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Summary. A variational prineiple and a reciproeity relation are obtained for initial
value problems associated with the wave equation.

1. Introduction. CGurtin {1], [2] has discussed the applieation of the convolution
to the solution of initial-value problems. He discussed the solution of the wave equation,
but not the mixed boundary condition. Ainola [3], following Gurtin, obtained a rec-
iprocity relation involving the solution of an initial-value problem for the Schrédinger
wave cquation. In this paper the variational prineiple for the mixed boundary condition
for the wave equation and reciprocity relationships associated with initial value prob-
lems for the wave equation will be obtained.

2. Formulation of problem. lLct ¢ be the solution of the wave equation

2
v%—%%=ﬂxu @.1)
(The number of space dimensions n is irrelevant; x represents the set (x; , -+, X,).
The set of values of ¢ and dp/dt at- t = 0 are given by ¢,(x) and ¢,(x), respectively.
The region under consideration is surrounded by a boundary B on which

ad + B(d/am) = g 2.2)
where a, 8, and ¢ are all functions of position on the boundary B. g may be a function of
time as well. B is divided into two portions, B, and B, . On B, , $ is nonzero; on B, , 8

is zero.
The convolution integral is defined as follows. If u(t), v(f) are functions of ¢,

u*p = f[ u(t — s)u(s) ds. (2.3)

The conditions imposed on u and » have been discussed, for example, by Jones [4].
In particular

1*xy = [‘ 1o(s) ds = f‘ v(s) ds. (2.4)

0

<o
It is well known that the convolution obeys the commutative and associative laws.
Iiquation (2.1) may be written as

¢/t = (V¢ — 1.

* Received September 20, 1968; revised version received April 7, 1969.



392 ' LL. G. CHAMBERS

Integrating with respect to time,

d¢/ot = (1 * (V¢ — f)] + 6. (x). (2.5)
Integrating further with respect to time,
¢ =C[L*1* (V' — ] + thi(x) + o(x) (2.6)
= [l * 1% V] — h, 2.7
where
h=cl*1*f] — td,(x) — ¢(x). (2.8)

This form is slightly different from that given by Gurtin [2], but is more convenient for
the subsequent analysis.
3. The variational principle. Consider the functional

Flg] =%f[¢*¢+c2(1*1*v¢fv¢)]dr+fqb*hdf

3.1}
czfoz 2[ [1*1=*g*¢]lds
= =[1*1*¢*¢|doe — .
g, plrtrereld—c ] 8
dr is an element of the region, des is an element of the boundary, and
VerVy = 96 , 9 (3.2)

a1 0%, 0%,

Following the usual ideas of the calculus of variations, and assuming that everything is
sufficiently continuous,

5F = f[¢* 5 4 (1 * 1 % V¢*V 68) + 6¢ * k] dr
(3.3)

1
+62L_E[1*1*<m~g>]*a¢da.
Now

f(l ¥ 1% Ve (8¢)) dr =f1 s 1% (V-(56 % Vo) — 6% V) dr

=L(l*l*&ﬁ*g—ﬁ)da—f(l*l*V2¢*6¢)d.r.
Thus

oF = f dp*[p — (1 *1%V’%) + hldr
d¢ 1
-+ 5(;()* 1*]*-— do + o * l*l*E(atﬁ-—g) de,
bl
using the associative and commutative properties. This can finally be written as

= [as e —de 10 T 1 ar

+f. a¢*1*1*[a¢+5§§ ]‘7"+f a¢*1*1*—¢’da

B,

(3.4)
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There are now two cases to consider. If B, does not exist, that is, 8 is nonzero every-
where on the boundary, 8F vanishes if

¢ —1*1*V%) +h=0 2.7
and if

ap+ 82— g; @.2)

this holds irrespective of the actual value of 6¢.

Alternatively, if §F vanishes, (2.2) and (2.7) follow because 8¢, although small, is
arbitrary. (2.2) is in fact a natural boundary condition as no constraint is placed on ¢
on the boundary.

If, however, B, exists, that is 8 vanishes at some part of the boundary, and the
boundary condition thus specifies ¢ only, it is necessary to impose the condition 8¢ = 0
on B, . It may be remarked that it is always possible to consider the problem with g
zero for the following reason. We may let ¢ = 0 + ¢ where 6(x, t) is a function such that

0<X, 0) = ¢o , I::% e(x; t):| = ¢, (368‘)
t=0
a0+ﬁ§—6'— on B (3.6b)
an - g ) *
and
2g _ 1 0°0 _
Vo — peiwy. 0. 3.6¢)
¥(x, ¢) is a function such that
¢(x,0) =0, [th Y(x, l):l =0, (3.7a)
t=0
ap+8% =0 o B, (3.7b)
and
2y _ 1O _
Y% Yy — Y f (3.70)

If this is done, the discontinuities due to boundary data which are propagated on charac-
teristic surfaces all appear in 6. 6 is determined by the usual processes, and the problem
has been reduced to one for which ¢ is zero.

4. Reciprocity Theorem. Let ¢, be the solution of (2.7) associated with a source p,
and ¥, that associated with a source p,y . In both cases the boundary condition is (2.2).

It is not difficult to see that

l_wl*l*l*‘”’ ;bz*l*l*a‘l;l]da

= [t Vi = 115 V) dr, @)
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this being a generalization of Green’s theorem. From the boundary condition,

i1 1x3y%/an = —y¢, * L * 1% yy(a/p),
and so it follows that the left-hand side of (4.1) vanishes. Thus

0

Il

f(¢x*1*l*V2¢z—¢2*1*1*V2¢.)df

[ Gt p) — v+ B do,

whence

f Y ¥ podr = f Vo * p, dr, 4.2)

which is the reciprocity theorem connecting the “disturbance” and ‘“‘source”.

The problem of an infinite space may be treated as follows. Suppose that the boundary
is a hypersphere of radius R, centered at the origin, R being large. An element of the
boundary is thus O(R"""). Suppose that, on |x| = R, instead of the boundary condition
(2.2), ¥ obeys the order condition

'p — O(R-(n/z)ﬂ) (439,)
and the generalized Sommerfeld radiation condition
14 d —n
- EE% + 51‘—‘? = o®™). (4.3b)

The integral over the boundary in (4.1) is
f (./,1*1*1*6%_‘/, *1*1*6‘1’)

=f (%*1*1*9"’—"’—%*1*1*6%)”
Ix|=R
=f'R(‘P:*l*l*Xz—‘l’z*l*l*Xx)dU
Ix|=
+3 (wz*l*l*a‘b %*1*1*""’2) do.  (4.4)
ixl=R
Using (2.4) it follows that
1o 20—y ad 1422y, 4.5)
and so
,/,2*1*1*68'/;‘ Yy * 1*1*60‘122’ (4.6)

and the boundary integral becomes

[ wrrsie e sl Ly do.
Ix|=R
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Now
¥x do = o(R™*)o(R™™?*HO(R"™") = o(1), 4.7

and so (4.3a) and (4.3b) form a set of sufficient conditions for the left-hand side of (4.1)
to vanish when the boundary is at infinity. If part of the boundary is finite and part
infinite, the extension is obvious.
A particular case of (4.2) is associated with the Green’s function. Let G(x, x'; t) be
the solution of the differential equation
2 _1_ S"iq = — 5/

\VA iy 3(x — x’) 8(t) (4.8)
which is associated with the initial conditions

G=0 060G/t =0 att=0. (4.9)

Suppose that G, is the solution of this equation under the boundary condition (4.3),
this being actually the radiation condition here. Suppose that G = G, + G* is the solu-
tion of this equation under the boundary condition

aG 4 B 8G/on = 0. (4.10)

G* may be determined as follows.
From Eq. (4.8),

10°G, 1 9°G,

VG, + VG* — Fof Falk = 8(x — x') 8(1);
it follows that
20k
Vi — 515 %f’;— - 0. (4.11a)

The initial conditions for G* will clearly be given by

8G* _

*= = =
G* =0, sp =0 =0, (4.11b)

and the boundary condition by

on

G* is thus defined by Eqgs. (4.11a), (4.11b) and (4.11¢) and can be solved in the usual
way. This problem has been discussed by Jones [5].
The “source’” pg associated with the “excitation” G is

Fll*1#8(x —x)ot)] = Fo(x— x)1*x1 (=c 8(x — x)t.).
(4.2) takes the form

ol* + ﬁf’%‘- - —all — B @.11¢)

[@epaar=[@epaar

Vriting the above equation in full,

[ ¢ s~ xmw@ p 1 x1ar = f(;(x, X', 1) % p(x, 0).
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Using the properties of the delta function, this takes the form

FLxlx i, ) = [ 6, ¥, Dpx, 1

and using (2.4) twice, it follows that

19

Y, t) = ey f G(x, x', O)p(x, t) dr.
One particular “excitation” which is of interest is that which is associated with the

“source” §(x — X,) 8(t — £,) t, > 0. This is given by
na, =52 fG(x X', §) 8(t — &) 8% — x5) dr

16
= 2G(xo; x', t — t).

These formulae make it possible to determine an excitation directly in terms of the
quantities f(x, ), 9(x), ¢:(x), and ¢o(x).

5. Uniqueness. It is necessary to determine the conditions under which the
solution of (2.1) is unique. Uniqueness exists if there is no nontrivial solution of the
system defined by the differential equation

Ik
2

lﬁ

V¢ — =0 (5.1

tz

QD

together with the initial conditions
$=0 and $2=0, at t=0 5.2)
and the appropriate boundary condition: for finite boundaries
ap + B2 =0, (5.33)

and for infinite boundaries

a__¢ . -n/2+1 _ % li@ _ —n/ ’
8,52 = o B, x = gn 45 = 0B (5.3b)

=1 [(qu) +4 ("’-"’)]dr 6

E is intrinsically either positive or zero. Initially ¢ is zero and hence V¢ is zero. Also
d¢/dt is zero. Thus initially F is zero.

ol 1 9¢ %
ot —f[(qu) v( )+c‘at at]d’

- [(w) vl By ¢] (5.5)

=fv-<%V¢)d [ ao 5t

Consider the quantity
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Suppose now that B is finite. If either ¢ or d¢/dn vanishes on B, the right-hand side of
(5.5) is zero and so 0E/dt vanishes, E remains zero and there is uniqueness. If (5.3a) holds

___ o, _ if ag’
fdazﬁ at d"ﬁz

and

0 1 a o
Y [:E-{— ﬁfEd) da:| = 0. (5.6)

If a/8 > 0, E' = E + [ (a/B)¢” do is intrinsically positive or zero, it is initially zero
and 9E'/dt = 0. Thus E' is always zero, ¢ is zero and there is uniqueness. If, however,
a/B is not always positive, this does not hold, and uniqueness may not exist.

If now the boundary is infinite,

I¢ dp _ d¢ 9 W | 1 (645)
f . gt on f'"“R do at aR ~ IxI=R d”[at ] c ‘[IxI-R do 6.7)

The order of magnitude of the first integral on the right-hand side of (5.7) is given
by O(R* )o(R™*")o(R™*) = o(1) and so vanishes as R tends to infinity.
The order of magnitude of the second integral on the right-hand side of (5.7) is

O(R"—I)O(R_"/2+I)O(R_"/2+l).

This may be expressed as O(1)o(R), but cannot be reduced further. This does not
matter however, as the right-hand side of (5.7) is clearly negative or zero, and dE/dt < 0.
From this, it follows again that ¢ is identically zero and there is uniqueness.

Appendix. The case of n = 1 can also be treated, but certain modifications are
necessary. The region under consideration becomes a strip of the real axis z, < = < 2,3,
the boundary B becomes the two points z, , z, and the boundary condition becomes

d.
al¢+6l£=gl r=2x,

(A1)
az¢—62§5=92 T =22
f jdr becomes fn f() dz (A.2)
and )
[ 1d0 = 1) - 1, (A.3)
[ 1d = i) = s, (A.4)
In (A4), if B, is zero, f(x,) is omitted and, if 3, is zero, f(r,) is omitted.
T Green’s function which satisfies the radiation condition is
G, ) = = 11(1 - L(—‘) : (A.5)

where H (1) is the unit function.
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