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I. Introduction. In a recent paper [1, hereafter referred to as Part I], the authors

presented a perturbation method for treating problems of steady-state elastic waves in

which the shear and compressional wave numbers, always distinct in an actual elastic

solid, are replaced by their root-mean-square value and a small dimensionless parameter.

The total wave fields are then expanded in terms of this parameter into successive orders

of perturbed fields. The chief advantage of this method is that the equations governing all

orders of perturbation contain the common rms wave number. Thus, in the first few

orders, solutions can be generated with nearly the same ease as for corresponding scalar

wave problems.

The previous development and applications of the perturbation method in Part I

ahd in [2] started with the equations of dynamic elasticity in terms of the Lam6 dis-

placement potentials. However, for treating problems with displacement boundary

conditions, a more convenient perturbation scheme can be employed which starts di-

rectly with the equations of motion in terms of the displacements. A brief description of

this was begun in the final section of Part I in connection with the diffraction of plane

waves by a semi-infinite rigid ribbon; but even there the potentials were used concur-

rently. Here we present a perturbation method involving only the displacement com-

ponents.

After developing the perturbation equations for the various orders of displacements

in the following section, we discuss in detail the perturbation of plane waves in Sec. III.

For problems involving scattering of plane waves, the results of Sec. IV establish the

proper radiation conditions for the scattered wave at infinity in each order of perturba-

tion. In addition a uniqueness theorem is proved for the nth order scattered wave. In

Sec. V, this new scheme is applied to the diffraction of plane elastic waves by a semi-

infinite clamped strip. This problem has been treated by Roseau [3] and in Part I.

Unfortunately, because the first order perturbation of the incident wave was incomplete,

the result in Part I was in error. The correct results are presented herewith. Finally, we

construct a two-term perturbation solution for the diffraction of plane elastic waves by a

rigid strip of finite width. Ang and Knopoff [4] and Harumi [o] have treated this problem
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with emphasis in the far field at low frequencies. Our perturbation solution yields results

which are most accurate in the near field.

II. Perturbation of the displacement equations of motion. In terms of the charac-

teristic wave speeds cx (P-wave) and c2 (S-wave), the equations of motion for an iso-

tropic, homogeneous, elastic solid are given by

(k2 - 1) V V u + V2u = (co2/c22)u (1)

where

* = cj/cj = [(2 - 2^/(1 - 2v)]I/2

is the ratio of the wave speeds and v is the Poisson's ratio of the solid. Only steady-state

motion is considered here and the time factor exp (— iwt) is omitted from the displace-

ment vector u = (n, v, w).

Taking kt = u/c, , k2 = w/c2 and introducing the rms wave number k with the formu-

las ft, = k( 1 — 2e)1/2, k2 = fc(l + 2e)I/2 and e = (k\ — k\)/2(k\ + K) as in Eqs. (5a) and

(6a) of Part I, the above equation is rewritten as

4eVV-u + (1 - 2e)V2u + k'\ 1 - 4t)u = 0. (2)

Assuming perturbations series for u and the stress dyadic t

<n)
t«- ZeV"', t = ZA

n=0 n™0

yields the following equation for the nth-order displacement vector:

(V2 + k2)u(n) = 2vV""" - 4VV'U<n"1> + 4fcV"2> (3)

where it is understood that u<n) = 0 for n < 0.

The nth-order stresses and displacements are related through Hooke's Law

x(n) = m[(«2 ~ 2)V-u("7 + Vuw + u""V] (4)

where I is the idemfactor and n is the shear modulus of the material. Note that k2 is not

expanded in e in the stress-displacement relation.

The equation for the zeroth-order displacement vector becomes the homogeneous

Helmholtz equation with the root mean square wave number k:

(V2 + k2)um = 0. (5)

It consists of three uncoupled equations for the Cartesian components of u(0>. Conse-

quently, for problems in which u is specified on the boundary, the zeroth-order solution

for each component is identical with that for acoustic waves with analogous boundary

conditions.

From Eq. (3) the first-order field equation follows as

(V2 + fcV1' = 2V2u(0) - 4VV-u(0) (6)

which has a particular solution

u'" = r-Vu(0> - 2r-u(0)V (7)

in dyadic notation. The complete solution of Eq. (6) is given by Eq. (7) plus a comple-

mentary solution, i.e.,
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u(1) = u<" + ul". (8)

In the second-order perturbation, the solution will depend on both the zeroth- and

first-order solutions, since from (3)

(V2 + &V2> = 2V2ucl) - 4VV-u(1) + 4fcV0). (9)

Utilizing Eqs. (5) through (8), we can manipulate Eq. (9) into

(V2 + fcV2' = 2V2(Uc1} + 4u<0>) - 4VV-(ul1> + 2u<0>)

- 2fc2r-(Vu(0) + 2u<0) V) - 4r-V(V-u<0))V. (10)

It can be shown after some lengthy, but straightforward, calculation that a particular

solution of the above is

u<2) = r-V[Uc° + (2 - n/2)u(0)] - 2rV-(u[1) + u(0>)

- ffcVV0) - 2k2r(r-um) - 2r[r-V(V -u'0')] (11)

where n = number of space dimensions.

We shall not consider the second- and higher-order perturbations further. From

previous investigations [1], [2] it appears that a two-term perturbation solution is

generally accurate in calculating the near field at low frequencies for diffractions of

elastic waves.

Eqs. (3) through (11) above can be compared with Eqs. (8) through (17) in Part I.

III. Perturbation of plane waves. For the analysis of diffraction of plane waves by

an obstacle, the solution for each order of perturbation must contain explicitly the "nth-

order incident wave" which is defined as the coefficient of e" in the MacLaurin series in e

for the given incident wave. The total nth-order solution minus the nth-order incident

wave will be known as the "nth-order scattered wave." In this section we shall examine

in detail the expansion of plane elastic waves in a series in «. In Sec. IV we shall derive

the appropriate radiation conditions for the nth-order scattered waves and prove such

conditions are sufficient to assure a unique solution to the "nth-order problem."

An incident (superscript i) compressional and shear wave (subscripts A and B,

respectively) are represented by

ul*' = Al exp (ikj-l), u(B'' = Bm exp (ik2r-n) (12)

where I and n are the unit wave normals or propagation vectors, m is a unit vector

perpendicular to n, and A and B are constants. The two waves are combined to form

the incident field u(,) = \

To determine the perturbation of these plane waves, we first expand k2, i = k(l ± 2e)1/2

and then obtain

u'i} = Al exp (ikr-l)[ 1 - iker-l + 0(e2)]

+ Bm exp (ikr-n)[ 1 + iker-n + 0(e2)]. (13)

Hence, the zeroth- and first-order perturbations of u(,) become

u">)U) = Al exp (ikr• I), u[= Bm exp {ikr ri) (14)

ui1)(i) = -ikr-luT(i\ u<1)(<) = ikr-nu(B0U<) (15)

withu(",(<) = uin)(i) +
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In an actual diffraction problem involving plane incident waves, the solutions of the

perturbed equations of motion must contain explicitly the expressions (14) and (15).

Since the waves in Eq. (14) are also solutions of Eq. (5), the zeroth-order solution

naturally will contain them. On the other hand, when Eqs. (15) are substituted into the

first-order particular solution (7), we obtain

= -ikr-luTU) +ikr-nuTm - 2r-u«'(,)V (16)

which differs from the sum of Eqs. (15) by the last term on the right. However, since

nm = 0, it can be checked that for plane shear waves r-Ug)U)\7 satisfies the homo-

geneous Helmholtz equation and so can be separated explicitly from

leaving another complementary solution in (8). The same is not true for r-u^0H,)V.

Thus, for application to diffraction problems of incident plane waves, we modify

the first-order particular solutions as

u<u = r-Vu,0) - 2r-u(0>V + 2r-u(B0Ui)V, (17)

where u<0) contains the sum of incident and scattered waves and u(B0)(,) is the zeroth-

order incident shear wave of (14). The new complementary solution u(cl) thus now

consists entirely of diverging scattered waves because the particular solution contains

explicitly the first-order incident wave.

IV. Radiation condition in the perturbation method. In problems of elastic wave

diffractions, the incident wave is specified and the scattered wave is to be determined

which satisfies the appropriate boundary conditions at the obstacle and the Sommerfeld

radiation condition at infinity. The total wave field is the sum of the incident and

scattered waves. In the perturbation method, the nth-order incident wave is known and

the nth-order scattered wave is to be determined, subject to the nth-order boundary

conditions and an "nth-order radiation condition." The sum of the nth-order incident

and scattered waves completes the nth-order solution.

To discuss radiation conditions we revert to the displacement potentials since these

satisfy Helmholtz equations which are more familiar than the equations of motion (1)

involving the displacements. With the displacement vector represented by

u = V<t> + V X h (18)

the equations of motion (1) are satisfied when the compressional and shear wave po-

tentials, <f> and h respectively, are solutions of

(V2 + k\)4> = 0; (V2 + K)h = 0. (19)

Denoting the scattered waves with superscripts (s), the Sommerfeld radiation condition

for the above potentials becomes [6]:

<t>{'\r) -» F(9' ^ exp (ik,r)

as r = jr| —> co (20)

G(6, ̂ ) ,
h"\r) •' - 1 exp (■ik2r)

r

where the functions F and G of the angular coordinates in a spherical polar coordinate

system r, 8, ^ are not specified explicitly.1

1 The radiation condition for the displacement follows from Eqs. (20) and (18). They are discussed

in [10], where the displacement is also separated into dilatational and rotational points.
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We shall now present the analysis for the compressional waves, 0<s>, in detail. With

4>u) satisfying the Sommerfeld condition (20), it may be shown [7] that at any point r

in the field exterior to the obstacle

<t>
" //,

G(|K|) _ ^.,(p) MMj dS (21)

where B is the bounding surface of the obstacle, n is the unit outer normal to B, and p

denotes the position of the surface element dS. The Green's function G is given by

G(|i?i) = -^.exp^Tc, \R\) (22)

with

1*1 = \r - el = (r2 - 2P cos ft + (>2)1/2 (23)

and ft is the angle between the "fixed" vector r and the "running" vector p. If we use

spherical polar coordinates r, 9, ^ for r and p, 8', V for p, it can be shown that

cos ft = sin ^ sin cos (9 — 9') + cos cos V. (24)

1. Expansion of <j>U) in power series in e and r'1. To examine the scattered waves at a

large distance from the obstacle, we expand G into a series in inverse powers of r:

exp (ikjjr — p cos ft))
G =

iirr

dG _ exp (?'fci(r — p cos ft))

dn 4irr

1 4- P cos ft + fciP2(! + cos2 ft) j

ik Hp cos ft) + 1
1 dn r

iki d^Pg°S ® (P cos ft + fc,p2( 1 + cos2 ft))

- (p cos ft + k1p\ 1 + cos2 ft))
dn

+ ■■■)■ (25b)

Since exp { — ik^G is analytic in 1 /r for r > p, the series in inverse powers of r in the

above equations are absolutely convergent for r > p. Moreover, by choosing r larger

than the largest value of p along B, p„„„ , the series converges uniformly over B. Thus,

we may substitute Eqs. (25) into Eq. (21) and integrate term by term to obtain the

uniformly and absolutely convergent series

>i(g, *; 0 , Ue^tlA
r r2

<#> (>"; e) = exp (ikxr)

where

+ + ...] (26)

, i fr / -7 ^r<5^Cs)(e; 0 , -7 d(p cos ft) <s), _ ."] )r>
u = JJB exp ("zfclP cos an + z/Cl to"" 0 (e' e)J

/2 = [J exp (-ifcjp cos ft)|-^— [p cos ft + A-lP2(l + cos2 ft)]

+ <£u> | ikt ' (p cos ft + /."ip'(1 + cos2 ft))

- (p cos ft + A'ip2(l + cos2 ft)) | f dS.
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Furthermore, if we assume that 4>'" and d<t>(s)/dn are analytic functions of e oni3, then

the functions fm(6, SP; e) will be analytic functions of e since kl = k( 1 — 2e)1/2 is analytic

in € for |e| < J. Hence, we may expand each term in (26) in a series in e and rearrange the

terms to form a power series in e. The final result is

+' WW, -I-) - W(«, *)) + ■• ■]+ €

+ e2 -\k2Ha\d,*)r +•••] + ■■■}■ (27)

In the derivation leading to Eq. (27) we have established that: (1) the e-series ex-

pansion for 4>u) is uniformly convergent outside B, and (2) the coefficients of en in the

6-series, which is also the nth-order perturbation of the scattered wave, may be expanded

into a uniformly and absolutely convergent series in 1/r for r > pmaI. If (27) is expressed

as

tf>("(r; e) = <t>UH0){r) + e4>('m)(r) + •••

it follows from (27) that

<£<,)<n'(r) = r"~Vir £ FLn\d, . (28)
m = 0

By applying a similar analysis to the Cartesian components of h in (19) and (20)

with kl replaced by k2 = k{ 1 + 2e)1/2, we can deduce that

h('\r; e) = hl')l0\r) + ehl'Hl\r) + •■•

and

hUUn\r) = r"~Vtr £ 0^(6, *)r"m . (29)
TO = 0

2. Radiation condition J or the nth order scattered waves. For r > pmM. the series in

(28) and (29) can be differentiated term by term to form the series for the nth-order

displacements associated with the scattered waves according to Eq. (18). After rearranging

the terms in a descending power series in r we find finally

u<->(">(r) = r-'e»r £ U(-)^j ^)/r- . (30)
m — 0

Therefore, for r large the leading term for u(*)<n> is given by

u(')(n)(r) —> r"'1 U(0n)eikr (31)

which we shall adopt as the "nth-order radiation condition" for the nth-order scattered

wave.

In particular, the zeroth-order radiation condition is

u's)W(r) -> U(00)e'kr/r. (32)

This is precisely the Sommerfeld condition for the Cartesian components of u(,)<0> which

satisfy the homogeneous Helmholtz equation (5).
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For the first-order displacements, the radiation condition becomes

u<8H1)(r) -» E/'V". (33)

From (17) the first-order scattered wave is given by

= r-VuUU0) - 2r-u("<0> V + u(cv. (34)

In view of (32) the solution (34) thus satisfies the radiation condition (33), if the comple-

mentary solution u(cv meets the Sommerfeld radiation condition as in (20).

3. Uniqueness theorem for the nth-order solution. We now prove a uniqueness theorem

for the complete scattered wave solution u ""n) which satisfies the radiation condition (31).

Because it is the case of interest in the remaining two sections of this paper, we treat

diffraction problems in which the displacements are prescribed at the boundary B of

the obstacle.

The nth-order scattered wave which satisfies Eq. (3)

(V2 + = 2vV"-1Hs) - 4V(V-u<"~I)<',) + 4k2u""2H,)),

satisfies the boundary conditions u'">u) = ulBn) on B, the radiation condition (31), and

has an expansion for large r in the form of (30), is unique. Note that one such solution

exists, namely the coefficient of t" in the e-expansion of the exact solution u(,). Also, in

the theorem it is assumed that and u(n_2Hs) have been determined uniquely.

Let there be two solutions to the wth-order problem and define their difference as v.

Then

(V2 + k2)v = 0; v = 0 on B.

Now, let g(r, r') be the solution of the following problem:

(V2 + k2)9 = S(x - x',y - y', z - z'); 9 = 0 on B

and

j>,(r, <?',*') , F2(r, 0',*')
9(r, r') = | + (35)

for r' sufficiently large. In other words, 9 is the scalar Green's function for the scattering

problem which vanishes on B and satisfies the Sommerfeld radiation condition. The

source and receiver points (r, r') are in the exterior field.

Application of Green's formula in the region bounded on the inside by B and outside

by a large sphere S of radius R then yields

v(r) - Jf v(R] dS(r, R) _ , R) MR)
^ ' OR ' ' OR dS (36)

where the integral over B (not written) is identically zero because v and 9 vanish on B.

In (37), r is a field point between B and S and, in spherical polar coordinates, dS = R2

sin ^ d^ dd.

If we now let R —> °=, we may substitute the expansion (35) for 9 in (36). Also, since

the two solutions of the nth-order problem each have expansions in the form of (30)

when r > pmas , it follows that v has an expansion in the form

v(R) = fl-'e"* E Vm(6, f)/Rm (37)
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along the sphere S. Hence, Eq. (36) can be expressed as

v(r) = R-jn— 1 2ikR
V0(r) +| +•••+—! V^(r) + ~ Vn(r) + O^-"1)] (38)

where

/»2 7T f* TT

V0(r) =—n / Fx(j, 6, ^)FO(0, ^) sin ^ d^r dd,
J 0 J 0

K,(r) = - f f [(n - 1)F, Vt + (n + 1 )F2 V0\ sin f d* dd
J 0 J 0

and, in general, V, is given by an integral over Sf and 0 whose integrand contains V0 ,

Vi , ■ ■ • , Vj in linear combination.

Hence, it is seen from (38) that as R —> °o the difference between the two solutions,

each of which was assumed to exist, is either undefined at all points r (when not all

V, = 0 for j = 0, 1, • ■ • , n — 1) or is zero (when all V,- = 0 for j = 0, 1, • • • , n — 1).

In this instance, the contradiction can be reconciled only by taking K,- = 0 for j = 0,

1, • • • ,n— 1 because we know at least one solution exists. Thus, our nth-order pertur-

bation problem has a unique solution and it is the coefficient of t in the e-expansion of

the exact solution.

To conclude this section we present the radiation conditions for two-dimensional

scattering problems in the perturbation method. Here the obstacle is an infinitely long

cylinder in an extended medium (plane strain) with a cross-sectional curve C. Following

the previous steps in the three-dimensional analysis with the integral in (21) replaced

by a line integral around C and using the two-dimensional Green's function for outgoing

waves, we can show that

u"nn)(r) -> r"~1/2Uo")(0) as r -> oo. (39)

Here r = (x2 + y2)1'2 and r, 6 are cylindrical polar coordinates. We note, again, that

the first-order perturbation solution given by (17) satisfies the radiation condition

above with n = 1.

In the next sections we study diffractions of plane elastic waves by: (1) a semi-

infinite rigid-clamped strip, (2) a clamped strip of finite width. Zeroth-order solutions

for both problems are the same as the corresponding ones for acoustic wave diffractions.

The discussions, therefore, are centered mainly on the construction of the first-order

solution.

V. Diffraction of elastic waves by a semi-infinite clamped strip. The problem de-

scribed by the title of this section was investigated by Roseau [3], as discussed in Part I.

Our own treatment of this problem in Part I contains an error in the first-order solution

(Eq. (61)) due to an oversight on the plane wave perturbation. Using the method of

perturbation of displacements, we derive the correct results in this section.

Let the xz half-plane, x > 0, represent a rigid, clamped barrier in an infinite elastic

solid. Incident plane P and SV waves, represented by Eqs. (12) with

I -= (cos a, sin a, 0), m = (sin /3, — cos /3, 0), n = (cos /?, sin /3, 0), (40)

impinge on this plane along which the boundary conditions are

u — 0 at y = 0, x > 0. (41)
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As the problem is one of plane strain, we have

u = [u{x, y), v(x, y), 0]

with the time factor exp ( — iut) omitted.

1. Zeroth-order solution. The zeroth-order incident waves follow from Eqs. (14)

and (40):

m<°ho _ ^ cos a. exp(lir*') + B sin p exp('tr-n) ,

y(0)(,) = A sin a expc,tr'l> — B cos /3 exp<,ir'n) .

The boundary conditions are

um = v,0) = 0 at y = 0, x > 0 (43)

with u(0> = um(i) + u(0,<<).

Since the two components u(0) and v(n) are uncoupled both in the zeroth-order field

equation (5) and the boundary conditions (43), the solution for each of them is the

same as for the diffraction of acoustic waves by a "soft" screen (Dirichlet boundary

condition). That solution was first given by Sommerfeld [8]. Following the notation

in Part I, we obtain the zeroth-order displacement components as

um — A cos aW2(r, a) + B sin pW2(r, ft),

v(0) = A sin aW2(r, a) — B sin /3W2(r, (3)

where, in polar coordinates r, 0, Sommerfeld's solutions for a plane incident wave at an

angle a with the positive z-axis and unit amplitude, impinging on a "hard" or "soft"

screen are, respectively,

Wit2(r, a) = ir exp (ikr cos (a — 8)) /
"a —

± exp (ikr cos (a + 9)) L e~"d']

dt

(45)

with a± = (—2ikr)1/2 sin §(a ± 6). The above functions contain the sum of the incident

and scattered waves.

The zeroth-order solution (44) satisfies the edge condition that the displacements

remain bounded there, and it asymptotically yields the incident waves (42) as r -> m

outside the shadow region.

2. First-order solution. The particular solution of the first order (17) has the Car-

tesian components

(l) dul0) . du^_ n dv"» , „ duTw a"<0)(°

»" - -x^ + 'j-ja-2yhT + 2:°-^ + 2''^
^.(0) a-f(0) ^,(°)(i) ^,(0)(t)

,.<» _ 0~. I 01. dU f> _L 9 ,1 dVB

(46)

V = « ^ V~ 2x~f~ + 2x ̂   + 2y
p dx dy dij dy dx

Noting from (42) that

duTm = dv'°Ui)

dx dy



200 YIH-HSING PAO AND STEPHEN A. THAU [Vol. XXVIII, No. 2

and that d/dd = xd/dy — yd/dx, we rewrite (46) as

duw , du<0) n 3!/0' „ dv'£0Ui>
< = ~x + v -xr - 2y ~ 2dx dy dx 60 '

a..<°> a.»<°> 3

= x   y ^ 2y  2 (W(0) - w<0,(<)).
p dx J dy J dx d6^

The last term on the right-hand side of v'vv> can be replaced by — 2duf)u) /dd because

w(0) = u(^Ui) + Wb°)(,> + m<0,(8) and because du(0H,)/dd is a solution of the homogeneous

Helmholtz equation which can be absorbed in the complementary solution for v(1>.

Hence, we finally arrive at a general first-order solution in the form

a.,<0) v,(°)(i)

«... = +

dx c);/ dx 50

Although both ^-derivatives of the zeroth-order incident waves are complementary

solutions, we shall not combine them with u(cl) and v'c[) because the latter must satisfy

the radiation condition discussed in Sec. III.

Since u<0) = u(0)(,) -f- um(s), Eqs. (47) may be regarded as a superposition of the first-

order incident wave u""'1 and the first-order scattered wave uCI)<s). The former is con-

tained in the derivatives of which, according to Eq. (17), is the same as u(1)(,)

defined by Eqs. (15). The latter consists of the derivatives of u(0)(s) and the complementary

solution u"' . The boundary condition for ul) is still the following:

u«> = ua>«) + u(i)(.) = 0 on y = o, x > 0. (48)

However, since the first three terms in each of Eqs. (47) already satisfy the boundary

condition (48), it is more convenient here not to separate explicitly the incident and

scattered fields.

To find the complementary solutions, u[x) and v\l), we recall that <3TF, (r. a)/dy — 0

along the half-plane barrier. Since d/dd = xd/dy on y = 0, we take

w'1' = 2(d/dd)[B cos/3W^r, /3) + i40)<o], ^

v[u = 2(d/dO)[-A cos aTFj(r, a) + «i0,(0].

Note that the above expressions inside the brackets are the difference of a total wave

field and an incident wave whose amplitudes are given by (42). Thus u[u contains the

scattered wave perturbation alone. The final result for the first-order solution is

dun) , dum n dv(0) . nn ndW1(r,/3)
um = -x —— + y — 2y — + 2B cos 0 ——— ,

dx dy dx dd ^

(i) dt>(0) dv(0) n du(0) dW,(r, a)
vm = x — y — 2y — 2/1 cos a  —

dx dy dx dd

It can be verified that each term above vanishes at y = 0 for x > 0. Since the zeroth-

order displacements are bounded at the edge x = y = r = 0 with

dW.Jdr = 0(r"1/2), dWut/d0 = 0(r1/2),

we have ua) = 0(rI/2) as r —* 0, satisfying the edge condition.
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3. Stress intensification at the edge of the strip. The stresses through the first order

can be found from Hooke's Law (4) in which we take u u<0) + eucl). Near the edge,

r —» 0, the leading terms in the stresses along the top and bottom edges of the strip

(y = 0 , x > 0) become2

rxx(x, 0*) = ~— Tvy(x, 0*),
1 — v

Tvv{x, 0*) « ±TA (l + j) sin a cos | - e sin yj exp (i(kx - 3tt/4)), (51)

txv(x, 0*) « ±ta (* — |^) cos a cos | exp (i(kx — 3x/4))

for an incident compressional wave alone (B = 0), and

txx(x, 0*) = ^V_ v Tyy(X, 0*),

Tyy{x, 0*) = ±tb (i + Icos /3 cos | exp (i(kx - 3ir/4)), (52)

rXy{x, 0") = ±tb (~-^J (l - sin /3 cos | + e sin yj exp (i(kx - 3tt/4))

for an incident shear wave alone (A = 0). In the above

ta — ipk\A/k and tb = —ink22B/k

are the magnitudes of normal and shear stress of the incident compressional and shear

waves, respectively.

VI. Diffraction of elastic waves by a finite clamped strip. Consider a rigid strip of

width 2a clamped symmetrically along the ar-axis. Its edges are then at y = 0, x = ±a.

To shorten the calculation, but still not miss the essential feature which we want to

convey—edge behavior of the first-order particular solution—we take a plane compres-

sional wave propagating perpendicular to the strip. From (12) the incident wave be-

comes (B = 0, a = 7r/2)

m(,) = 0, v'" = A exp (ikiy). (53)

The boundary conditions are

u = u(,) + u's) =0 at y = 0, |x| < a, (54)

and u remains finite at the edges x — ±a, y = 0.

1. Zeroth-order solution. The perturbation method will be applied to determine the

displacement field near the rigid strip and at low frequencies. As in the previous section,

the zeroth-order solution is the same as for scattering of sound waves by a soft screen

[9]. In elliptic coordinates (£, rj) with the transformation

x = a cosh £ cos 77, y = a sinh £ sin 77, 0 < 7? < 2-k,

1 Eqs. (50), (51), and (52) replace Eqs. (61), (63), and (64) of Part I, respectively.
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the solution can be expressed in terms of the Mathieu functions. For a plane wave of

amplitude A and angle ir/2, we obtain

u(0) = 0,
(55)

where

and

y(°) = Ae<» _ 2A -£Bn(q)Mc£% q)ceUv, q),
n = 0

Bn{q) = (~l)nceM2, q)Mc£(0, q)/Mc<3n\0, q),

q = jfcV/-4

ce2n(v, q) = Z! A'2l"\q) cos 2rt],
t=> 0

g) = [ce2»(0, g)]_I £ (-\yA?;\q)Z£(2y/~q cosh?)
r-0

are the Mathieu function and modified Mathieu functions of the jth kind, respectively.3

Zln(z) represents a circular cylinder function with (2) = J„(z) and Z(n3)(z) =

The coefficients A^iq) are known and tabulated for small values of q.

2. First-order solution. The general solution, Eq. (47), of the first-order equation

derived in the previous section is applicable for all scattering problems involving plane

incident waves. For the case of a normally incident compressional wave, substitution

of (55) into (47) yields

un) = -2y dvm/dx + ui" , ._R,
(56)

v(1) — x dvm/dx — y dvw/dy + v[u .

It remains to determine outgoing wave complementary solutions, u[v and so as

to satisfy the boundary conditions

u= v(l) = 0 at y = 0, \x\ < a, (57)

and the edge conditions at x = ±a, y = 0.

Since 2y dv""/dx vanishes on y = 0 and remains finite at x — ±a as y —> 0, we have

simply that u[l) =0. The first two terms of v(V also vanish on y = 0, |z| < a, but x dvw/dx

will be singular at the edges as shown below. Thus v[u must be chosen to satisfy the

boundary condition (57) and to eliminate singularities at the edges.

We proceed by introducing polar coordinates, locally at each edge, with (p+ , 7+)

originating at x = a, y — 0 (£ = ij = 0) and (p_ , y_) originating at x = — a, y — 0

(£ = 0, 77 = 7r). Thus, at the two edges, we have

x = ±a + p± cos y± , y = p± sin y± (58)

where

— 7T < 7+ < T, 0 < 7_ < 2t.

8 The notation for the modified Mathieu functions used here follows that of the National Bureau

of Standards, Handbook of mathematical functions, edited by M. Abramowitz and I. A. Stegun, Dover

(1965).
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Near the edges, the elliptic coordinates are transformed to the local polar coordinates aa

£ -> (2p±/a)I/2 1C0S (7+/2) „ - {(2^/«)1/2 sin T+/2

[sin (7-/2), U - (2p_/a)1/2 cos (7_/2).

Carrying out the differentiation of v(0} in (56) according to

x v" = a cosh £ cos
dx

[~s?£ A i §1 iL~|
71 Ldz d£ ̂  dx dijJ

and noting that ce2„(0) = ce'2n(ir) = 0 and ce2„(0) = ce2n(r), we find, as £ —> 0 and y —> 0

or t, (p± —> 0) that

x dvw/dx -» —C(a/2p±)1/2 jC0S (t+/2) (59)

[sin (7-/2)

where
CO

C = 2A Z Bn(q)Mcil\0, q)ce2n(0, q)
71 = 0

which is a complex coefficient depending on q. In the above derivation use has been

made of the relation

d£ sinh 2£ cos2 jj (a V/2 [cos (7+/2)

* - ~ ' ' 2 ^ \2pJdx 2(sinh £ + sin jj) \2p
[sin (7-/2)

as p± —* 0 (£ —> 0, 77 —> 0, 7r).

Eq. (59) shows that vn) indeed contains a singular term at each edge as p± —* 0

which must be cancelled by a corresponding term in the complementary solution.

Therefore, we choose

= C[(a/2p+)1/2 exp (ikp+) cos (y+/2) + (a/2p_)1/2 exp {ikpj) sin (7-/2)]. (60)

Each term in brackets in (60) represents a diverging wave from an edge of the strip,

satisfying the Helmholtz equation and vanishing identically on the strip (7+ = ±7r,

7_ = 0, 2t). Substitution of (60) and w'n = 0 into (56) completes the first-order solution.

3. Discussion. The perturbation solution of zeroth- and first-orders derived above

for diffraction of a P wave by a finite rigid strip serves as an approximation to the solu-

tion of this problem. So far no exact results for the entire field have been explicitly

obtained. As mentioned in the introduction, Ang and Knopoff [4] and Harumi [5] have

also treated this problem, the former using an integral equation formulation, the latter

using the wave function expansion method in elliptic coordinates. In both works, ap-

proximate solutions were derived which are useful for calculations in the field away

from the strip at low frequencies. Here, each of the perturbation solutions presented

above is exact and, as explained in Part I, can be expected to provide reliable accuracy

for the field near the strip at low frequencies, including results for the stress-intensity

factors at its edges.

References

[1] S. A. Thau and Y. H. Pao, A perturbation method for boundary value problems in dynamic elasticity,

Quart. Appl. Math. 25, 243 (1967)
[2]   , Wave function expansions and perturbation method for the diffraction of elastic waves by a

parabolic cylinder, J. Appl. Mech. 34, 915 (1967)



204 YIH-HSING PAO AND STEPHEN A. THAU [Vol. XXVIII, No. 2

[3] M. Roseau, Diffraction of elastic waves in a homogeneous medium clamped along a half-plane, Comm.

Pure Appl. Math. 12, 67 (1959)

[4] D. Ang and L. Knopoff, Diffraction of vector elastic waves by a clamped finite strip, Proc. Nat. Acad.

Sci. 52, 201 (1964)
[5] K. Harumi, Scattering of plane waves by a rigid ribbon in a solid, J. Appl. Phys. 32, 1488 (1961)

[6] P. Morse and H. Feshbach, Methods of theoretical physics, Part II, McGraw-Hill, New York, 1953,

pp. 1065-1066
[7] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. II, Interscience, New York,

1962, pp. 315-318
[8] A. Sommerfeld, Mathematische Theorie der Diffraction, Math. Ann. 47, 317 (1896)

[9] N. W. McLachlan, Theory and application of Mathieu functions, Dover, New York, 1964, pp.

358-366
[10] V. D. Kupradze, "Dynamical Problems in Elasticity," Progress in solid mechanics, Vol. Ill, edited

by I. N. Sneddon and R. Hill, North-Holland, Amsterdam, 1963, pp. 45-57


