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A WEAK MOMENTUM SOURCE IN A UNIFORM STREAM*

By D. R. BREACH (University of Toronto)

Abstract. The interaction of a momentum source with a viscous uniform stream

is studied. Taken separately, each flow is described by an exact solution of the full

Navier-Stokes equations. Their combined effect can be described in terms of two non-

dimensional parameters related to the strength of the source and the distance from it.

A perturbation solution for the case of a weak source is attempted and the initial terms

are found. It is shown that the results are closely related to the Oseen expansion for

viscous streaming past a spheroid and that when the momentum of the source opposes

that of the stream a closed streamline of elliptical shape is formed.

1. Introduction. The leading terms in the Oseen expansions for the sphere (Proudman

and Pearson [4]), and the spheroid (Breach [1]), are very similar in form. This is true

even when the spheroid is very slender and suggests that the mere presence of a body,

rather than its particular shape, is the essential factor affecting the flow in the large.

From this overall point of view, when a body is present in a uniform stream it acts as

a sink of momentum. The details of how this momentum is destroyed are built into the

boundary conditions on the surface of the body and are of local interest only. Therefore

a fundamental problem for investigation is that of a momentum source, or sink, placed

in a uniform stream. This is a simpler problem than that of streaming past a finite

body in that there are no fixed boundaries present and analytical difficulties in satisfying

conditions thereon do not arise.

The momentum source in the absence of the uniform stream is described by a non-

trivial exact solution of the full Navier-Stokes equations. The uniform stream alone

corresponds to another exact solution. Hence when the two interact there is the possi-

bility of constructing the solution by perturbations from exact solutions of the full non-

linear equations. This would seem to be more satisfactory than a perturbation starting

from exact solutions of linearised equations.

The problem depends on four parameters: the source strength, the viscosity, the

velocity of the uniform stream, and the distance from the origin. These can be combined

to give just two fundamental parameters and all the conditions that the solution must

satisfy are expressible in terms of limiting values of these two.

2. A solution of the Navier-Stokes equations corresponding to a momentum source.

By requiring the momentum flux across any sphere around the origin to be constant

and imposing axial symmetry, Landau [3] constructed an exact solution of the Navier-

Stokes equations (see Landau and Lifshitz [4]). This was subsequently discovered

independently by Squire [7). Sedov [5], by dimensional analysis, found this solution

as one of a whole family of exact solutions in which the velocity components vary in-
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versely with the distance from the origin and the flux of momentum parallel to the axis of

symmetry is constant. If v is the viscosity and r, 6, <fi, are spherical polar coordinates,

the velocity components for this solution are given by

, = &r ,_i'
r l(A — cos 8)2

v. = -,.a"in' , V, = 0 (1)
r(A — cos 6)

where A is a constant such that |i4| > 1.

If d is the density and Md the flux of momentum, parallel to the axis of symmetry,

across a sphere about the origin, then

M - 16 „'[a + - | X- log (f±|)] ■ (2)

This relates the constant A to the strength of the momentum source which will be

measured by M. In this work M is small, which implies that A is large. Eq. (2) gives M

explicitly in terms of A. It may be readily inverted to give A in terms of M. Thus

i-i 17 3 , 466 5 2317 7 _. 9. , ., 1 ,0.
A = e_ 15e +175€ ""525 e +0(O' ^ (3)

where 1 &irv2e = M.

3. Nondimensional parameters, equations of motion, and boundary conditions.

It is now supposed that the momentum source is placed in a uniform stream of velocity

U along the axis of symmetry so there will be an interaction between the two flows.

The physical parameters involved are r, v, U, M, and n = cos 6, of which the last is

dimensionless. For the others

[r] = L; [,] = L'T-1; [U] = LT'1; [M] = VT~2. (4)

There are just two basic nondimensional parameters which can be formed from these.

They are

X = Mv~2 and p ~ Urv~1 (5)

corresponding to a nondimensional source strength and a nondimensional distance

from the origin.

It is convenient to describe the motion in terms of the Stokes stream function,

and I, the vorticity divided by the distance from the axis. In spherical polar coordinates

the Navier-Stokes equations for the axisymmetric flow are

t .2,

f2 ̂ d? + (1 ~ "2) I? = _r4(1 ~ *)l' M = C°S 9) (6)

and

2 3 I dl n 2•> d I dl 1 d(\p, I) ns
r — 2 + 4r — + (1 — ai ) T-a — 4/t — = - tt r- (7)

dr dr dn dn v d(r, n)

These are in physical variables. Equivalent nondimensional forms can be derived by

using the nondimensional parameters X and p.

The stream function, ip, has dimensions L'T'1. Therefore \p(rv)~l is dimensionless

and must be a function of X, p and ti. Likewise [Z] = L'lT'Y so lr3v~l is dimensionless

and is also a function of X, p and fx. From Eq. (2) X is a function of A only and A can be
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used as a parameter in place of X. Large values of A correspond to small values of X.

Thus

\p(rv)~l = F(A, p, n) and ZrV1 = G(A, p, p.) (8)

where F and G are functions to be determined.

It is assumed that M is small so the momentum source is a weak one. Keep v fixed.

Then as M —> 0, A —> «>. If the source is switched off only the uniform stream remains, so

F(°°, p, m) = !p(1 - m2); <?(°°, p, m) = 0. (9)

Again, if v is kept fixed, then as U —* 0, p —» 0. This corresponds to the removal of the

uniform stream to leave the momentum source only. Therefore

F(A, 0, M) = 2(1 - m2)/(A - „); G{A, 0, M) = -4(1 - A*)/(A - p)\ (10)

Eqs. (9) and (10) give conditions on F and G, which satisfy the equations

and

4 d ( -2 dG\ 2, d2G dG d(F, G) nr dF „ dG . .

These are homogeneous in the distance variable and A does not occur explicitly.

Since A is large a perturbation solution in terms of A-1 will be attempted.

5. The initial steps in the solution. It is assumed that

F = £ A-F.(p, p) and G = £ A~nGn(P, p) (13)
n=0 n=0

where the Fn and (?„ are functions to be determined. By conditions (9),

F0 = p( 1 - p2)2 and G0 = 0. (14)

The equations for Fi and Gl are found by substituting (13) into (4) and (12) and

selecting the coefficient A'1. This gives

6 ( 2 9FA , 2\ d F1 2\ y-i /■. r\
W + (1~M)d?r = <15>

and

4 d /l d(?,\ , 2,d2Gl dGl d(F0 , (?,) nr dF0 „ dGi , ,
P ~x~ I"5 ~x~ + " _ ^ T"5 4jL1 = P ~Ir + 3(ti "a r- r0 ~r— (16)

dp \p op/ "M o{p, p) op op

These are Oseen's equations in disguise. That for Gx can be made separable by first

extracting a factor exp (pp./2) (Goldstein, [2]). Solutions for G^ which decay as p —*

are of the form

bnP3/2Kn+W2(p/2) 7exp (pp./2), n> 1, (17)
(1 — M )

where A'„+i/2(p) is a modified Bessel function of the second kind and Un(p) is the poly-

nomial defined in terms of Legendre's polynomial, Pn{p), by

Un(n) = f Pn(x) dx. (18)
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As p —> 0, p3/2iv"„ + 1/2(p/2) = 0(p1_n), so conditions (10) will be violated unless b„ = 0,

n > 2. Therefore

cn(p, p.) = bJnKM2) 7^4 exp (pp/2). (19)
(1 — M )

The constant is determined by the conditions (10). The polynomials f/n(p) are

linearly independent. Therefore, since terms in A-1 are being considered, as p —> 0 the

expansion of G, in terms of these polynomials must agree with the expansion of the

coefficient of A'1 in G(A, 0, p) when this is expanded in terms of the same polynomials.

In general the expansion of limp_0 Gn(p, p) in terms of Un(n){ 1 — p2)-1 has to match the

expansion of the coefficient of A~n in G(A, 0, p).

Now, if |p| < 1 < A, then

G(A, 0, p) = -4(1 - A2)/(A - p)3

- -2<' - ^ J,, u - ri <20)

- - A'l+ 1)PMQM)]

by von Neumann's expansion for the Legendre functions of the first and second kind,

P„(x) and QJx). But £7„(p) satisfies

(1 - p2)C/"(p) + n(n + l)C/„(p) = 0. (21)

Therefore if Vn(n) = J" Q,Xx) dx, |p| > 1, is taken as a second solution of this equation,

then

G{A, 0, m) = -2 E (2n + 1 )n2(n + l)2Fn(A) (22)
»=i (1 — M )

This expresses G(A, 0, p) in the appropriate angle functions and at the same time ex-

presses it in suitable functions of A. For large A, Vn(A) has a series expansion in inverse

powers of A such that AnVn(A) = 0(1).

Since limp^o Gt(p, p) is equal to the coefficient of A_1 in (22) and Ui(p) = §(p2 — 1),

V^A) = I . (A2 - 1) , (A + l\
A l0g (23)

it follows that

bl = —4ir-I/2. (24)

Therefore, if the closed expression for K3/t(p/2) is used,

G> = 2(P + 2) exp [—§p(l - p)]. (25)

The equation for Fx is then

dp (p2 fp) + (1 ~ ^ = ~2(1 ~ m2)(p + 2) 6XP [_|p(1 ~ m)] (26)

which has the particular integral

Fi = 4jl - exp [—§p(l - p)]}(l + p)/p. (27)
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The coefficient of A'1 in F(A, 0, p.) is, by (10), 2(1 — p.2). From (27), ]imp_0 f\(p, p) =

2(1 — /i2), so Fi as given above satisfies the correct condition for small p.

Thus the initial terms of the expansions for \[/ and I are

* = n^(l - p.2) + ~(l + m)
P

1 — exp ^ — ~ + tt) + 0(A 2)| (28)

and

1 = 7 II(p + 2) exp (~2 + f) + (29)

If A > 0 these are the solutions for the case when the momentum source assists the

stream. If A < 0 the momentum source opposes the stream.

6. The existence of a closed streamline. From (28), if the terms in 0(A~2) are

neglected, the expansion of for small p is

* = ?A [4 + p(A ~ 1 + m) + 0(p2)](1 " (30)

For small p, \p = 0 on the curve

Ur/v = p = —4/(A — 1 + m)> m = cos 0. (31)

For .4 large and positive (31) gives only negative values for p. Hence, when the source

assists the stream there will be no zero streamline, other than the axis, near the origin.

If, however, A is large and negative, then \p will vanish on an ellipse with a focus at the

origin. This occurs when the source opposes the stream.
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