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MOTION OF A CHARGED PARTICLE IN A FIELD OF
PLANE-WAVE ELECTROMAGNETIC RADIATION*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

Abstract. A charged particle is acted on by plane waves of electromagnetic radia-

tion, in general not monochromatic. In the absence of radiation damping, the relativistic

equations of motion are solved exactly by quadratures. Radiation damping is then treated

as perturbation.

1. Plane waves of electromagnetic radiation. Let Latin indices range 1, 2, 3, 4.

Let the speed of light be unity. Let the coordinates be xr with xt = it, so that the element

dr of proper time on the world line of a particle is given by dr2 = —dxr dx, .

A Maxwellian field in vacuo satisfies the eight equations

Fr... = 0, Fr,.t + F.t,r + F,„. = 0, (1.1)

where the comma indicates partial differentiation. We are interested only in fields which

correspond to plane waves of radiation. To describe these, it is convenient to introduce

the variables

£ = Xx — t = Xi + iXi , i] = Xi + t = Xi — ixi . (1.2)

The first criterion for plane waves propagated in the direction of the xj-axis is that all

the components Fr, are functions only of £. Then the eight equations (1.1) reduce to four:

FU = 0, F'23 = 0, F'2l + iF 24 = 0, F'3l + iF'3i = 0, (1.3)

where the prime means d/d£. On integrating we get four constants of integration. The

second criterion for plane waves is that these constants should vanish, so that we have

F14 = 0, F23 = 0, F21 + iF2i = 0, F31 + iF 34 = 0. (1.4)

To convert these to the more usual (E, II) notation, we are to put

Ei = iF14 , H, = F23 , (1.5)

with cyclic permutation of (1, 2, 3). Thus we get

I'n = 0, IU = 0, H2 = -E3 , H3 = E2, (1.6)

and so recognise the usual picture of radiation, with the two vectors lying in the plane

of the wave, perpendicular to each other and of equal magnitudes. But note that there

is no suggestion of sinusoidal character. It is true that any such wave may be resolved

into an infinity of sinusoidal waves, but that is not useful in the present problem in view

of the nonlinear nature of the equations of motion of a charged particle.
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The essential point about the radiation field (1.6) is that it is defined by two functions

Ei(£), E3{£) which are quite arbitrary except for such conditions of smoothness as may-

be required in the subsequent argument.

2. Equations of motion in general. For a charged particle (mass m, charge e) moving

in a given external electromagnetic field Fr, , the equations of motion are

mvr = eFr,v, + Kr . (2.1)

The dot means d/dr and vr is the 4-velocity (dxjdr). The final term is

Kr = k(vr - vri>„vn); (2.2)

if we put k = e2/('>-, we have the usual damping term, and if we put k = 0 we omit

the damping. Since in the following argument we have no occasion to divide by k, it is a

matter of indifference whether it vanishes or not. In other words, we proceed as if damping

were present, but we can drop the damping whenever we like.

The world line of the particle, being timelike, is bound to meet the hyperplane

£ = 0. There is no loss of generality in taking that event for the origin of coordinates and

in measuring the proper time from that same event. Thus, we have as an initial condition

xr = 0 for r = 0. (2.3)

This initial condition is, of course, not enough to determine the motion. If k = 0, we

need also the initial vr ; if k ^ 0, we need that and also the initial ir •

We are now to use the radiation conditions (1.4) in the equations of motion. When

those conditions are translated as in (1.5), (2.1) become

(2.4)
mvl = e(E2v2 + E3v3) + , viv2 = —eE2(v1 + iv4) + K2 ,

mi>3 = —eE^Vi + iv4) + K3 , mvi = ie(E2v2 + E3v3) + Kt .

By (1.2) we have

v i + iv,, = £, t'i — iv 4 = 17, (2.5)

and so, combining the first and last of (2.4), we get the four equations

m£ = Ki + iKt , mjj = 2e(E2v2 + E3v3) + A', — iKt ,

mi)2 = —eE2£ + K2 , mv3 = — eE:i£ + K3 . (2.6)

3. Motion without damping. Let us now drop the damping term by putting k = 0.

Then the iv-terms disappear from (2.6). In view of the initial condition (2.3), the first

of (2.6) gives

£ = —a, £ = -ar, (3.1)

where a is a constant. If u is the 3-velocity of the particle (ut = dxjdt, etc.), the first

of (2.5) tells us that

a = 7(1 — m,), 7 = (1 — u2)~1/2. (3.2)

This is an integral of the motion; note that a is necessarily positive since u < 1.

The formula (3.1) is the key to the integration process. The main difficulty in solving
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the equations of motion lies in the fact that the elements of the motion are functions

of t, whereas the field is a function of £. Now we see that these two variables are simply

related as in (3.1).

The third of (2.6) now reads

mi) 2 = aeE2{£) = aeE2( — aT), (3.3)

and the fourth is similar. Thus

V2(r) = a(e/m) f E2(—ap) dp + b2 , v3(t) = a(e/m) [ E3(-ap) dp + b3 , (3.4)
Jo Jo

where b2 and b3 are constants, viz. the initial values of v2 and v3 .

The functions v2(j) and v3(r) being now known, we turn to the second of (2.6) and get

ij = 2(e/m) [ [E2(~ap)v2(p) + E3(—ap)v3(p)] dp + c, (3.5)
Jo

where c is a constant of integration.

In (3.1), (3.4), and (3.5), we now have essentially the four components of the 4-

velocity of the particle. There are four constants of integration, a, b2 , b3 , c, but they

are not independent. We have the identity

vrvr = — 1, (3.6)

or equivalently

«£+»; + &= -1. (3.7)

When we substitute from the above equations for x = 0, we get

bl + bl - ac = -1. (3.8)

Having found the 4-velocity as above, it needs only a further integration to obtain

the trajectory xr = xr(r).

4. The damping term as a perturbation. Let us go back to the exact equations (2.6)

and treat the damping terms as a perturbation. The plan will be to treat the factor k

in (2.2) as small. Then (2.6) gives

vj>n = t>2 + i>l + = (eE/ m)2£2 + 0(k), (4.1)

where E is the magnitude of the electric vector, i.e.

EM = (El + El)u\ (4.2)

It is to be understood that the error term 0(k) in (4.1), and other such terms below,

may grow with time, and the perturbation method is valid only for a finite range of r,

or, in general terms, for a range of r such that kr is small.

It is conveiuent to define the (positive) function of £,

Q(f) = {aeE(i)/m]\ (4.3)

Then, since according to (3.1),, £ = —a in the unperturbed motion, (4.1) gives

vj>n = Q(Z) + 0(k). (4.4)
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By (2.2) we have

K, + iK< = k(t - $Q) + 0(fc2) = kaQ(0 + 0(k2), (4.5)

and so the first of (2.6) reads

m\ = kaQ( — ar) + 0(k2). (4.6)

Therefore

£ = —a + (ka/m) f Q(—ap) dp + 0(k2), (4.7)
Jo

in which the integral is positive for positive r, but of course small compared with the

leading term. A further integration gives £.

As for the other three equations in (2.6), we have

Kt - iK< = k(v' - rjQ) + 0(k2),

K2 = k(v 2 — vaQ) + 0(k2), K3 = k(v 3 — v3Q) + OQt),

in which the unperturbed values are to be inserted. The third of (2.6) reads

mv2 = —eE2(Z)£ + K2 ; (4.9)

here we are to substitute for $ and £ the values given by (4.7) and for K2 the value

from (4.8); the right-hand side is then a known function of r, and one integration gives

v2 ] a second integration gives x2 . Similarly we get v3 and x3 . As for -q, we can now get it

from (2.6) by two integrations, the right-hand side being known.

In all these results there is an error 0(k2). To within such an error, the effect of the

small damping term has been found.

5. Conclusion. Vachaspati [1] showed that the motion of a charged particle may be

found accurately when the radiation field is monochromatic and the damping term is

omitted. The present paper may be regarded as a generalisation of his work.
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