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Abstract. This note is a study of the problem of the steady motion of an inviscid

incompressible fluid past thin airfoils, the Hall effect being taken into account. The case

of crossed fields (one of the most important in aerodynamics) is studied in detail. The

results for the cases of aligned fields and Alfven motion are also given. The general solution

is represented by a continuous superposition of plane waves. The boundary conditions

determine the solution by means of a Fredholm-type integral equation which may be

solved with the aid of the method of successive approximations. If the parameter of the

magneto-hydrodynamic interaction (S) is equal to zero, one obtains the known solution

of classical aerodynamics. The equation is solved explicitly for Alfven motion.

1. Introduction. The flow of conducting incompressible fluids past thin airfoils

when the Hall effect is neglected has been rather comprehensively discussed. Relevant

references may be found, for instance, in [1] and [2], In practical problems which require

the study of the fluid motion past airfoils (e.g. problems of aerodynamics and astronautics)

the fluid is an ionized gas. It is known, however, that in the dynamics of ionized gases

the Hall effect cannot be disregarded. Accordingly an examination including the Hall

effect is necessary; this is the object of the present paper.

Some results in this connection have already been given. The aligned-fields case has

been considered by Sears and Resler [1] and Tang and Seebass [3]. In [1] a qualitative study

was made and in [3] a quantitative description of the solution in symmetrical flow was

given. Working independently, we examined the general problem in [2] and [4], In these

papers, however, the solution is expressed with the aid of generalized functions.

The solution presented here includes the cases of crossed fields, aligned fields and

Alfven motion. Moreover, the solution is valid for general flows (not only for symmetric

flows), and is expressed by means of classical functions. The method is applicable both to

compressible fluids [5] and viscous fluids [6].

For the sake of simplicity only the mathematical treatment of the problem is given

here. It is assumed that the formulation of the problem is known from the works cited.

The notation given in [2] and [4] is used.

A. Crossed Fields

2. Equations of motion. If the free stream velocity and the magnetic induction are

orthogonal, then the perturbed motion is determined by the following system of equations

[2k 
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| dt'g   dbx <96^   ~ /-. \

dx dy ~ ' dx ~l~ dy _ ' W

^ = JdK _ dbj\ dVv , dp di>, _ afr, ,, .
ax ax Vay ax/ ' ax ay ' ax a?/ ' ;

d/ . j ■> i dbx db„ db, .
«<», + !>,) + — - ^ -,^ = °, (3)

Rex = —vR(vx + b„) + Rvz + (1 + v2) -r1- , (4)
dy

Se- -(*-£)»•• t" t" "• <5>

lim , vy , v, , p, bx , by , b, , ex , ey) = 0. (6)
i' +1/3 —►<*>

From (1) and the first of Eqs. (2) we have

Avy + SAbx = 0, A - d2/dx2 + d2/dy. (7)

From (3) and (4) we eliminate vx + bv. From the resulting equation, from (5) and the last

of Eqs. (2) we also eliminate ex, e„ and vz. We obtain

P>. 0, P-a£ + SS*-g£. (8)

By deriving (6) with respect to x and y and taking account of (1), we find an equation in

vy , bx and b, . On eliminating from this equation vy with the aid of (6) we get

aP6- - ' 4 h£y> "■ ' »■ <9>

so that:

Aifc} = »■ L = P* + "* J?Ty' A' <10>

Lb, = 0. (10')

For v — 0 we obtain the equation valid when the Hall effect is negligible [7].

3. Dispersion equation. For plane waves of the form exp( — i\x + sy), s = —iXr,

we obtain the following dispersion equation from (10):

r2 + 1 = 0, Ii\(r2 + 1) - RSr2 + i?}2 = AV(r2 + 1). (11)

The last equation may be also written

a(r2 + l)2 + 2 b(r2 + i) + c = 0, (12)

a = (i\ — RS)2 — v2\2 = a, + ia2 , c = R2(S + l)2,

b = R(S + 1 )(tX - RS) + I^X2 - 6, + ib2 .
(13)

The roots of Eq. (12) are distinct and complex. The first assertion results from the relation

b2 ^ ac and the second from the fact that if in (12) r had been real, we should have had

di (r2 + 1)" + 26i(r2 + 1) + c = 0, a2(r~ + 1) + 2 b2 = 0.
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But the real roots of the last equation, Sr2 = 1, do not verify identically the previous

equation.

We denote r0 — — i sign X and by r,- (j = 1, 2) the roots of Eq. (12) for which s,- =

— i\rj have negative real parts. Since Eq. (12) is biquadratic, two roots have this property

no matter whether X is positive or negative. The last assertion results from the fact that the

roots of Eq. (12) are expressed by radicals and from the observation that for two real

numbers a and /3 we have

(2a + 2i/3\-l)1/2 = sign /3{(a2 + A"2)172 + a}1/2 + i sign X{(a2 + /32\"2)1/2 '

The remaining three roots have positive real part.

Elementary calculations show that for large X we have

rx = — isign X + 0(R2\~2),

(1 -j- v2)1/'i"2 — —i sign X —(— {1 —f— S( 1 -j- v2) 1 }R |X| 1 -)- 0(R~\ 2).

4. General solution. Taking account of (6), (10) and (10 ) we have

M
IbiJ "~ra IfilJ

) 1/2
a\ .

(14)

H(*, V) = T [ Z rk\A 1 exP ± sky) d\]
; ± •'-« k~0,1,2 R±

(15)

vbMx, y) = I 22 Cf exp (~i\x ± s,y) d\.
J - CO 7=1,2

From (1) and the last of Eqs. (2) we also have

v

b

V

(*, y) = J Z -j
r\A\

Bt

At

exp (~i\x ± sktj) dy,

pvt(x, y) = ±S / Y.riCt exp (—i\x ± s,y)
«/ —00 j

(16)

d\.

Taking account of (11), the first of Eqs. (2) and Eq. (3) yield

A? + SRf = 0, (17)

s,Ct = ±P,Bf , P, = i\(r2 + 1) - RSr, + R. (18)

Finally, from (4) and (5) we get

pR^"\-(x, y) = J (Ri\ 1 — 1) X | r' jri 1P,B* exp ( — i\x ± s,y) d\. (19)

In the above notation the top line indicates the solution valid in the upper half-plane

(:y > 0) and the bottom line the solution in the lower half-plane (y < 0).

The unknowns B\ are determined from the boundary conditions.

5. Boundary conditions. We assume that the airfoil equation is

V = Y±(x), \x\ < 1, (20')

Yi satisfying Holder's condition. The following relations result:
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v+v(x,0) = Yi(.x), \x\ < 1, (20)

k] = £(x)[F'], [bz] = 0, Vx , (21)

[£>*] = [&„] = [eJ = 0, Vx, (22)

where [0] = <fi+(x, 0) — <t>~(x, 0) and

t(x) = 1 \x\ < 1,

= 0 \x\ > 1.

By using the inversion theorem of Fourier transforms, we deduce the following equa-

tions from the general solution and the boundary conditions:

f (—r0Bo + S E r,B\) exp (~i\x) d\ = Y'+(x), \x\ < 1, (23)
J-co

r0(Ba + Bo) - S E ri(B~t + BJ) = 21,

E n{Bl + B~k) = 0, E r~lP,(B* + B~]) = 0, ^

21 = — ~ J [F'j exp (i\x) d\,

E (Bt - B~k) = 0, E r72PM ~ B-<) = 0. (25)

From (24) we get

zn + 5; = 2 a J, (26)

(<S + l)aai = — r1F2 , (S + 1 )aa2 = r2Pi , ^0')

(5+ 1)0^0=1, a = (i\ + R)(r\-rl).

Since Eqs. (25) become

E^: = (E «*)/, E = (E r-2P,a,)7,
there results

s; = /3;B0+ + 7,/,

/Si = —r\P2cT\ 7! = + atlr\P2a~l, (27)

jS2 = rlPioT1, = "2 — ̂ rlP^a1.

Taking account of (27), Eq. (23) becomes

J (r0 — S ErA)#o exP (-«M

= f /(E r/7i) exP (,—i^x) d\ — Y+ , \x\ < 1.
*/ — CO

On using the pressure expression we deduce

M = f \Bo - Bo ~ SE (S,+ - -b •)} exp (-tXz) d\

= 2(S + 1) J (Bo — a0I) exp (—i\x) d\ = 2j(x),

which is useful for the calculation of lift.

(28)

(29)
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The condition of pressure continuity outside the airfoil yields

1(x) = 0, \x\ > 1. (30)

By means of the inversion formula for Fourier integrals, we deduce from (29)

Bo = aaI + 2v(s + 1) /_! ^ exp ^ dt'

so that (28) becomes

J 1 f(t)K(t - x)dt = (S + 1 )Y(x), \x\<l, (32)

K(t-x) = —^f k exp {i\(t — x)\ d\, Y = %:Y+ + YL), (32')

k = ra + S(rl + 7-2)_1 {r\ + rfo + r\ + r\r\(i\ — RS)(i\ + R)_1 j.

In conclusion, by determining /(a:) from Eq. (32) we get from (31) B+0, from (27) B* and

from (26) B~k . The lift may be calculated with the aid of (29). All the determinations can

be made since the roots r# are distinct.

6. The Fredholm-type equation. Taking into account (14) we obtain

k = — (S + l)«sign X — S(S + 1 )k*,

k* — — i n{p2\~2\ ,, —  0^)
~ |x|+ 0{K x h u ~ i + / + (i + vy/2'

which shows that the kernel (32') is a distribution. According to [8],

/ + co

sign X exp {i\(t — x)\ dt = 2i(t — x)'1, (34)
- co

so that there results

K(t - x) = - + * - S(S + 1 )K*(t - x), (35)

K* being obtained from the expression of K by replacing k by k*. K* is a convergent

integral.

Accordingly, Eq. (32) becomes the singular integral equation

I (P r JttL dt + S f 1 j(t)K*(t - x)dt= - Y(x), \x\ < 1, (36)
IT t — X J-t

where the sign "(P" indicates the principal value in the sense given by Cauchy.

In the aerodynamics of thin airfoils the singular integral equation

I (p f+1 JOL dt = F(x)> i-cj < i (37)
T J-1 t — x

occurs, The solution of this equation, assuming that F satisfies Holder's condition, is,

from [9] and [10],

1(x)- -I C (r^T iL (37'>
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With this result, we obtain from (36) the following Fredholm-type equation:

f(x) = S J /(£) A/(£, x) + m(x) ,

m.*> -1 (f^)'" E^1 dt, es

The integral equation (38) solves the problem completely. It may be integrated by the

method of successive approximations, the first approximation being the solution given in

classical aerodynamics (S = 0). The solution is general. By particularization we deduce

the solution given by Sears and Resler [11] for the perfectly conducting fluid as well as

the solution for the fluid with nonzero electrical resistivity [12], [13], [7].

B. Aligned Fields

7. Motion equation and the general solution. In this case the disturbed motion is

determined from the following system (see [2] and [4]):

dvx dvy c(dbv dbx\ c
aj " & + '■ - Sb■' (39)

+ t + <«>

f-'t- - # " to) ~ t + *(I " ■ (41>

to which we add Eqs. (1), (6) and the last of Eqs. (5). From the above system of equations

we get

Lb, = 0, = 0,
I bj (42)

L = P2 + v2 kd2/dx\ P = A + R(S - l)d/dx.

For plane waves of the same type as in the preceding paragraph we have the following

dispersion equations:

r2 + 1 = 0, {r2 + 1 + iKTlR(S - l))2 + ?2(r2 + 1) = 0. (43)

Denoting by r,- (j = 1, 2) the roots of Eq. (43) for which s,- = —i\r, have negative real

parts, we deduce

r, = —i sign X + R2(S — 1 )20(X~2),

t-2 = ~i'(l + v~)U2 sign X + + R2(S - 1 )20(X"2).

(43')

•We also set r0 — — i sign X.

Taking account of the damping condition (6) we get the following general solution:
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Vy

V*

K
[hi

(x, y) = [ J2 -
J — CO k = 0,1 ,2

At

^Ff^A ~k

Bt

=Ff*Bl

w „! . r v l

» exp ( — i\x ± sky) d\, (44)

(x, y) = f 2 J Ci I exp (~i\x dh Sjij) d\,
RetJ " 1 = 1'2 (±s,C*J

(45)

A* = ^ 1), A a = Bo , (

C- = -P,P- , p,. = r ■ + 1 + i\_122((S - 1).

As the notations coincide with those used in the preceding paragraph, they do not lead to

ambiguities.

8. Boundary conditions. Conditions (20) —(22) furnish the equations:

f+ (Bo + SBt + SBZ) exp (-i\x) d\ = Y'+(x), \x\ < 1, (47)

b; - B~ + s Z (b; - s-) = -2/,

D rt(# + BJ) = 0, £ P,(B] - BJ) = 0, (48)

E (B: - B-k) = 0, E r,P,(B+ + B~) = 0.

We get

P* ~ Bk = 2akI, ^

(S-l)«o = l, (S - 1)(P2 - P,K = -P2 , (S - 1)(P2 - P.K = P, ,

Pj+ = /3;Po + 7jP,

r2(P2 - P,)/32 = r0P, , (»S' — l)r2(P2 - P,)72 = (r3 - r0)Pl , (50)

r1(P2 - Pi)@i = —r0P2 , (5 - l)rj(P2 - P1)y1 = (r0 - rl)P2 .

On using the pressure expression we get

[p] = 2 J {(r0 + S £ r^,)Bu + r0I] exp (—i\x) d\ = 2j(x) (51)

Imposing the condition /(x) = 0, |x| > 1, we get from (51)

(S - TIB; = 7 - J + ' f(t) exp (ixfl d*, (52)

so that (47) becomes

f 1 /(Q/C(< - x)dt = (S - l)F(x), |z| <1, - (53)

A"! ing the same expression (32'), where:

7   -i _ o r? "t" ?'ir< + r2 -|- iX 'fi(£ — 1)

0 ■ rTr.^' + r,) (53)

= -(5 - l)i sign X - S(S - l)/c+*, fc** = «/[X| + 0(P2(S - 1)X~2 ).
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Accordingly, Eq. (53) transforms into the following singular equation:

/+1 ~^dt + S J+1 f(t)K**(t - x) dt = -Y(x), \x\ < 1. (54)

With the aid of the method given in the preceding paragraph Eq. (54) reduces to a Fred-

holm integral equation. Once the function / is determined, formulae (52)-(49) solve the

problem. Obviously the above results are valid only if S ^ 1.

C. Alfven Motion

9. General solution. This section examines the singular case 5=1, the fields being

aligned. If in the system of motion equations from Sec. B we set S = 1, we deduce

A(A + "2 dx?)'
s = 0. (55)

Since in Eq. (55) there intervene only derivatives of the same order, wave propagation

will take place without dispersion. Using the notations:

ri = — t sign A, r2 = — ipi sign X, ^ = (1 + v2)W2, (56)

we obtain the following general solution:

v,

K
yb*

(x, y) = r E
J -co j — 1 ,2

B*

LCy.

exp (—iXx ± s,y) dX. (57)

From (1), (41), (39), (40) and the last of Eqs. (5) we get successively

^r,A*

=F rtB*t

v,

bt

?Re*x

(x, y)

/* + CO

L ?
±S, CI

exp (—iXx ± s,y) d\, (58)

At = Bt, ixct = R(At - Bt), Ct = v2Bt,

the unknowns being A* , B* , B*2.

The boundary conditions (20)-(22) furnish the following relations:

/+ ot>

(4* + Bt) exp (—iXx) dX = Y'+(x), |x| < 1, (59)

At - Ar + Bt - B; = -21,

Bt + b; + ^{Bt + Bt) = 0,

At — a; — (Bt — Bi) + n2l(Bt — B2) — 0, iXv2 n 2 = R,

E (Bt - B-) = 0, At + At - (Bt + Bt) + wtXBt + Bt) = 0.

From (60) we get

(60)
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At - AT = -2(1 + n2)I, Bt - B; = -2^7, 7?2+ - B; = 2nJ,

(1 + > Mi(l + H2)B% = —fi2At + M2(l + Ma)(l — Hi)I■

We also have

[p] = 2 J {(1 + — 7) exp (—i\x) d\ = 2f(x). (62)

Imposing the condition of pressure continuity outside the airfoil, we get f(x) = 0, |a:| > 1,

so that from (62) we have

At = (1 + M2)/ + /" KO exP (ix<) dL (63)

10. Solution of the integral equation. By using formulae (61) and (63) we get the

following integral equation from (59):

J 1 f(t)N(t - x)dt= — Y(x), \x\ < 1, (64)

where

N(t — x) = (1/ ir(t — x)) — uNi(t — x), (65)

A'il(< ~ ^ = ^ IT CXP 'tl ~ = "x ((7 + ln 14 ~ (66)

C being Euler's constant ( = 0.577215). Here we have used (34). The last integral is also

a distribution [8].

Consequently, Eq. (64) will be written:

- [+1 dt + " C S(t){C + In \t - rc|} dt = - Y(x). \ (64')
7T J-1 t — X 7r J-1

If we denote

we deduce

g(x) = -- f f(t)(C + ln \t - x|) dt, (67)
7T J-1

9'(x) = - I" j1^ dt, (68)
7T J-i t — X

so that the integral equation (64') becomes

g'-ug=-Y, (69)

the general solution of which is

g(x) = e"(r0 - f F©e-f di) , (69')

where T0 is a constant.

From (68) we determine the solution of Eq. (64')
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'<*> = (f- r-«*> + '■<*><

'■<*> =

F*(<) = Y{t) + « I" F(|)e"(,_£>
Jo

X
(70)

GhhT'/.:W^*-
The last integral can be calculated explicitly by using the known formulae:

exp (« cos r) = J0(m) + 2 22 cos nr, (71)
1

1 /*' cos nr , sin n0 „ , „ ,nns
- /    dr = ——- , n = 0, 1, 2, • • • , (72)
?r J0 cos r — cos 6 sm 9

I„(w) being the modified Bessel functions.

11. Determination of the lift. The lift is determined by the formula:

L = — J [p] dx — — 2 J fix) dx, (73)

so that using the solution (70) as well as the formulae (71) and (72) we obtain

L = 2 / ' (l^H)12 CiO dt = 2ro/o* - 2ft (74)

where

ft = /" (]Hr-j)1/2F*(0 dt, /„* = ™(Z0(») + /.(«)). (74')

In order to determine the constant T0 we will use (67). As we have

/., 11"11 dx

f+1 In \t — x\ , , r + ' x In \t — a;| , „ „ , A
= L {i -xyr2dx + L w-^y7 = —7r(in 2 + o,

it follows:

/' dx = (ln 2 ~ C) C/(0 d< + C m dL (75)

By using (70) and (72) (or directly (68)) we deduce

f1 m dt = J" (i - iv'vw dt = /y (i - <2)i/2(co? - 7) dt. (76)

Taking into account (69'), we get from (75) and (76)
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7tIT0 = (In 2 - C)j*

r+1/ i _l A1/2/ r1 \

dt (77)- J+l a - ty/2Y*(t)dt + /"( y^)1/2(/0' f©c"(HI #)

r = Jo - J, + co(ln 2 - O(/0 + /,).

This formula will determine the constant T0 as well as the lift and the solution of the prob-

lem.
12. The flat plate. In order to illustrate the above results, we will consider a flat

plate at incidence e*. Using the notation t = iqt* we deduce:

Y(t) = -e, Y*(() = —e exp M, /? = -«r(70 + /,)

r0 = —eaf'(l - r-1), /(z) = m'T-'Ux) (78)

L = 27T€r-1{/o(co) + /j(ai) j .

The graphs shown in Fig. 1 show both the influence exerted by the fluid resistivity

upon the lift, and the influence of the Hall effect. For R — 0 (nonconductive fluid) the lift

reduces to 2ire, a known formula from conventional aerodynamics. In fact, in this case

0 12 3 4-567

Fig. 1
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the solution (70) also coincides with the solution given in nonconductive aerodynamics.

As R increases, the lift begins by decreasing, since

dL
dR

-   Q.
~ 1 + V2 + (1 + ,2)1/2 <

then it increases, becoming approximately two and a half times higher than in the case of

nonconductive fluids. This maximum value is reached at R - 4, when the Hall effect is

negligible. As soon as the Hall effect appears the lift becomes maximum for higher values

of R. After reaching the maximum value, the lift decreases as the conductivity of the fluid

increases and tends towards zero for R —> <o (for/2 = 20 wehaveL(27re)_1 = 0.84 (v = 0.0),

0.85 (v = 0.1), 1.11 (v = 0.5), 1.39 (v = 1.0)).
The most important conclusion is that this maximum value of the lift exists.

D. An Approximate Solution in the General Case

13. In the case of aligned fields, for lower values of the parameter R\S — 1| the

expression of the kernel k (53') can be used in the form:

k = -i(S - 1) sign X - S(S - l)co/|X|,

so that the integral equation (54) becomes

I (p [+1 -ML dt + <*2 p /(<)(C + in \t - x\) dt= - Y(x). (79)
7r J i t> cc 7r J—i

In the case of crossed fields, for low values of the parameter R, the expression of k

given in (32') becomes:

k = —i(S + 1) sign X — S(S + l)co/|X[,

so that the integral equation (36) also reduces to (79).

Eq. (79) coincides with (64') so that its solution will be given by formulae (70) and

(77) in which « is substituted for <Sco. In particular, the lift will be determined by the for-

mula:

L = 2(r„/* - ft), (80)

the expressions of , ff and r0 being given by the corresponding formulae given in Sec.

11 with the same substitution effected (« —> Sa>).

The most important conclusion derives from the fact that in this approximation the

lift is independent of the orientation of the external magnetic fields; this is acceptable from

physical point of view.
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