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1. Introduction. The problem of large surface blowing has attracted considerable

attention recently ([1]—[S]). The problem arises when the rate of ablation or injection

required for surface cooling is so large that the normal velocity at the surface is larger

than the value allowed for in the boundary layer theory. The problem also arises when

jets or surface injections are employed as control or lift devices. Simple models have

been introduced to simulate the flow fields with massive ablation in porous injection

([l]-[6]). In those models two boundary conditions along the body surface are imposed;

they are the prescribed normal velocity and the nonslip condition. Analyses have been

carried out under the framework of the boundary layer theory in [1] and [2] and as

an inviscid limit of the boundary layer theory in [3], In [4], [5] and [6], the inner stream

of the ablater or the injectant is assumed to be inviscid (but rotational to take care

of the two boundary conditions) and special similar solutions are obtained for wedges

or cones with a power law normal velocity prescribed along the wall. The usefulness

of these solutions are hinged on the validity of the assumption that the influences of

the upstream variations or singularities will die out very fast and that the feedback

of the downstream variations are negligible. These assumptions have been taken for

granted in many boundary layer analyses. The question of how quickly the upstream

variations will die out has been examined in [9] and [10] and the references therein. For

the analysis of the feedback due to downstream separation or shock boundary layer

interaction [11], there is a strong doubt of the usefulness of boundary layer equations.

In order to be able to obtain solutions which take into account the upstream and

downstream influences a simple model of flow field is analyzed. It simulates the flow

field of injection with density p,- from a reservoir of constant stagnation pressure ptj

through slots normal to a surface moving at supersonic speed. For the analysis, the

flow field of injectant is assumed to be inviscid and incompressible and to be uncoupled

from the outer flow field by imposing a unique p-6 relationship between pressure and

local inclination along the dividing streamline. These assumptions are justified by

the restrictions on the difference between the stagnation pressure of the injectant and

the pressure of the external stream p„ so that (i) the pressure difference across the layer

of injectant is larger than that allowed for by the boundary layer theory, (ii) the velocity

of the injectant is much less than the speed of sound, a,- , of the injectant and (iii) the

outer stream remains supersonic so that the p-d relationship along the dividing stream-
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lines can be given by the linearized theory, the second order theory [12] or the hypersonic

theory [13], whichever is appropriate. The corresponding restrictions on psi — p„ are

(l',i ~ p»)/(p» - ql) » 1/Re (1)

(p.i ~ P~)/(h,<^) « 1 (2)

and

p.i ~ P~ < P* ~ p. (3)

where pm and q„ are the density and the velocity of the external supersonic stream,

p* — Pa, is the pressure jump across a shock from Macli number Mm to unity and Re

is the Reynolds number with respect to the length L of the injection region along the

surface. For injection along a curved wall Re in Eq. (1) should be replaced by Re1/2

and the radius of the curvature of the wall should be used as the reference length. Since

the inject ant lias the same stagnation pressure, the flow field is irrotational and is a

potential flow.

When the injection region is far ahead of the trailing edge, the potential flow field

is partially bounded by the body surface and the dividing streamline emanating from

the leading edge of injection region as shown in Fig. 1. Along the body sin-face the

direction of flow, 8, is prescribed. It is normal to the surface in the slotted region and

tangential to the surface in the region without injection. Far downstream, the flow

becomes uniform, i.e.,

0 -> 6. , Pi -> pa,

and

q, ?,•- = [2(pti - P»)/p,]I/2 as s -» co (4)

where s is the arc length along the body surface. This is the model analyzed in [7], [8].

In [7], the body surface is a wedge and along the dividing streamline the condition

of Eq. (2) is replaced by a more restrictive one, (p,,- — p«)/(p«oQ'J) = e « 1, so that

the linearized supersonic theory can be applied to relate pressure to local inclination,

and analytical results have been obtained. The analytical results are confirmed by the

numerical analysis of [8] by a successive iteration of the shape of the dividing stream-

line and a finite difference solution of the inner region. The numerical method has been

SHOCK WAVE
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WITH p. p
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Fig. 1. Flow field around an open body with large normal injection
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0=0og(q)

Fig. 2. Flow field for injection near trailing edge without separation region

employed in [8] to handle a more complicated boundary condition along the dividing

stream, namely the Busemann second-order theory [12] or the hypersonic theory [13]

and to handle a more general body shape, say a wedge with an ogive nose, and also

to the axially symmetric problem.

When the injection region is not too far ahead of the trailing edge, as compared to

the length of the slotted region, it seems to be logical to extend this model of flow field

without separation by the addition of another dividing streamline from the trailing

edge. This model of flow field and the boundary conditions for the potential flow of

the injectant are shown in Fig. 2. A proof for the nonexistence of a potential solution

for the proposed model is given in [14] when the inclination of the surface 5 is less than

the angle of deflection dQ which will raise the pressure of the supersonic stream to the

stagnation of its injectant psj , i.e.,

-e0 < S < 80 . (5)

The inequality, — 60 < 8, is necessary to insure that the injection on the lower surface

will take place. The other one, 5 < 80 , is the extra restriction required for the math-

ematical proof of nonexistence of the potential solution. Without the extra restriction,

this model of flow field without a finite separation region can be ruled out by the inclusion

of the viscous effect as discussed in the last section.

For injection near trailing edge it is necessary to admit a separation region. An

analytical solution for a modified model of the inviscid flow field including a constant-

pressure wake region is presented in the next section.

It should be pointed out here that the potential solutions are applicable to the slotted

injection problems subjected to the restrictions of Eqs. (1), (2), and (3). They are not

applicable to the massive porous injection or massive ablation problems for which the

stagnation pressure is not a constant and the flow is rotational. Nevertheless, the im-

portance of the upstream and downstream conditions, in particular the presence of a

nearby trailing edge as illustrated in the present slot injection problems, will also be

valid for the massive porous injection or ablation problems.

2. Flow field with a separation region. A simple model for the flow field is shown
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Fig. 3. Flow field for injection near trailing edge with separation region

in Fig. 3. There are three regions. The inner region of the injectant is separated from

the outer supersonic flow field by the lower dividing streamline AE and is separated

from the wake region by the upper dividing streamline BE. ylT? is the slotted segment

on the airfoil. The constant-pressure wake region is separated from the upper supersonic

flow field by a horizontal streamline from the trailing edge D to downstream infinity.

The pressure in the wake region and on the dividing streamline BE is therefore .

For the potential flow of the injectant, the boundary conditions are

In q = In (g,/g,)„) = 0 along BE, \p = , <p > 0 (6a)

9=8— 7r/2 along AB, 0 < \p < ypj , <p = 0 (6b)

9 = 90g(q) along AE, \p = 0, ip > 0 (6c)

and

6 —> 0, In q ■—> 0 as (p —> ® . (6d)

q is the nondimensional velocity and 9 is the inclination. and ip are the potential and

stream functions and the total mass flux of the injectant, \pt , is a constant to be defined

later. g{q) will depend on the pressure and inclination relationship to be used for the

outer supersonic stream. qja> is the velocity of the injectant at pressure and is related

to the stagnation pressure by the Bernoulli equation </,•„ = [(p„,- — p„)/2]1/2. 90 is the

angle of deflection which raises the pressure of the outer stream to pti. Eq. (6a) follows

from the definition of q,„ and ^(0) = —1 is due to the definition of 90 . Also shown

in Fig. 3 are the complex potential plane x(= f + #) and the corresponding boundary

conditions. The logarithm of the complex conjugate velocity In q — i9 denoted by
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Q is an analytic function of the complex potential x [15]. With the aid of Cauchy Riemann

equations, the boundary condition along BE, Eq. (6a), can be replaced by

dd/d\p = 0 along BE, \p = \pj , > 0 (7)

By the method of reflection, the half strip ABE A in x-plane can be extended to ABA'EA

with the following boundary conditions:

6 = eag{q~l) along A'E' , \p = 2\f/j , <p > 0 (8a)

6 = S — 7r/2 along AA', 0 < < 2\pj ,<p = 0 (8b)

8 = 9o(<i) along AE, = 0, <p > 0 (8c)

Q —> 0 as <p —» . (8d)

Boundary condition (8a) is obtained by noting that when 6 is an even function of ^ — ipj ,

In q is an odd function, and therefore l/q along ip = 2^, is equal to q along \p = 0.

This half strip in the x-plane can be mapped into the upper f-plane as shown in

Fig. 4 by the transformation

f = £ + it) = cosh [irx/(2^j)]. (9)

The boundary conditions of Eqs. (8a, b, c, d) become

e — Oog(q~l) for £ < — 1, i) = 0 (10a)

6 = 8 - tt/2 for |(| < 1, 7j = 0 (10b)

0 = 0og(q) for £ > 1, rj = 0 (10c)

and

Q —» 0 as If | —> 00 • (lOd)

By means of the Cauchy integral formula [16] the solution Q(f) can be written as

Q(r) = In q - id = -1A f_~

= U _ in r - 1 _ r f_1 givy. °)i
\2 7r/ f + 1 TV — £

(11)

+
r gmr, o)i d?

Ji €' - t .

I'-1

9 = 80 g (T/q) -

i =f + ' V

H

A'

'  fl=8-|  

Fig. 4. The x-plane

A

9 = 90 g(q)
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The argument of In {(f — l)/(f + 1)} is chosen to be zero along the real £ axis with

£ > 1. Eq. (11) is a nonlinear integral equation similar to the one in [7] with the integral

from —oo to —1 as the extra term. Since the function g is bounded and vanishes as

q —» 1 when |f | —* , the integral equation will be solved by the method of successive

iteration for sufficiently small d0/ir in the same manner as [7].

Q(n,tt) = In q'n) - id(n) = (§--) In f—4 ~~ /" £i^df'
\ TP/ f T~ 1 7T L^-co

0)]

r - f

n = 2, 3, • • • (12)

The first two iteration solutions are

q<0,(o = a - sM in [(r - i)/(r + i)] (13)

with

-<0)
In <^<0) = (J- 5/it) In |(r — l)/(r + 1)1

and

-(»-;)■• ffr - ? f [f^7 " rb]9 [(frr)'"""] * (14)
The relation for the physical coordinates x + iy having origin at point A is given by

the integral [16]

2<n> = P dx/(qie-ie) = P exp [-QU)] dx/q,-
Jo J 0

= [2*r/Grg,-)] { exp [-Q'-'Kf2 - l)-,/2 df

(15)

for n = 1, 2, 3. . . . The square root of f2 — 1 is positive along the real £ axis with £ > 1.

It should be noted that ql0> ~ (f — l)1/2_5/' as f —> 1 and the above integral has no

meaning for n = 0 when <5 < 0. This is due to the wrong singularity of Q"" at f = 1

for which the lower dividing streamline inclined at angle 6 < 0 cuts into the wing.

Since Q'"_1) = 0 at f = 1 and </(0) = — 1, it can be shown that Q'n), for n> 1, possesses

the correct singularity at f = 1, i.e., turning from 6=8 — r/2 to — d0 . q'n> for n > 1

behaves as (f — l)1/2~<s+9o)/T as f —> 1. With 6(> > —5, the lower dividing streamline

inclined at angle 6 = d0 lies below the wing surface and the above integral is finite

for finite upper limit.

The constant \pjn) is related to the length AB by the condition

LeiS = f*J idt/[qie-<iS~*/2)]
J° (16)

or L = [2*<"7(xff,-)] l" da |exp (—Q,n>)~ ST".
Jo
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The parametric equations for the upper and the lower dividing streamlines are

given by the integral of Eq. (15) with — <*> < f = £ < — 1 and <*> > f = £>+1

respectively.

Once the appropriate pressure-inclination relationship for the outer stream is chosen,

these integrals can be evaluated by numerical integration.

When the linearized supersonic theory is applicable, i.e., (p,,- — = e « 1,

it follows that 80/ir = (Ml — l)1/2e/% « 1, and the second iteration solution Q(1> is

adequate for the description of the flow field including the transformation to the physical

coordinates. The function g(q) in this case is —(1 — q2) and Eq. (21) becomes

r -1
r + 1 (17)

+ -/ dt; - -r^rz
* Ji U - f £ + f.

1 - V-i
? + i

1 — (2 S)/t

To be consistent with the linearized supersonic theory S/t should be of the order of

da/ir or e; then the following approximate analytic solution can be obtained:

(18)

- - «) - r-hln + 0(e2)-

The arguments of the logarithm inside the square brackets are restricted between

7r and —t.

It should be pointed out here that although the correction [Qu> — Q(0)]/Q(0) is of

the order « including the point f = 1, the correction in velocity — q""]/q(0) near

f = 1 is not. If Qw is modified to have the same behavior near f = 1 as Q(1), a composite

solution can be created

<*"'" ; - f)ftt <19)
and the corresponding magnitude of the velocity is

g(0) = |(f - 1 )/(r + (20)

Not only will Q<0) differ from Q(I) by an order of e, but q<0> will differ from qn> by an order

of e including the stagnation point f = 1. The composite solutions can now be used

for the transformation to the physical plane to yield the leading term of the solution.

Fig. 5 shows the upper and the lower dividing streamlines of the flow field of the

injectant with M„ = 2, 8 — 0 and t = 0.1. The pressure distribution is related to the

magnitude of velocity by the Bernoulli equation, i.e.,

(p ~ p~)/(p.i ~ V°) = i - t

= 1 - [q!0)]2 + 0(e) (21)

= 1 - |(r - l)/(f+ l)r2(,* + ,,/' + 0(e).

On the surface of the wing, p is equal to p„ behind the slotted region due to the assump-

tion of a constant-pressure wake region. Along the slotted region 0 < f = £ < 1 the
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Fig. 5. Flow field with constant pressure wake (Ma, = 2, 5 — 0, e = 0.1)

arc length s is related to the variable £ by means of Eqs. (15) and (16); i.e.,

"L - £ &, oxf - rr /1' K'.oxf-rr "(1 ~+ 0('»- (22)
Eqs. (21) and (22) provide pressure distribution along the surface of the wing in terms

of the parameter £. Fig. 6 shows the pressure distribution along the surface for various

values of (d0 + 8)/t where 60 + 8 is the angle between the lower dividing streamline

and the wing surface.

3. Discussion. In the study of normal injection of an incompressible fluid with

constant stagnation pressure through a wing surface moving at high speed, the flow

1.00

.20 .40 .60 .80 1.00 s/L

SLOTTED REGION (0<S/L< 1) WAKE (S/L>l)

Fig. 6. Pressure distribution on the surface
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field of the injectant becomes a potential flow. For each model of flow field, with or

without a separation region, the boundary conditions both upstream and downstream

can be stated and included in the analysis and the theoretical solutions can be developed

and examined.

The model of flow field without a separation region as shown in Fig. 2 can be ruled

out on the following physical arguments. In order that injection on the lower surface

will take place the inclination of the lower surface, — <5, should not raise the pressure

of the external stream to p3i , i.e., — <5 < 0O . When — d0 < 8 < 60 , the inner flow field

cannot form a concave comer with stagnation point at the trailing edge, D, because

the pressure of the upper external flow at the trailing edge will be less than pti . On

the other hand the inner flow field cannot form a convex corner at the trailing edge

with pressure equal to — because it cannot match with the finite pressure of the

outer flow field. The slope of the dividing streamline at the trailing edge has to be con-

tinuous. Consequently both the inclination and the pressure are specified at the trailing

edge. Thus the boundary data are overspecified. When 8 > 60 , the inner flow field

will have a concave corner at D. The pressure on the lower surface rises from - co at

the end B of the slotted region to the stagnation value at the trailing edge D. For a

real fluid, a separation bubble will be formed below the 90° convex corner at B. The

reattachment of the flow to the surface will not take place due to the adverse pressure

gradient, i.e., there will be an infinite separation region.

In Sec. 2 an analytical solution for the potential flow field with a constant wake

region is presented. The separation begins at the end of the injection region. Since it is

an inviscid analysis and assumes a constant-pressure wake region, the solutions are

independent of the distance between the injection region and the trailing edge. Of

course, the distance should be such that the effects of the mixing along the dividing lines

and the induced pressure gradient remain negligible until far downstream of the trailing

edge. For the limiting case of the injection along a finite portion of an infinite wedge

obtained in [7], it is assumed that there is no separation region. This is consistent with

the classical inviscid analysis which ignores a small separation bubble next to the end

of the injection region where the fluids turn around a 90° convex corner. The solution

with a constant-pressure Avake in Sec. 2 and the solution for an infinite wedge without

separation in [7] represent two limiting inviscid solutions. The solution to the real

physical problem lies in between them. The viscous mixing along the dividing stream-

lines and the induced pressure gradient have to be included in the analysis to find out

whether the wake is going to close in at the wing surface to form a closed bubble or to

bo diffused far downstream of the wing. Furthermore, when the speed of sound of the

injectant is not too large, the compressibility effects have to be included and result

in changes in flow patterns. For example, the inability of a potential flow to turn either

a convex or a concave corner at the trailing edge will be removed if the flow of the

injectant becomes transonic or supersonic near the trailing edge.
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