr, (4.17)
Ci £ir c Jq j o

k2 ~ ^ + t. - r f" V°P*(U° ,Vo,---)dydT] (4.18)
Ct Z7T 0 J0 Jo

and

■"t

the longitudinal wave

a j-3

v-AX} , t) ~ « cos (ktXi — ut) + t sin 2(k,xi — wt)
671

+ (g^i) [cos 2(w< - 2^'ofc70 - <p) ~ cos 2(coi - «>)]

I J_ 7,3  1 
+ 2t ftfc' ^ [«2c72(i2 - 4) + y,(i2 - DWokTo2 - i2]

if*2k t ok l*~~1

■ {— [cos 2(2irfc,o/c7o + <p) — cos 2<i\

■[i sin ikiXx sin 2cct + 2ktokJo cos ik&i cos 2wi]

+ [sin 2(2irkt0ku + <p) — sin 2<p]

•[i sin iktXj cos 2wt — 2ktokJo cos ifciZj sin 2coJ]j j
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I 8^(3
4" nfA 22 i n/j.2 7.-2 t, i e 7.2 7 -2sin 2(Jc,ok tokiXi oil -f- <p)

L2(4oCi + yi)(ktokio — 1) + byikl0k,0

- I, ; (4.19)

and the transverse wave

142(2;, , t) ~ 5 cos (fc,z, — at + <p)

~t" o~~ iS^Jc,ki( (k, — ki) ^ r 2—2-2 | 772 TvTrTi Z tT-Tv
2tt \ t-o [co Cf 2- -f~ 7t(^ kiok to) l J

•{(1 — /c!0&7o)[cos (2irki0k7o — v) — cos v] cos iktxx

+ j[sin (2Tktok~o — <p) + sin <p] sin ik,Xi}

+ 0(A 2-2 % u_ t- fcos (2ai* _ 2x/bi0fc7o - *>) - cos (2wf - <p)]
z(4u C, -f- 7J(1 + Kio/C ,0)

- (k, + k,) S y>c-2{j2 _ 4) + 7<(.2 _ 1)][(1 + k^-iy _ {2]

• {[cos (2Tklok:i + <p) — cos <p\

•[(1 + k:ok~,l) cos iktXi cos 2ut + i sin ik,xj sin 2a£]

+ [sin {2Tklok~to + cp) — sin <p]

• [(1 + ki0k~,l) cos ik,Xi sin 2oit — i sin ik,x1 cos 2cof]} ̂

- /, . (4.20)

5. Discussion. The dispersion relations (3.37) and (3.38) for the linearized problem

show that the presence of the linear part of the equivalent body forces increases the

propagation constants, in turn, decreasing the phase velocities. Eqs. (4.17)-(4.20)

essentially consist of the results for the corresponding linearized problem and the cor-

rections from the first iteration. In view of the general mechanism of the iteration scheme,

our approximate solutions probably will converge as n —* °=, if either e « 1 and 8 <JC 1

or jS,- (j = 1, 2, 3) « 1. These situations are consistent with the derivation of the ap-

proximate equations of motion in Sec. 2.

From the dispersion relations (4.17) and (4.18), it can be seen that the only cor-

rections to the propagation constants for the linearized values, k[0 and kt0 , come from

the nonlinear parts of the equivalent body forces. Because of the positive powers of e

and 5 in these equations, the propagation constants depend upon the amplitudes of

the elastic waves and equal the linearized values only when the amplitudes become

identically zero. Furthermore, k, and k, will be greater or less than kt0 and kl0 according

as the signs of

1 r2T r2T 1 r2r r2r

2^7 J0 J k'oP' dx dr and J J V0p2 dy dr

are negative or positive, and therefore the phase velocities ukj1 and ukj1 are lower

or higher accordingly.
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Eq. (4.19) describes the motion of the longitudinal displacement vector ap-

proximately. The first term of (4.19) represents the fundamental mode of a propagating

wave with phase velocity ukj1. The presence of the second term is due to the nonlinear

interaction of the fundamental longitudinal wave with itself; it represents a second

harmonic propagating with the same phase velocity as that of the fundamental wave.

The third and fourth terms come from the nonlinear coupling between the propagating

fundamental transverse wave and itself. For fc10/c7j ̂ \m, m = 3, 4, 5, • ■ • , the third

term gives the space-independent second harmonic oscillation, and the fourth term

represents second harmonic standing waves with phase velocities 2u(iki)~1, i = 1,

2, 3, • • • . When fcl0fcl£ = %m, m = 3, 4, 5, • • • , the term with m = 1 gives a second

harmonic propagating wave with phase velocity aj(fcl0fc;)-1fci0 • Finally, the last term

represents the sole effect of the nonlinear part of body forces on longitudinal waves; it

cannot be discussed in detail without pi being specified explicitly.

The motion of the transverse displacement vector is described by (4.20) approxi-

mately. The first term of (4.20) represents the fundamental mode of a propagating

transverse wave with phase velocity uk~l. The second, third and fourth terms are due

to the nonlinear interaction of the fundamental transverse wave with the fundamental

longitudinal wave. The second term gives static transverse displacement. The third

term is the space-independent second harmonic oscillation, and the fourth term represents

second harmonic standing waves with phase velocities 2 w(ifc,)_1, i — 1, 2, 3, • • • .

Finally, the last term represents the sole effect of the nonlinear part of body forces on

transverse wave. Note that, so far as the first iteration is concerned, there is no propa-

gating mode other than the fundamental in the transverse displacement vector.

What are the effects of nonlinearity of the elastic medium on propagation constants?

What are propagating modes other than the fundamental wave of the transverse dis-

placement vector? These questions will be answered in a subsequent paper by examining

the second iterate.
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