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Summary. A method is given which makes it possible to calculate the surface ele-

vation associated with long waves on a rotating earth when fluid is created or passes

over geometrical boundaries.

1. Introduction. The equations associated with the classical long wave theory have

been given by Proudman [1], and have been extended by Chambers [2] to include the case

where the continuity equation does not hold.

It is assumed that q, the horizontal fluid velocity, is independent of depth; that h,

the sea depth, is constant; and that the fluid is uniform. It is further assumed that

variations in the Coriolis parameter are negligible and that the surface of the earth is

sensibly plane.

Under these conditions, the horizontal equation of motion is

dq/dt + Hk X q = — ffVf (1)

where f is the elevation of the free surface above its mean level, V the two-dimensional

gradient operator, k the vertically upward unit vector and 0 the Coriolis parameter

(0 = 2w0 sin a where w0 is the angular velocity of the earth and a the north latitude).

If a volume VQ of fluid is liberated uniformly over the depth of the fluid at zero

time along the z axis, the solution of Eq. (1) is given through a potential A such that

q = Si (VA) - fi(k x V-4) (2)
ot

where A is defined by

V2A - K2A - ~ 6(i)II(t) (3)

where c2 = gh, K2 = fi3/c2, 5(r) is the two-dimensional delta function and II(t) is the

Heaviside step function.

From now on, the assumption will be made that all quantities are independent of z.

Suppose now that a volume of fluid h\{r', t') 8x' Sy' 8t' is liberated within the cylinder

x' < x < x' + 8x', y' < y < y' + 8y' between times t' and t' + 8t'.

* Received July 7, 1968; revised version received April 19, 1969.
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By Eq. (3), the associated potential 8 A is given by

(v2 - K2 - 5A = x(r' , t')8x'8y'8t'8{r - r')H(t - V),

whence

_ K* _ * A = x(r, t')H(t - V) dt'

= 4>(r, t), say. (4)

If x vanishes for negative time, so also does \p. It will be assumed that this is the case.

The elevation f of the free surface above its mean level is given by

r = —h 1 d2A~\
c5 df J 'K2A+y~~\- (5)

If the volume flow of fluid in across an element 8s of a geometrical boundary is given

by 6h8s, 9 is the inward normal component of velocity ( —q-n) at the boundary, and

so it follows from Eq. (2) that

■ + n ^ = - 6 (6)
dndt ds

over a geometrical boundary. Where the geometrical boundary coincides with a barrier,

6 is zero.

The determination of A from the differential equation (4) and the boundary condi-

tion (5), together with initial conditions

A(r, 0) = A0(r)

A(x, o] = A&),
J t -=0

may be referred to as the general problem of long waves on a rotating earth.

\p may represent movements of the sea bed and 9 will correspond to flows across

geometrical boundaries.

2. Integration of equation. In order to integrate the differential equation (4) it is

necessary to use the Green's function G(r, r'; I) which obeys the differential equation

V2 ~ " ? f?) G = 6(r ~ r')5(0' (7)

the conjugate boundary condition

— - n— - o (8)
dndt Q ds ~ °' (8)

and the initial conditions

C = 0, ^ = 0 at i = 0. (9)

The integration proceeds by the method of Ainola [3]. Define the convolution of two

functions of time /(/), g(t) in the usual way:
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1*9 = fl(t- t')g(t') dt'. (10)

It is well known that the convolution obeys the commutative and associative laws.

Three particular cases are

1*0 = [' g(t') dt'. (11 a)
Jo

8* 9 = I" 8(t - t')g(t') dt' (116)
^0

= g(t)-

1 = aie)

/ and g may, of course, be functions of other variables.

It can be shown, in extension of Green's theorem in two dimensions, that

f [G * 1 * 1 * V2A - A* 1*1* V2G] dx dy

-/(■
G * 1 * 1 * ̂  — ̂ 4*1*1* ~) ds.

dn dn/

(12)

Now

V2G = K2G +12~2+ «(r - i')S(t).

The left-hand side of (12) becomes

l{G"1*1'[K'A + yir + +_

- A * 1*1* [tf2G + ~ + S(r - r')6(l)lfdx dy

= V/ (G * 1 * 1 * d2A/dt2 - A * 1*1* d2G/dt2) dx dy

+ J G * 1 * 1 * \j/ dx dy

- A(r' , t) * 1*1* S(t),

using the relation / /(r) 5(r — r') dx dy = /(r')- Now

1 * 1 * d2A/dt2 = 1 * [dA/dt - ^4,(r)]

= A - ^40(r) - tA,{r).
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Similarly 1 * 1 * (d2G/dt2) = G using the initial conditions. Also

A(r' ,0*1*1* 5(/) = 1*1* [4(r' , t) * 5(0]

= 1 * 1 * A(f , 0

and so the left-hand side of (12) becomes

J (?*^1*1*^ — ̂5 [tAiix) — ̂ L0(r)}J dxdy — 1*1* A(r', t), (13)

the other terms cancelling out.

The right-hand side of (12) may be rewritten

Now

, d2A
1 * 

dndt

and

d2G dG

/1 *1 * A

= M _ [Ml
t dn L^n J, ,0

1 *
dndt dn

-[421 .
L3nJ,.o

Now at t = 0, A is known everywhere and so therefore dA/dn is known. Similarly G

is then zero everywhere and so dG/dn is zero. Thus, the right-hand side of (12) becomes

/1.1 - [c. . ~ + (|^)J - ^ *1 * fS;]

,.{0. M+A,|5}ad>

J l*l*G*l*dds,

using Eqs. (5) and (8). Now

„ d A . , dG d ,ri a\G* — + A*-- = -(G* A)
ds ds ds

and so the first integral vanishes on integration round the boundary. Thus the right-hand

side of (12) assumes the form

(14)

On equating the expressions (13) and (14)

/* (7*1*1*^ — 4 {tAxir) — A0(r)} \dxdy—\*l* A(t', t)
1 J (15)
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This may be rewritten in the following form:

1*1* A(j' , t) = l*l*fG*\pdxdy — f ® * [^i(r) + ^o(r)] dx dy

+ 1*1*

From Eq. (11a)

<i6>

at(1 *g) = 0

and differentiating Eq. (16) twice with respect to t, it follows that

A (r' , 0 = J G * \p dx dy

+ /G*{1*9 + (Sr),.}'fe

?d?l °* [tAl(l) + ^o(r)] dx dy' (17a)

thereby determining A completely, and, through Eq. (5), f. If now it be assumed that

all the fluid is undisturbed prior to t = 0, Eq. (17a) simplifies to

A(r' , t) = J G * <p dx dy + J G * 1 * 6 ds (17b)

3. Green's function for an infinitely long canal. Consider a canal defined by the

region 0 < x < a. The flow of another canal or of a river into it may be regarded as a

flow across one of the geometrical boundaries x = 0 or x = a. This will be amenable

to the method outlined above and it is necessary to determine the appropriate Green's

function. This is given by the relations for G(x, y; x', y'; t):

+ jjp ~ K2G - *2 = a (a; — x')8(y - y')S(t) in 0 < x < a (18a)

d2G dG n „ .
— - O- = 0 on x = 0, x = a, (18b)

and

c)C

G = °' dt = °' at 1 = °" (18C)

Clearly y' may be assumed zero.

Applying the Laplace transform, let

G = f e~"'G(t) dt.
J 0

(Quantities involving p will be barred.) Then

~ (^2 + gj) ® = S(x — x')5(y) in 0 < x < a. (19a)

c)C dC
p - fi — = 0 on x = 0, x — a. (19b)

dx dy K '
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Let

f-pf-af (20)dx dy

Then

— (k2 + ®5) r = p8'(x — x')8{y) - tt8(x — x')8'(y) 0 < x < a. (21a)

This is subject to the boundary condition

T = 0 on x = 0, x = a. (21b)

Thus if G0 is the Green's function obeying the following boundary conditions:

~ 72G„ = 8{x - x')8(y) 0 <x, x' < a, (22a)
dx ay

G0 = 0 on x — 0, x = a, (22b)

72 = K2+ V2lc2 , (22c)

a solution of Eq. (21a) is

r = - (p d/dx' + d/dy) Go . (23)

By the usual Green's function techniques,

2^1 _T.|„| . nirx . nirx' ,n .
G0 = — 2^, — e sin-—sin  (24a)

a 7n a a

where

7n = 72 + = K2 + ~ (24b)

where

= - XI sin — $n(y) (24c)
n= 1 a

Uy) = ~re""'U'sin-a-- • (24d)

The reason why r is taken as — (p d/dx' + 0 d/dy)G0 instead of (p d/dx — fi d/dy)G0

is that for this latter case the boundary condition for r on x = 0, x — a would not be

fulfilled. Let

Then

G = £ U"» cos + Bn sin ^ • (25a)
v a a '

p dG dG
I = V 1— r"dx dy

dAn , mr n { nirx

dy a J a
cos

+ £W=i-o^-»=£- e»)
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Thus, comparing Eq. (25b) with the value of F obtained by substituting relation (24b)

into Eq. (23), it follows that

+ p — Bn = 0 (26a)
dy a

<26b>

Let

Then

+ <27a>

s-i-"!;)6-- <27b)

-Q^ + p — D„ = 0 (28a)
dy a

*Cn-Ud-
a dy

—p — Cn — Q = <?„ . (28b)

Now

pmr dy '

from Eq. (28a), and so Eq. (28b) becomes

Dn = — ^ , (28c)

a " pmr dy

or

= i>„(28d)

C„ = #„ . (29)
u?/ a 12 12 d

Now it may easily be shown that if

+ a2u = e-fllfl , (30a)

w = 2 ! o5e"g'n + ( f?\ sin » If I- (30b)
a + p a(a + p )

The complementary function is assumed to vanish, as it would represent a wave pro-

ceeding all the way along the canal and thus would not be caused by a source in the

finite part of the canal. It follows that

r - JP^L J
U2a

. priT , ,
1 T"SmQ^yl

 £ ~7n\v\ I  lL(1

2 2 2 / 2(^2 | 2 " I / 2 2 2
p n 7T /a 0 + 7n £mr /p n\

„n \ ^2n2 + 7;& 12 \ d 12

2 . iitx . .
— sin   . (31a)
ayn a ' v '
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and using Eq. (28c)

. pnrr , ,
7. am — |y|

D = — — —
U dy

2 2 2
~tn\v\

+ * ^ + 7*2 /-* 2 i in i o—o
a 0 aS2 V a 12

E5JL _L -,2 P"7r /p2n27T2

2 . n-Trz'
— sin (31b)
ay„ a

Let

then

Then

2 2 1
W 7T ,1

-K + ~r~ = «„ , ^ + ;5 = Pn
a a ll c

2 2 / 2 i 2
7n = P /C + a* •

P - JP^JL J
Q 'a

. ®W7T .

c-*»i,i ^ 7»sin |?/

Jr'1"" / 2^2 . 2\

B« (»> "* + «■>

Z) = —- —

V Pn + a» ^2,92

. pn7r

+
p"Pn + a. pnrr , 2 2

Qa (P P' + a"}

. 2 . nnvr' . .
- — sin  (32a)

ay„ a

2 . nwx' . ,.
- sin  (32b)

07n a

It follows from Eqs. (25a), (27a), (27b), (32a) and (32b) that

*-)
dy)

G = (vh + ®d

E nitju
cosv

VnJL

If a + ^(pV + «»

. n7rx 1 3
+ sin — —

a S2 ay

It remains to invert this.

Let xJj) be such that

. pnir . .

^ + a" ^(p2/32+a2)

. 2 . rcira;'
- — sin   (33)

ayn a

2 . \
sin

ayn a

r Xn(f)e~" dt =
J Q Qayn

■ pmr I I
t 7»sin — \y\

2a2 I 2 "I
p Pn + an pnir . 2/q2 , 2x

an(p /3" + a")

Then

G = £
n= 1

+ £

«\ 3 «\2

_A_ + Q _i_
5.c dy dtj

nir ,cos n7rx sin r?7rx

fia x"() ~

liixaA
_a/ dy dt + ay2.

Thus, if x»(0 is found, the problem is solved.

(34)

/A sin mtx sin nirx
Xn(0  7    (35)
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The right-hand side of Eq. (34) may be written as

2/2 . 2\l/2 •

\v 2
®a\c^ a"

exp ~(p2/c2 + q2)1/2 \y\ , (p2/c2 + Sm 9-a ^

v2vl + WE +

pnxjyj

c exp - (p2 + q2c2)l/2 |y[/c _1 fta

ml Vp2 + «2c2 nirpl V

(36)

("'+1)
The inverse transform of (p2 + a2//32)-1 is

~ sin If t) (37a)
<*» \P» /

(see [4a]). The inverse transform of

exp - (p2 + a„c2y/2 \y\/c
(p + *yy/2

is

J0(anc(t2 - |2/[2/c2)1/2)//(i - (37b)

(see [4b]). The results (37a) and (37b) may be obtained readily from any good table of

Laplace transforms. The inverse transform of

sinE»i_kl
Qa

is

(37c)

This does not seem to be a known result and the derivation is given in Appendix 1.

It follows from the results (37a, b, c) and the Faltung theorem that the value of

being the inverse transform of the expression (36), is given by

xJt) = f ^ sin f(t - V)
* 0 Pn

+ ids I" i fa(2(~s!-)"*) A<*' <38>
Clearly G(x, x'; y, y'; t) = G(x, x'; y — y', 0; t) as y only occurs as |?/|. A problem in-

volving a flow across the side of the canal only, say, x = 0, involves a simplification of G.
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In this case x' = 0 and

[d ( . nirx'\ ( nirx'\ nw nir
—7 Ism 1 = Icos 1 — = —
dx \ a /Jx',0 \ a a a

and the expression (35) reduces to

ru „ n ,s nV2 . titx -A ri7r 5 . . mrx
G(x, 0; ?/, 0; 0 = 2^ 7— X» (0 cos —- + 2^ — — x»(0 sin — (39)

ILll U n™ 1 uy U>

4. Green's function for a semi-infinite ocean. Consider a semi-infinite ocean defined

by 0 < x. Then the Green's function of interest is defined by

^ - K2G - 0 = S(x - x') S(y) 5(0 x, x' > 0 (40a)
dx oy c at

with

- Q^ = ° on x = 0 (40b)
dx dt dy

and

G = 0 dG/dt = 0 t = 0. (40c)

The transformed equations will be

+ ^5 - y2G = 5(a: - x') 5(y) x, x > 0 (41a)
dx oy

and

p dG/dx — 12 dG/dy = 0 on x = 0 (41b)

where

y2 = K2 + p2/c2. (41c)

The solution of Eq. (41a) in an unbounded region is

Go = /fo(7((x - a:')2 + y2)i/2) (42a)

1 f°° e,u" exp — (|x — a;'| (w2 + 72)1/2)
(72 + U2)1/2 (42b)

(see [4c]). G0 has been given in explicit form [5]. Let

G = Co + G*

where G* obeys

d2G*/dx2 + d'G*/dy2 - t2G* = 0 in x > 0. (43a)

G* represents the disturbance reflected at x = 0, so to speak, and will therefore die out as

x —> oo • and so

G* = f e%uv exp — (x(u2 + 72)1/2)g(u) du. (43b)
V — CO
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It will be convenient (the reason for this will be seen later) to take G* in the form

+ ° *• <«•»

It is easily verified that the relation (43c) is equivalent to a special form of (43b).

From the condition (41b), it follows that

dG „dG 1 r eiu" exp -x'(u2 + y2)w2 , . ,
* te - B ai - ii L («' + y'y" xiu) du

where

x{u) — ( — p(u2 + y2)1/2 + iuQ) exp x (u2 + 72)i/2

+ (—p(u2 + 72)V2 ~ iuQ){p(u + y2)1/2 — i'wfl)2 exp — x(u2 + y2)W2<f>(u).

Now on a; = 0, it follows that x(u) must vanish and so

m = + y2) + w202' (44)

The reason for the form (43c) is now seen. It follows that

d V 1 f"° e'"" exp — (x -f~ x')(u2 -f~ -

dy) 47r J-„ (u2 + t2)1/2 p2(w2 + y2) + w202

™ _ / 1 , oiVlf 6'~" exp ~(x + + ^2)1/2 1 w
G - ~ dx + 0 dy) 47r (u2 + 72)1?2 pV + 7') + w202 dw-

(45)

t /_. p>2 + V) + d" =

Then, by the Faltung theorem [6]

G* = _(p ^--271- J ^K0(y((x + x')2 + (y - 7j)2))I/2ff(v) dij.

Also,

/ \ 1 / hi
^ " 2(p2 + a2),/2p7 6XP V +

(see [4d]), and so

1 r K,(y((x + *')' + (V~ 1)')"') J -PVI-I , ,46,
2 J_ra (p2 + if)l/2py 6 P \(p2 + 02)1/2j dv (46)

where

72 = a'2+2;=c\(o2+?52).

One thing comes out of this analysis immediately, namely that the image system in the

region x < 0 which makes the satisfaction of the boundary condition at x = 0 possible
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consists of a row of sources which are situated along the line x — —x', and not of a

single image source at the point (~x', 0).

The inversion proceeds as follows:

= +afVV dx dy)dy) 2p(p2 + if)

■ f K0((p2 + Sf)u'e~\(x + x')2 + (y - v)2y/2)e-'a'Wc) dv (47)

If F(x, x', y, t) is the inverse transform of the infinite integral, that of

f K0((p2 + 0y/2c~\{x + x')2 + (y- dr,
a

2 , 02

p + 12

is

A(x, x', y, t) = f sin Q(i — t')F(x, x', y, V) dt'.
J 0

(48)

This follows immediately by the Faltung theorem for the inversion of Laplace transforms.

Clearly

A (x, x', y, 0) = 0 (49)

Inverting the operator

c ( d2 d2 fi2 32 \

~2\Vd? + 2Qtedy + JTy2)

it follows, using Eq. (49), that

3 A A2 A r' a2 A ~\

(50)Cfe ~~ + 20 ̂  + O- I' $ (., x', y, ,) dr] ■

It remains to determine

F(x, x', y, t) = f K0«p2 + ny/2c'\(x + x')2 + (y ~ dr, (51)
J - co

= I K0((p2 + J22)1/26)e~"l',l/c> dr,, say.

The inverse Laplace transform of K0((p2 + 02)1/2b) can be seen to be [4e]

cos we - b2y/2)
^2 j)2y/2 ' o<ct<co. (52)

It follows therefore that

x', y,t) -J "Wtf- * (53)

where the integral is taken over the values of r, defined by

K* + *')2 + (y- 1)2}1/2. (54)
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Appendix. The inverse transform of

p"1 sin (ap~:) is bei(2(at)'/2)

[6] and hence that of

sin (ap'1) is ^ bei(2(at)1/2)

as

[
| bei(2(at)1/2)

vanishes. Now if jit) is the inverse transform of g(p), the inverse transform of (1 /p)g(p ')

is

/;
J0(2(sO )/(s) ds

(see [4/]) and so the inverse transform of p_1 sin ap is

/;
J0(2(st)1/2) js bei(2(as)u2) ds.
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