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Summary. A variational principle and a reciprocity relation are obtained for initial

value problems associated with the wave equation.

1. Introduction. (1 rutin [I], [2] has discussed the application of the convolution

to the solution of initial-value problems. He discussed the solution of the wave equation,

but not the mixed boundary condition. Ainola [3], following Gurtin, obtained a rec-

iprocity relation involving the solution of an initial-value problem for the Schrodinger

wave equation. In this paper the variational principle for the mixed boundary condition

for the wave equation and reciprocity relationships associated with initial value prob-

lems for the wave equation will be obtained.

2. Formulation of problem. Let 4> be the solution of the wave equation

v2* -]/A = /(X, 0. (2.1)
c ot

(The number of space dimensions n is irrelevant; x represents the set (X( , • • • , x„).

The set of values of 4> and d<t>/dt at t — 0 are given by <t>»(x) and 4>, (x), respectively.

The region under consideration is surrounded by a boundary B on which

<*</> + f3(d<j>/dn) = g (2.2)

where a, 0, and g are all functions of position on the boundary B. g may be a function of

time as well. B is divided into two portions, Bx and B2 ■ On B1 , /3 is nonzero; on B2 , /3

is zero.

The convolution integral is defined as follows. If u(t), v{t) are functions of t,

u * v = f u(t — s)v(s) ds. (2.3)
•'0

The conditions imposed on u and v have been discussed, for example, by Jones [4].

In particular

1 * v = [ lv(s) ds = f v(s) ds. (2.4)
«• 0 Jo

It is well known that the convolution obeys the commutative and associative laws.

Equation (2.1) may be written as

d%/dt2 = c2(V2<t> - !).
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Integrating with respect to time,

dcfi/dt = c2[ 1 * (V2tf> - /)] + *,(x). (2.5)

Integrating further with respect to time,

4, = c2[ 1 * 1 * (W - /)] + i*,(x) + *0(x) (2.6)

= c2[l * 1 * V2<£] - h, (2.7)

where

h = c2[l * 1 * /] - %(x) - <£0(x). (2.8)

This form is slightly different from that given by Gurtin [2], but is more convenient for

the subsequent analysis.

3. The variational principle. Consider the functional

F[4>] = | J [<j> * <f> + c2(l * 1 * V<t>*V<t>)] (It + J <f> * h dr

+1 /», I[i *1 * * * *] d° -c' /»,

dr is an element of the region, da is an element of the boundary, and

v«v+-st*f£- M
Following the usual ideas of the calculus of variations, and assuming that everything is

sufficiently continuous,

8F — [ [<t> * &4> -f- c2(l * 1 * ^7tj>*S7 &<j>) -f- 8<j> * h] dr

(3.3)

+ c2 f —[1*1* (<t>cx — g)] * S4> da.
J B, P

Now

Thus

5F

f (1 * 1 * V<j>*V(5(/>)) dr = J 1 * 1 * {V •((><£ * V<£) — Scj> * V2<£} dr

= J fl * 1 * 8<t> * da - J (1 * 1 * V2</> * &<f>) dr.

1 = J 8<j> * [4> — c2(l * 1 * V2<£) + h] dr

+ [ 8<t> * 1*1* —— da -j- f 8<f> * 1 * 1 * ~ (a<t> — g) da,
J b L oti J J b l L p J

using the associative and commutative properties. This can finally be written as

* [</> — c2(l * 1 * v72^) -f" /i] dt

(3.4)

f 5(f) * 1 * 1 * a(f> -f- j3 ~~ — Q ~t~ f 5(f> * 1 * 1 * ~~ da.
JBx L dn J p JBa on
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There are now two cases to consider. If B2 does not exist, that is, /3 is nonzero every-

where on the boundary, 8F vanishes if

<t> - c2(l * 1 * V2<t>) + h = 0 (2.7)

and if

^ dn = 9' ^2'2^

this holds irrespective of the actual value of 5<f>.

Alternatively, if oF vanishes, (2.2) and (2.7) follow because 5<f>, although small, is

arbitrary. (2.2) is in fact a natural boundary condition as no constraint is placed on 8<t>

on the boundary.

if, however, B2 exists, that is /3 vanishes at some part of the boundary, and the

boundary condition thus specifies <j> only, it is necessary to impose the condition 8<j> — 0

on B2 . It may be remarked that it is always possible to consider the problem with g

zero for the following reason. We may let 4> = 6 + \p where 0(x, t) is a function such that

0(x, 0) =<*>„, 6(x, OJ = , (3.6a)
dt

ad + /3 ̂  = g on B, (3.6b)

and

V» "??? = »- (3-60

\p(x, t) is a function such that

K*, 0) = 0, ft oL = °' (3"7a)

+ = 0 on B, (3.7b)
an

and

<3-7c>

If this is done, the discontinuities due to boundary data which are propagated on charac-

teristic surfaces all appear in 6. 6 is determined by the usual processes, and the problem

has been reduced to one for which g is zero.

4. Reciprocity Theorem. Let \pi be the solution of (2.7) associated with a source px

and \pi that associated ivith a source y>2 • In both cases the boundary condition is (2.2).

/<J B

It is not difficult to see that

a j, 1
da\p, * 1 * 1 * —— — \I/2 * 1 * 1 *

. dn Y dn

J [\j/i * 1 * 1 * VV2 — ̂ 2*1*1* VVi] ^t, (4.1)
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this being a generalization of Green's theorem. From the boundary condition,

* 1 * 1 * dip2/dn = —ipi * 1 * 1 * ^2(a/0),

and so it follows that the left-hand side of (4.1) vanishes. Thus

0 = J (^*1*1* VV2 - h * 1 * 1 * VVi) dr

= ^2 / [^1 * (^2 + P2) — 1A2 * (^1 + Pi)]

whence

J ii * P2 dr = J \p2 * Pi dr, (4.2)

which is the reciprocity theorem connecting the "disturbance" and "source".

The problem of an infinite space may be treated as follows. Suppose that the boundary

is a hypersphere of radius R, centered at the origin, R being large. An element of the

boundary is thus 0{Rn~l). Suppose that, on |x| = R, instead of the boundary condition

(2.2), \p obeys the order condition

i = o(/T<n/2>+1) (4.3a)

and the generalized Sommerfeld radiation condition

 /r>—»/2

cdt

The integral over the boundary in (4.1) is

1*1*^
dn dn

<4"3b>

J (ti * 1 * 1 * — \p2 * 1 * 1 * da

= f Hi * 1 * 1 * X2 — h * 1 * 1 * Xi) da
J |x|-R

Using (2.4) it follows that

and so

1 * ~dt = ^1 and 1 * Ht = ^4'5^

** *1 *1 * Ht= xpi *1 *1 * Hi' (4,6)

and the boundary integral becomes

/ (xj/i * 1 * 1 * X2 — ^2 * 1 * 1 * Xi) da.
•Mxi-a
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Now

ixda = o(R-n/2)o(R-('/2)+1)0(Rn~l) = o(l), (4.7)

and so (4.3a) and (4.3b) form a set of sufficient conditions for the left-hand side of (4.1)

to vanish when the boundary is at infinity. If part of the boundary is finite and part

infinite, the extension is obvious.

A particular case of (4.2) is associated with the Green's function. Let G(x, x'; t) be

the solution of the differential equation

V2G - j = 5(x - x') 5(0 (4.8)

which is associated with the initial conditions

G = 0, dG/dt = 0 at t = 0. (4.9)

Suppose that G0 is the solution of this equation under the boundary condition (4.3),

this being actually the radiation condition here. Suppose that G = G0 + G* is the solu-

tion of this equation under the boundary condition

aG + 0 dG/dn = 0. (4.10)

G* may be determined as follows.

From Eq. (4.8),

V2G0 + V2G* - i - k ^ = 5(x - x') 5(0;
c at C at

it follows that

c dt

The initial conditions for G* will clearly be given by

1
V2G* - = 0. (4.11a)

G* = °, ~r — 0, t = 0, (4.11b)
<jl

and the boundary condition by

G* is thus defined by Eqs. (4.11a), (4.11b) and (4.11c) and can be solved in the usual

way. This problem has been discussed by Jones [5].

The "source" p0 associated with the "excitation" G is

c2[ 1 * 1 * 5(x — x') 5(0] = c2 5(x — x')l * 1 ( = c2 S(x — x')t.).

(4.2) takes the form

J {\p * pG) (It = J (G * pa) dr.

Writing the above equation in full,

j c2 5(x — x')^(x, 0*1*1 rfr = J G(x, x1', t) * p(x, t).
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Using the properties of the delta function, this takes the form

c2l * 1 * i(x', t) = J G(x, x', t)p(x, t)

and using (2.4) twice, it follows that

«Kx', 0 = ^2^2 f G(x, x', t)p(x, t) dr.

One particular "excitation" which is of interest is that which is associated with the

"source" 5(x — x0) S(t — t0) t0 > 0. This is given by

^(x', 0 = f G(x, x', t) 5(t - t0) 5(x - x0) dr

= -2^.2 G(x0 ,x',t- t0).
c at

These formulae make it possible to determine an excitation directly in terms of the

quantities /(x, t), g(x), <f> l (x), and <t>0(x).

5. Uniqueness. It is necessary to determine the conditions under which the

solution of (2.1) is unique. Uniqueness exists if there is no nontrivial solution of the

system defined by the differential equation

v* - b y = ° (5.i)
c of

together with the initial conditions

<t> — 0 and ^7 = 0, at t = 0 (5.2)
ot

and the appropriate boundary condition: for finite boundaries

a<j> + /3 ̂  — 0, (5.3a)

and for infinite boundaries

*,f, x-i + | f (5.3b)
Consider the quantity

E-if [W + i, (I)' dr. (5.4)

E is intrinsically either positive or zero. Initially <f> is zero and hence is zero. Also

d<f>/dt is zero. Thus initially E is zero.

f -/!>♦>•*(?,)+?£§]*
- (5'5)
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Suppose now that B is finite. If either 4> or d<t>/dn vanishes on B, the right-hand side of

(5.5) is zero and so dEjdt vanishes, E remains zero and there is uniqueness. If (5.3a) holds

dE r dcf) a d f . a <j>~
~= *~~mJ d°dt JB dt P* dt J p 2

and

d_

dt

dE

dt

[» + 5/l^]-®- <5'6>
If a/p > 0, El = E + | / (a/P)42 da is intrinsically positive or zero, it is initially zero

and dE1 /dt = 0. Thus El is always zero, </> is zero and there is uniqueness. If, however,

a/P is not always positive, this does not hold, and uniqueness may not exist.

If now the boundary is infinite,

-/.*ttt-L,"-ft 1=L.«]-?L,^
The order of magnitude of the first integral on the right-hand side of (5.7) is given

by 0(Rn~1)o(R~n/2+1)o(R~"/2) = o(l) and so vanishes as R tends to infinity.

The order of magnitude of the second integral on the right-hand side of (5.7) is

0(Rn_>(/rn/2+>(iTn/2+1).

This may be expressed as 0(\)o(Ti), but cannot be reduced further. This does not

matter however, as the right-hand side of (5.7) is clearly negative or zero, and dE/dt < 0.

From this, it follows again that <j> is identically zero and there is uniqueness.

Appendix. The case of n — 1 can also be treated, but certain modifications are

necessary. The region under consideration becomes a strip of the real axis Xi < x < x2,

the boundary B becomes the two points Xi , x2 and the boundary condition becomes

, I a d4>
ldx=(Jl X = Xl

, a d<i>
a' dx = 92 X = X2

(A.l)

J / dr becomes J f(x) dx (A.2)

and

Ida = j(x2) - /(Xi), (A.3)
/.

Lfda = j(x2)-Kx1). (A .4)

In (A.4), if pt is zero, f(xt) is omitted and, if p2 is zero, f(x2) is omitted.

Tfco Green's function which satisfies the radiation condition is

Go(x, t) = -| //(l - I1) , (A.5)

where II(t) is the unit function.
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