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A NOTE ON ELASTIC-PLASTIC FLOW*

By H. T. DANYLUK, J. R. POUNDER, and J. B. HADDOW

(University of Alberta, Edmonton, Canada)

Abstract. The plane plastic flow of an incompressible elastic perfectly-plastic solid

that obeys the Mises yield condition and a properly invariant form of the Prandtl-

Reuss equations is considered. It is shown that both the stress and velocity equations

are hyperbolic and that the two families of characteristics are not coincident except for

the limiting case of the rigid perfectly-plastic solid.

I. Introduction. We consider the quasi-static plane flow of a solid that has the

following constitutive equations, referred to a fixed system of curvilinear coordinates £,• :

1 = d) - Ss; for J = « = 2k\ (1)

1 £>s'

2yu 3D t

2yi £> t ' 2 k

= dJ for J < 2k2 or for J = 2k2 and J° < 0; (2)

and, since the solid is incompressible,

d\ = 0, (3)

where ju and k are material constants, d) , s,' = c] — \akk h) and <j* are the components of

the rate of deformation, stress deviator and stress tensors respectively and J° denotes

the material derivative of J. The stress rate that appears in (1) and (2) is given by

j ds j * i lc | i It k i f a \

Idt = hi Si'kV '' ~s' '

where vk are the components of velocity,

w'.i = W.i ~ g<kVi.k)

are the components of the spin tensor and subscript commas denote covariant differ-

entiation. If (i and k are the shear modulus and shear yield stress, respectively, Eqs. (1)

are a properly invariant form, suggested by Thomas [1], of the Prandtl-Reuss equations

for a non-work-hardening solid.

The stress rate given by (4) is sometimes known as the corotational stress rate and is

the stress rate following a material element and referred to a system of axes that rotates

with an angular velocity equal to that of the element. Green [2] has noted that Eqs. (2)

indicate a linear relationship between stress and logarithmic strain for simple extension.

For infinitesimal strains integration of (2) yields the constitutive equations for a Hookean

elastic solid. However, if n/k is sufficiently small so that the strains may not be repre-
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sented by the infinitesimal strain tensor for all J < 2k2, Eqs. (2) do not necessarily

described elastic behavior but describe a form of hypo-elastic behavior [3]. Nevertheless

we assume that Eqs. (1) are valid for elastic-plastic flow for n/k > 1.

For three-dimensional elastic-plastic flow only four of Eqs. (1) are independent and

these four equations, Eq. (3), the yield condition

J = 2 k2 (5)

and the three equilibrium equations provide nine equations for the determination of the

nine unknowns <x) , v'.

Plane flow. In this section rectangular Cartesian coordinates (x, y, z) are used and

the x, y and z components of velocity are denoted by u, v and w respectively. For plane

flow independent of z and parallel to the (x, y) plane

&Xz &yz "W   dyg ' " dzx 0.

Since dzz — 0 and the solid is incompressible, s„ = 0 and <jzz = (aXI + ayy)/2 = — p

where — p is the hydrostatic part of the stress tensor. Consequently sxr = — s„„ and the

Mises yield condition (5) becomes

sL + 4 = k2. (6)

There is only one independent Prandtl-Reuss equation for incompressible plane

elastic-plastic flow, say

1 ^11   l (dxx8xx ~f~ ^dxySxy I dyv^vy)

2M ~ " ~ 2k2 S:
XX )

which may be rewritten as

k2 ( dsXI ds„\ ,,2 2 >. du (k2 \ du (k2

V r Tx +" li) -2(4 -s") te " t" Tv+ v +'

Eqs. (6) and (7), the equilibrium equations which may be put in the form

dSxx , dSxy _ dj) _ dSxy _ dSxx _ dj) _ n

dx "t~ dy dx ' dx dy dy 1 '

and the continuity equation

5m „

dx + dy ~

provide five equations for the determination of the five unknowns, , sxv , p, u and v.

If 0 + 7r/4 is the anticlockwise rotation of the direction of the algebraically greater

principal stress in (x, y) plane from the x axis, it follows from (6) that

sxx = — k sin 2<j>, sxv = k cos 2<j>. (10)

Substituting (10) in (8) yields

cos 24> ~ + sin 2(j> ~ ^ = 0, (11)
dx dy dx

gin 24> ̂ - cos 2cj> ~ + ^ = 0, (12)
dx dy dy
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where P = p/(2k), and substituting (10) in (7) yields

2 sin 2 y(u ^ + + (sin 20 + sin 2y) ~
\ dx dy/ dy

+ (sin 2<f> — sin 2y) + 2 cos 2<t> ^ = 0,
dx dx

where sin 2y = k/n and the range 0 < k/n < 1 is considered. Let 8 denote (ir/2) — y.

Since Eq. (13) is not changed when y is replaced by S any conclusions remain valid

under this replacement.

If T is a curve in the (x, y) plane with arc length s and x'(s) = cos f, and y'(s) = sin

where a prime denotes differentiation with respect to the argument, then along T:

cos f + ~ sin t = </>'(«), (14)

^ cos f + sin f = P'(s), (15)

~ cos f ^ sin f = u'(s), (16)
da; dy

^ cos f + ^ sin f = y'(s). (17)
ax dy

Eqs. (11), (12), (14) and (15) yield

|^sin 2(0 — f) = 0'(s) sin (20 - f) + P'(s) sin f, (18)

^ sin 2(0 - f) = —0'(s) cos (20 — f) — P'(s) cos £. (19)
dy

Characteristic directions, those for which the partial derivatives d<f>/dx and 30/dy can-

not be determined from data given on T, are thus given by f = 0 and f = 0 + ir/2.

The corresponding curves, for which dy/dx = tan 0 and dy/dx = —cot 0, are called

a-lines and j3-lines respectively. Substitution of f = 0 and f = 0 + x/2 into (18) or

(19) shows that

0 + P = constant along an a-line,

0 — P — constant along a /3-line.

These compatibility relations are identical to the Hencky equations for a rigid per-

fectly-plastic solid.

Suppose now that T is neither an a-line nor a /3-line. Then the result of eliminating

du/dy, dv/dx and dv/dy from (9), (13), (16) and (17) is

r . 0/. ,n . , dw f 30 <90
[sin 2(f - 0) - sin 27] — = - I •u — + v ~~ sin 2|" sin 2y (20)

dx L dx dy_

— 2u'(s) cos f sin (0 + y) sin (0 + 5) + 2v'(s) sin f cos (0 + 7) cos (0 + 6).

The first term on the right side of (20) may be expressed in terms of 0'($) and P'(s)

since from (18) and (19).
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sin 2(<t> — f) = 4>'(s)[« sin (2tf> — f) - v cos (2<#» — f)] ^

+ P'(s)[m sin f — y cos f].

It follows from (20) that characteristic directions for the velocity field are given by

f = <t> + 7 and f = <£+5 = 0 + tt/2 — 7; the corresponding curves, for which dy/dx —

tan ((f) + 7) and dy/dx = —cot (4> — 7), are called a,-lines and /Splines respectively.

The compatibility relation on an aj-line is obtained by replacing f by $ + 7 in (20)

and using (21) to eliminate dtf>/dx and d<j>/dy and is

[w sin (<t> + S) — v cos {<t> + 5)] = P'(s)[u sin (<£ + 7) — v cos (<p + 7)]-

If U and V are the physical components of the velocity vector in the a, and /3t directions

respectively then U cos 2y = u sin (</>+5) — v cos (0+5) and V cos 2y = u sin ($+7) —

v cos (<{> + 7); consequently Eq. (22) yields the compatibility relation

dU/ds + V dP/ds = 0 along an ai-line. (22)

The analogous result for /3,-lines is obtained by interchanging 7 and 5 and is

dV/ds -f U dP/ds = 0 along a /^-line. (23)

For the limiting case of the rigid perfectly-plastic solid 7 = 0, the velocity and stress

characteristics coincide and Eqs. (22) and (23) are identical to the familiar Geiringer

equations.
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