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I. Introduction. In the published literature dealing with a number of diverse

scientific and technological problems, one encounters the mathematical system

VV + X<7(x)=0 in R, (la)

dip/dn + Bh(x)\p = 0 on S. (lb)

A physically relevant generalization of the foregoing, the characteristics of which have

yet to be explored, is

V•[/(*)V*] + Xff(x)$(*) = 0 in R, (2a)

j(\p) dyp/dn + Bh(x)\p = 0 on S. (2b)

R is a closed region bounded by surface S, with n denoting the outer normal to S. The

physical content of Eqs. (1) and (2) will now be discussed in broad terms. A survey of phys-

ical situations to which these equations are relevant is presented later.

All of the quantities appearing in Eqs. (1) and (2) are dimensionless. <p denotes a

scalar field such as the temperature or mass concentration, the gradient of which induces

the transfer of quantities such as heat or mass. The term \$(f) represents a ^-dependent

source of the transferred quantity, with X denoting the intensity level of the source1 and

$(ip) its dependence on ip. Throughout this paper, X will be termed the source intensity

and <J> the source distribution function.

The factor / denotes a ^-dependent diffusion coefficient, for instance, the thermal

conductivity or the coefficient of mass diffusion. In general, /(ip) > 0. Eqs. (1) correspond

to the case of a ^-independent diffusion coefficient, so that, with proper normalization, /

does not appear. B is a constant whose magnitude is an indication of the ease of transfer

from the boundary surface S to the environment outside R relative to the ease of transfer

within R itself. When B = c°, Eqs. (lb) and (2b) reduce to \p = 0 on S. The functions g(x)

and h(x) are required to be positive, with g having two continuous derivatives and h being

piecewise continuous.

The major concern of the paper is with nonlinear source distributions $ = $(^) and

with ^-dependent diffusion coefficients / = /(if).

Tn physical problems involving distributed sources, the quantity if = maxxGBi/'(x) is

of considerable practical interest and may be used as an independent parameter. It fre-

quently happens that in problems characterized by nonlinear sources, the solution ip(x, if),

* Received April 2, 1969.
1 Typically X~L2g, where L2 is a characteristic length and q is the intensity of the source.
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A W) is uniquely determined by \p, but \p(\) may not be single-valued and the solution \p(x, X)

may not be unique. In fact, it is known that in many situations, there is a value

X = sup^>0X(i/') such that if X > X, then steady-state solutions are not possible. For in-

stance, in the case of (1), such behavior is encountered when $(ip) is such that \p/$(\p)

is bounded [1].

Sees. II and III of the present study are concerned with the X, \f relationship. For any

given \p, an a priori upper bound on X is deduced. The expression for the bound is applicable

for any positive functions f(\p), <b(ip), g(x) and h(x), for regions R of arbitrary shape, and

for arbitrary values of B. Furthermore, for a specific but physically relevant class of prob-

lems, an expression is deduced which directly gives an a priori upper bound for X.

The just-mentioned general theorems are illustrated by application to the problem of

ohmic heating of a circular wire or a plane sheet. Consideration is given both to constant

thermal conductivity (i.e., / = 1) and to temperature-dependent thermal conductivity

as expressed by the Wiedemann-Franz-Lorenz law. The a priori bounds for X as a function

of \p are compared with X, \p distributions determined from numerical solutions of the

governing differential equations. Comparisons of the X bounds with numerically deter-

mined values are also made. These comparisons suggest that the bounds are sufficiently

accurate to serve as useful estimates of both the X, ip distributions and of X.

In Sec. IV of the paper, for system (1), we demonstrate the existence and give an an-

alytic perturbation from the zero solution in powers of \p, X, or any other equivalent param-

eter. For a one-dimensional version of (1), it is shown that the radius of convergence of

the power series in ip is determined by the first zero of $>(\p) (Sec. V).

Attention may now be turned to a survey of physical problems to which systems (1)

and (2) are relevant. Consider first the group of problems in which \p represents the tem-

perature field. Within this group, one encounters a diverse range of physical processes,

each characterized by a different heat source function X<£. The passage of electrical current

through a solid conductor or an electrolyte causes ohmic heating to occur, which, in turn,

gives rise to temperature nonuniformities [2]-[4].2 The temperature dependence of the

source distribution function $ is related to the variation of the electrical resistivity with

temperature.

In materials fatigue studies, when a solid is subjected to a cycled load, a finite amount

of heat is generated in each cycle [5]. Heat generation also occurs as a result of chemical

reactions, for instance, in a porous catalyst particle [6]—[9], in a tubular reactor with axial

diffusion [6], [7] and in connection with thermal self-ignition of a chemically active mixture

of gases in a vessel [10], [11].

A flowing fluid undergoes a dissipation of mechanical energy into heat owing, to the

action of viscosity [12]—[17]. The resulting heating of the flow is an unwanted effect in

viscosity measuring instruments and in lubricated machine parts. On the other hand, in

the forming of thermoplastic materials by means of a screw extrusion device, the internal

heating due to viscous dissipation enhances the workability of the material and facilitates

rapid processing.

The mathematical systems (1) and (2) are also relevant to nuclear reactor dynamics,

specifically, to the determination of the energy released in the reactor as a result of a

power excursion [IS]—[20]. In addition, these equation systems describe the distribution

2 These literature citations refer to representative publications relevant to the process under

discussion.
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of partial pressure in an isothermal porous catalyst, wherein \p is related to the partial

pressure and $ is proportional to the rate of the chemical reaction [21].

Various analytical aspects of Eqs. (1) have been examined in the literature. For certain

source distributions there may be multiple solutions when X lies in the range X* <

X < X** and unique solutions when X lies outside this range. Luss and co-workers [6]-[9]

have given estimates of X* and X** and have examined the conditions on $ to insure unique

solutions. Keller and Cohen [22]—[24] considered a generalized version of system (1) (i.e.,

V2 was replaced by a strongly elliptic operator and g(x)$(\l/) replaced with F(x, \f/)) and,

among other aspects, investigated the nonexistence of solutions.

The specific case of $>(^) = e* was examined by Gel'fand [10] in connection with an

n-dimensional sphere (n = 1, 2, 3). One of Gel'fand's interesting findings is that the multi-

plicity of the solutions is of a different character when n = 3 than when n = 1 and 2. The

existence of multiple steady-state solutions suggests the possibility that some are unstable;

this aspect has been investigated in [4], by Luss and Lee [9], and by Fujita [11]. Within the

knowledge of the present authors, analytical aspects of Eqs. (2) have not heretofore been

explored in the literature directly relevant to this investigation.

II. Bounds on X(^). It is convenient to replace (2) with an equivalent problem

V m + \g(x)$[^(u)] = 0|fl (3a)

and

du/dn + Bh(x) ip(n) = 0[s (3b)

which is induced by the Kirchhoff transformation

u = C Kf) dr.
Jo

We also make use of the comparison linear problem

V20 + ng(x)4> = 0|K (4a)

and

i)<t>/dn + Bxh(x)<t> = 0|s (4b)

where

X = h(x)\l/(x)<j)(x) dS j <j> h(x)u[\p(x)]<t>(x) dS. (5)

Multiply cj> into (3a) and u into (4a) to find, after integration, that

X = m f s(x)<£(xM\Hx)] dR / [ g(x)<p(x)$[^(x)] dR.
J R / J R

Let ix(Bx) be the principal eigenvalue of (4). It is known that the principal eigenfunction

4> is one-signed (take it nonnegative).

Consider positive solutions ^ of (2). If tp is positive, then, since /(tp) > 0, u is a positive

solution of (3). Let $(?/) > 0 when y > 0. Then,

• = .f s h(x)u[xP(x)]<t>(x)(^(x)/u[^(x)]) dS = ^(i) ,fi.

X fa h(x)u[i{xmx) dS «[*(*)] V ;
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where l£ S, and

X = J* g(x)»(x)$[^(x)](M[^(x)]/<^[^(x)]) dR = m|>(x)]

fR g(x)<t>(x)<f>[\P(x)] dR M 4>[^(x)]

where x £ R.

Our first result is a simple consequence of (6) and (7).

Theorem 1. Let <t'(4') > 0 when \p > 0. Lei \pbea -positive solution of (2) with maximum

value Then,

m < nmmv(i) (8)
where

and

x(ip) = max \p/u(\p)
o< i < $

r(i) = max u(\p)/'

It is known that n(a) is an increasing function of its argument. Hence,

mCBx) > n(B4>(x)/u[t(x)]),

and the proof follows from (6) and (7).

The estimate (8) is in principle (and in fact) easily computed. T(\p) and x($) are readily

calculated from the given functions and u(\p), and fi(Bx) is found as the principal

eigenvalue for the linear problem (4). Although exact values for/j(Z?x) in arbitrary domains

can be obtained only by extended numerical computations, upper estimates are easily

determined by standard Ritz procedures. Any upper estimate of the values n(Bx) naturally

results in an upper estimate for the allowed values A(ip) of the nonlinear problem. In partic-

ular, (8) holds with a replacing n, where

m(£x) < aCBx, 6) = [J* | V0\2 dR + Bx fs h(x)92 dS]/jR g(x)02 dR,

and 6 is any function with continuous first derivatives in R. Admissible functions 9 should

be selected to vanish at the same set of boundary points at which h(x)B = .

To illustrate the nature of the results, a priori bounds evaluated from (8) will'now be

compared with X, \p distributions obtained by direct numerical solutions of (1) and (2)

for the case of ohmic heating in a conductor of circular cross section. In the calculations,

the relationship between the electrical resistivity p and the absolute temperature T was

represented by the quadratic form p = a + bT + cl'~ which is realistic for a wide range

of materials. If T0 is the temperature of the environment in which the conductor is situ-

ated, then the ip variable may be expressed in physical terms as \p — /3(T — T0)/pa where

(3 = 6 + 2c7'„ and p0 is the resistivity at T0.

We distinguish between two physically relevant situations where, respectively, the

voltage gradient e and the current density j are uniform across the section/ The correspond-

ing definitions of X and $> are

X = c'Yrf/hpl , <t> = (1 + $ + yip2) 1

3 The voltage gradient is cross-sectionally uniform in a homogeneous wire, while the current den-

sity is commonly taken to be cross-sectionally uniform in coils.
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and

X = j r0p/k0 , $ = (1 + \p + y\p2)

in which k0 is the thermal conductivity at temperature T0, r0 the radius of the conductor,

and 7 = poc//32. The temperature dependence of the thermal conductivity k can be ac-

curately represented for many pure metals and some alloys by the Wiedemann-Franz-

Lorenz law [2, pp. 112-114], which gives

/(*) = (1 + «*)/(l + i + yf) (9)

with 5 = po/0To. The parameter B appearing in Eqs. (lb) and (2b) is the Biot modulus.

In Fig. 1, we present results for X(^) for the case in which the voltage gradient is cross-

sectionally uniform. The solid lines represent direct numerical solutions of systems (1)

IOr

Fig. 1 Relationship between souroe intensity X and maximum temperature if for a conductor of circular

cross section. The voltage gradient is cross-sectionally uniform.
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and (2), while the dashed lines represent the a priori bounds expressed by Eq. (8). Results

corresponding to ^-dependent /, Eq. (9), and to ^-independent / are respectively shown in

the left-hand and right-hand portions of the figure. The various curves are parameterized

by the quantity y which appears in the expressions for <i> and /. The Biot modulus B has

been assigned the physically realistic value of 0.1.

Inspection of the figure reveals a different behavior for \($) depending on whether or

not = \p(l + \f/ + yip') is bounded for \p > 0 on the domain of $(1(/) > 0. When

y > 0, X($) increases monotonically, while when y < 0, the curves display a maximum

such that ^(X) is double-valued. If X = sup; X(i£) for a given y < 0, then steady-state

solutions for that y are not possible when X > X. These same characteristics are in evidence

both for / = j(\p) and for / = 1.

Fig. 2(a) Relationship between source intensity X and maximum temperature 1J* for a conductor of

circular cross section. The current density is cross-sectionally uniform and the thermal conductivity is

temperature-independent.
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The a priori bounds of Eq. (8) are, in general, numerically accurate representations of

the true distributions \(i) obtained from the numerical solutions, with slightly better

agreement prevailing when / = 1. In those cases in which A($) has a maximum, the bound

cannot simulate the descending part of the curve; however, the maximum value of the

bound for each y < 0 appears to be a close approximation to the corresponding numerically

determined value of X.

Results for the case of cross-sectionally uniform current density are presented in Figs.

2(a) and 2(b), respectively for / = 1 and for the / = j(ip) of Eq. (9) with 5 = 1. The curves

appearing therein are parameterized by y, and B = 0.1. Once again, the behavior of the

X(iA) distributions is related to whether or not is bounded, where now = 1 +

Fig. 2(b) Relationship between source intensity X and maximum temperature for a conductor of

circular cross section. The current density is cross-sectionally uniform and the thermal conductivity is

temperature-dependent.
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ip -f- y\p2. In particular, for each y > 0, there is a value of X such that steady-state solutions

are not possible when X > X.

The accord between the a priori bounds of Eq. (8) and the numerically determined

Hi) distributions continues to be very good, with that in evidence in Fig. 2(a) being

truly remarkable. As before, when the distribution has a maximum, the bound cannot

follow the descending portion of the curve. In Fig. 2(b), the continuing ascent of the dashed

curves for y > 0 is due to the fact that for the specific /(\p) under consideration, x(i£) is

monotonic increasing and, as a consequence, nlBxii)] increases toward the value m(co)
< ro.

On the basis of the foregoing comparisons, it may be concluded that the bounds given

by (8) are sufficiently accurate to serve as useful estimates of the X(i£) distribution. Other

similar comparisons made by the authors suggest that comparable accuracy may be ex-

pected for nonpathological $(\p).

III. Bounds on X. It is an obvious consequence of (8) and the fact that n(Bx) <

m(°°) < co that X exists if u(ip)/^(\p) is bounded for all positive ip. The estimate of

X which arises from this observation can have considerable numerical precision. As

shown below, one can also obtain an even more precise estimate of X, but additional hy-

potheses are required.

Theorem 2. Let the hypotheses of Theorem 1 hold. There are no positive solutions of

(2) when

x > X > m(£x*)t* (io)

where

X* = maxx(^), T* = max F(^).
<P>o \£>o

Let /(\p) (/(0) = 1) be a nonincr easing function and let \p(x) > \p(x), where x and x are mean

values (defined by Eqs. (6) and (7)) in the interior and on the boundary, respectively. The

positive solutions of (2) do not exist when

X > X > min [n(Bx*)r*, n(B) max if>/$($)].
i£>o V1Ay

We note that for n-dimensional spheres, and for small perturbations from these, the

inequality xp(x) > \p(x) holds as a consequence of the maximum principle and need not

be stated as an additional hypothesis. But for general domains, the inequality \p(x) >

i(x) may not hold.

Proof of Theorem 2. Eq. (10) is obvious. We need to prove (11). From (7), one can

find that

= m \ "M*)] = X® n[Bx(x)] \K*)
^Ux) *[*(*)] x(x) x® *[*(*)]

where x(x) = \p(x)/u[\p(x)] is a function of the form (6) defined through the interior mean

value x. Moreover, since

<h __ d_
d\p dip

_±
Mi).

P Kf) dr -
_J0

we have x® < x(x) when \pix) > ip(x). Then

= w 2\p[f{$) — f{i)] > o,
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We must show that

KB) < max (ji(Bx)/x) max (^/$(^)). (12)
X>1 |A>0

max (ji(Bx)/x) = »(£>)■ (13)
X>1

To prove (13), consider the problem

V2</> + = 0|fl , d<t>/dn + ah(x)4> = 0|s (14)

and the perturbation problem

VVU + fi(a)g(x)4>U) + nU) (a)g(x)<p = 0|fl, d<j>il) /dn + ah(x)cj>n) + h(x)4> = 0|s (15)

where

4>a' = d<f>/da, juU> = dn/da.

The problem (15) has solutions if and only if

i *«(*'" t - * dS"I. dR

= (f h(x)<p2 dS - f g(x)4>2 dR = 0. (16)
J S J R

The principal eigenvalues are given by

n(a) = |J \V<1>\2 d.R + a <j) h(x)4>2 d,sj j f g(x)<t>2 dR

= J \V<t>\2dR/J g(x)4>2 dR + aM(1).

Hence

and

dn(a)/oc   1 fR I V<t>\2 dR

da a2 fR g(x)4>2 dR ~

d_ Tn(Bx)~I = r2
dx L X J d(#x)

tiM
. BX J

< o.

Since the minimum value of x is one, we obtain (13), (12), and (11), thereby proving Theo-

rem 2.

As an application of (11), \ values have been evaluated for ohmic heating in a circular

conductor and in a plane sheet. The relevant physical parameters and the definitions of

\j>, X, $, and / have already been given in Sec. II. For the function / = /(\p) expressed by

En. (9), the condition/'(v'O < Oof Theorem 2 is fulfilled for all 4/ > OwhenS < 1 and-y > 0.

Since X(ip) is bounded when 7 > 0 for the case of cross-sectionally uniform current density,

it is for this situation that Eq. (11) will be applied. In the computations, 8 was assigned a

value of one.

In Table 1, numerical values of % from Eq. (11) are compared with those from direct
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Table 1

Comparison of % from (11) with those from numerical solutions

(a) circular conductor

/ = 1 / = M), Eq- (9)

B

0.1 10
0.1 1

0.1 0.1
CO 10

CD 1

CO 0.1

Eq. (11) Numerical

0,0266 0.0266

0.0650 0.0650

0.1195 0.1195
0.786 0.744
1.928 1.838
3 543 3.444

Eq. (11) Numerical

0.0266 0.0262
0.0650 0.0642
0.1195 0.1188
0.666 0.605
1.686 1.569
3.268 3.143

(b) plane sheet

/ = 1 / = J(i), Eq. (9)

B

0.1 10
0.1 1

0.1 0.1
m 10

CO 1

<=° 0.1

Eq. (11) Numerical

0.0132 0.0132
0.0323 0.0322
0.0593 0.0593
0.339 0.326
0.822 0.802
1.511 1.489

Eq. (11) Numerical

0.0132 0.0129
0.0323 0.0317
0.0593 0.0588
0.284 0.269
0.720 0.693
1.395 1.366

numerical solutions of (1) and (2). The table is subdivided into two parts, respectively for

the circular conductor and for the plane sheet. Inspection of the table reveals very good

agreement of the a priori estimates for % with the corresponding results of the numerical

solutions. The accuracy of the a priori estimates is favored by decreasing values of B.

Indeed, for the physically realistic condition B = 0.1, the estimates are essentially exact.

The foregoing comparison suggests that estimates of \ evaluated from (11) are of

sufficient accuracy to be useful in practice.

IV. Existence of an analytic perturbation of the trivial solution. We have seen that

it is sometimes convenient to use parameters other than X, for example, \p, to characterize

the solution. It makes very little difference as to which parameter characterizes the solu-

tion, provided that the parameters are unique functions of each other. But, as was observed

earlier, it can happen that nonunique relationships exist between the parameters; for

instance, i//(X) is a single-valued function in the examples of Sec. II, but A(^) is not unique.

For solutions with small norms, one can obtain the solution explicitly as a Taylor series

in any of an infinity of small parameters. Although the choice of parameter is of no im-

portant consequence in the demonstration of the existence of the analytic solution, one

can obtain a larger number of the set of all solutions by a proper choice of parameter

(cf. Sec. V).
We now proceed to demonstrate the existence and to construct the analytic solution

of system (1). It is convenient first to reformulate system (1) as an operator equation on

the space of continuous functions. The reformulation allows us to introduce any of an

infinity of parameters as preassigned.
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Problem (1) can be expressed as an integral equation

ip(x) = X f G(x, x0)$[^(x0)] ilR0 (17)
J R o

where C(x, x0) is the Green's function for the Laplace operator and boundary conditions

(lb). Let 9Z[i/<] be a linear functional, defined for functions continuous on R and bounded

in a maximum norm

)&[£ll < c0 11^|| = cu max \i(x)\. (18)

We shall regard A - 3l[^] as preassigned. The operator

m(ip) = f G(x, x0)$[^(x0)] dR0 (19)
J It o

maps continuous functions into continuous functions. Then, instead of (17), we can con-

sider the problem

= Am(\p). (20)

Every solution of (20) for which 9l[w(^)] 5^ 0 is also a solution of (17) with X = A/

9l[m(^)], and conversely.

One can choose the linear functional 91 in different ways. Here are three ways: (i) A is

the value of \p(x) at a point (say x = 0). Then,

3l[f] = ^(0), = [ 0(0, x0)<T>[i/<(xo)] dR0 ■
J II o

(ii) A is the total flux. Then,

~ dS = B (f) h(x) \p(x) dS
J s uTl J s

and

9l[m(\A)] = B (f) /i(x) j I" G(x, x„)$[i/'(xo)] dS.

(iii) A is the heat source intensity. Then = X, 9t[?n(^)] = I.

To prove the existence of solutions of (20) which are analytic in we first construct a

formal power series. Then, we show that the series converges to a function \{/(x, A) and that

this function satisfies (20).

Differentiation of (20) v times with respect to A using the product rule yields, after

setting 4=0,

fl*SL[m(0)] = v[mm('"n - E (21)

■u here

[m(iA)]'"' = I G(x, x(J)(<r>[^(x0)j)(") dR0
J R 0

and
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Here the superscript (v) means d"/dA" at A = 0 and the symbol ^ indicates summation

over all solutions in positive integers of the equations i + 2j + 3h + • • • -\- Ik = v and

m — i + j + h + • • • + k. Define

*Mw = ^i\j\h\.--ki^m)m

The following estimates hold:

i <i>
± 
1!

, (2)
lA 
21

^(3)

3!

/ o
V
11 (23)

(Hi)) " < [m(i)} " < C,$<'>(^)

and

9l[(m(^))('>]<C„||[mW]('>|| <ca*">(fl

where

'B.

From these estimates we find that

and c2 = CjCq .! = I [ G(x, x0) c/i20

e find that

||*("|| 9l[m(0)] < + Z (j ||^<r)|| *<-"(*)} (24)

where c3 = max [ci , c0].

Theorem 3.4 Let $(\p) be regular analytic when \<p\ < u > 0 and $(0) 0. Let the

junctions ^'"'(x) be defined recursively by (21). There exists |40| > 0 such that the Taylor

series

i(x, .4) = (25)
v-l vl

converges when |^41 < |^40| and, represents a solution of (20).

Proof. Since $(^) is analytic it is absolutely convergent when \yp\ < u. Let the analytic

function defined by absolute convergence be cpd)- Define the analytic function t(A)

implicitly through the equation

//(r, A) = /3r — A4>(t) + — 4>(0)) — 0 (26)

where

<t>(j) = </>"' = l$m(0)l (26a)
J -0 1 !

and

/3 = 3l[ni(0)]/c3 > 0. (26b)

4 We are indebted to 1'. Fife, University of Arizona, for considerable help with the theorem given

here and for calling our attention to the fact that the result could also be obtained by verifying the

hypotheses of a theorem on implicit operators (Vainberg and Trenogin [25, Theorem 3.1, p. 19]). The

details of our proof are essentially unaltered if $(<p) is replaced with <I>(x, if/).
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H(t, A) is the sum of products of analytic functions. H(0, 0) = 0 and dH(0, 0)/dr =

/3 > 0, so that the implicit function theorem guarantees the existence of the analytic func-

tion t(A) such that r(0) = 0. The derivatives of this analytic function satisfy the relations

0tM = V[<t>(r)Y'-l) + £ ("V^r)]"-" (27)
r = 1 w /

with /3t(U = <f>(0) > 0. Since > 0, it follows from an easy induction that rU) > 0 for

every v. Since (24), (23), and (26a) imply that

ii^(l,ii/3 = i$(o)i = m = PT(1),

we find by comparison of (24) and (27) that 111 < t1"\ so that, by majorization, the

series

. = 1 vl

converges uniformly in R. To show that this convergent series satisfies (20), rewrite (21) as

r)3l[m(^)]('~r) = v[m{i)

Then multiply the foregoing by A"/v\ and sum from one. On the right

E r^TVi WW"1' = A Zjt [ G(x, X0)($[^(x0)])(!> dRo = Am(f).
v-i v ±)• i=o jr0

On the left

E £^3l[(m(*)n = *3l[m(*)L
y-1 VI r-0 «/ i-1 (•! y-0 vl

thereby proving Theorem 3.

V. Some remarks about the circle of convergence. The statement and proof of

Theorem 3 suggest that the condition yi[m(\f/)] 0 which is necessary for the existence

of the analytic perturbation in powers of ^4(=3l[^J) may also characterize the radius of

convergence of the perturbation series. Although it seems difficult to carry out this idea

for all A analytic solutions of (20), it is possible to make some definite statements about

the convergence radius for the simplest class of problems governed by (20), that is, relative

to the problem

~~2 + X(.4)$(i/') = 0
ax (2g)

m = A, M = 0, *(1) = 0.

The existence of the analytic solution

i av(*, o)
JiJ — H

P = 1

and

*(*, A) = En A' (29)
y-l >>'■ dA'

■HA) = A' (30)
y-l Vl dA"
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of (28) is guaranteed by Theorem 3 when A is small enough. The coefficients for the series

(29) are constructed according to procedure given in the proof of Theorem 3. The coeffi-

cients for (30) are obtained by differentiating

X = A/m[ip{x, 4)]

with respect to A at A =0.

The system (28) has the energy integral

*(2X)I" = f, Wa) -my• 0 £ 15 1 (31)

where

~ ~dy and (2X) 7 = 1 (Q(A) - tt{y))Tr2' ^

The integrals may be used to continue the series. In particular, ij is regular analytic

]for \\p\ < |£0|, where £0 is the first complex zero oj $(£) = 0, then the series (29) and (30) cannot

converge when |A| > |£0|.

To prove this, note that when A = £0

m0) - Q(y) = ^ &)(y - ?o)2 + • • •

= g(£o , y)(y - ?o)r

where r > 2 and 0 < \g(£0, £0)| < Then, since

■ • r£o dy ,. & 1 dy

!r L. m - m"1" 1™ L. y) (2/ - )r /2

diverges, the integrals (31) and (32) do not exist for A = £„ and the series (29) and (30)

cannot converge when \A | > |£„|.

We can also show that if \A\ < |£„|, then the series (30) converges. Let \E' = ^(Q(.A), y2)

be defined by the equation

y" = fi(/1) - Q(tf) = f $(7) dy. (33)
J,*

Let -D(^) be any domain on which <f>(^) ̂  0 and $(^) is analytic and let r(£2(./l), y) be

the image of D under (33). Since

d^ = a&(A) / $($/) and d^r = —ydy/$(¥),

^(12(4), y2) is an analytic function on T. We change variables in (32) and find that

dy d[U(y) - n(-4)] _ o f<ou,-t!(0>)'/* dy(9xV'2 = f dy d[Q(y) ~ "(-4)] = 9 f
J( sua)-n«j)i'/' d£t (£2(A) U(y)) / J0 *(¥[n(4), y2})

where ^(^(-4), 0) = A and ^(0(^4), Q(A) — 0(0)) = 0 are the end points of paths of

integration in D. If | A | < |£„|, we can integrate over paths lying entirely in T. It is, therefore,

seen that the VA is an analytic function of (ft(4) — 0(0))1/2, and X(Q(A) — £2(0)) is also

analytic for |4| < |$0|.

There are a few functions $(i/0 for which exact solutions of (28) can be constructed.
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Example 1. The function $(i^) = e* has no zeros in the finite \p plane and, therefore,

X(A) must be an entire function. One finds from (31) and (32) that

,,, = cosh <V^f^V V2) „ _ c„h(Vk«"/V2),
cosh (x y/\e / y/2)

so that \//(x, A) and A (A) are entire functions of A. Although this solution is uniquely

determined by A, there is a maximum value X(A*) = maxA>0 \(A) = 0.893 for A* = 1.18.

The estimate (11) gives X < 0.91. For each X < X, there are exactly two solutions so that a

power series for \p(x, X) in powers of X cannot converge to the solutions on the branch

A > 1.18.
Example 2. The function $(>/-) = 1 -f ^ + y\p2 has a smallest root given by

Uy) = {l - (1 - 47)1/2

|£0(t)| increases with y from the value = — 1 when y = 0 to the value £0 = _2 when

y = \. For values of y > J, |£0| = 1/a/y.

It follows that the perturbation series for A (A) never converges for |A| > 2 and the

convergence radius tends to zero like I/V7 for large y. For real A, the solution has much

in common with that given in the first example. Unique solutions exist for everv A > 0,

but A (A) has a maximum X and for each X < X there are two solutions with different values

of A. An exact solution of this problem may be found in terms of elliptic functions of the

first kind [15]. When 7 = 0, the exact solution may be represented as

i/-+ 1 = cos V/Xa;/cos \/x and 1/(A + 1) = cos y/\.

X(A) and ip(x, .4) are regular analytic functions in the unit circle.
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