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Abstract. Classical variational principles of elasticity are cast in a form amenable

to the treatment of certain problems concerned with statistically nonhomogeneous

fields. The variational principles are utilized to obtain bounds directly upon the en-

semble average values of physical quantities which in some sense characterize their

problems. General formulations and applications are given for randomly heterogeneous

elastic media and elastically supported beams with random axial variation of sectional

rigidity and foundation stiffness. Bounds are obtained for the average displacement at

the inner surface of a hollow sphere under pressure, the average elongation of a cylinder

in uniform tension, and the average displacement of a beam directly under a point load.

General methods are given for the selection of the deterministic admissible functions

which provide the best bounds that can be obtained from classical principles for this

restricted class of admissible functions. The closeness of the bounds is of the same order

as the elementary bounds on effective material properties, which are of quantitative

value only for small dispersion of the random coefficients. In a special statistically

homogeneous case, previously obtained bounds for an effective Young's modulus are

regained. Usually, however, the bounded quantities do not possess the generality of

effective properties but are more closely associated with the results of particular prob-

lems. The developments of the present paper are considered an initial approach to the

investigation of statistically nonhomogeneous problems.

1. Introduction. Although considerable work has been done on randomly hetero-

geneous materials, the major portion of this work has been concerned with the investiga-

tion of effective properties. Incomplete information and mathematical complexities

preclude a direct solution to the boundary value problems. Thus statistical concepts

have been useful in material description. The distribution of properties within the

heterogeneous media has usually been considered as statistically homogeneous and

isotropic. In addition almost all preceding investigations have treated statistically

homogeneous physical fields.

Statistical homogeneity requires that ensemble average quantities be independent of

absolute position within the media. For these special circumstances an ergodic-type

hypothesis may permit the interchange of ensemble average and spatial average quanti-

ties. Previous treatments concerned with statistically homogeneous problems were,

therefore, often able to work with spatial average quantities, which arose rather naturally

in the course of development. Local spatial average quantities are related by effective
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constitutive properties in the same manner as uniform moduli relate quantities in

homogeneous media.

We note that the region over which the local spatial averaging procedure is carried

out must be large compared to the size of material inhomogeneities. However if a problem

is not homogeneous in a statistical sense, and ensemble average fields vary rapidly in

distances comparable to a characteristic length of the material inhomogeneities, then

the spatial average quantities lose much of their significance. It is not clear that the

concept of an effective property is meaningful when such conditions exist.

Another circumstance in which it may be difficult to use effective properties is the

occurrence of nonconstitutive random parameters. Suitable relations for the definition

of effective properties, as are conveniently provided by the constitutive equations for

constitutive coefficients, are difficult to envision for these parameters.

The present paper investigates problems for which fields need not be statistically

homogeneous. In general it can be shown that for fields governed by differential equa-

tions with random coefficients, a solution for simply the average value of the dependent

variable requires complete statistical knowledge of the random coefficients. Because this

statistical information is difficult to obtain, results are often in the form of bounds which

provide limited knowledge based upon a limited input. The use of variational principles

to boimd effective properties for heterogeneous materials is well established. Paul [1]

used classical variational principles of elasticity to bound effective elastic moduli.

Brown [2] improved bounds of this nature with the use of a perturbation series to input

additional statistical information, as did Beran [3] who recast the standard elasticity

principles in terms of ensemble averages. Improvements upon the original bounds were

also obtained by Hashin and Slitrikman [4] with a variational principle formulated in

terms of polarization variables.

It is the purpose of the present paper to examine several areas for which the con-

cept of effective properties is not clearly applicable. In particular, variational principles

of a classical nature are utilized for the derivation of bounds on quantities which, in some

sense, characterize their respective problems. Without reference to an ergodic hypothesis,

variational principles are cast in a form which often permits the ensemble average value

of an interesting physical quantity to be isolated and subsequently bounded. The

bounds are derived in terms of one point average values of the relevant random co-

efficients or their inverse. In general it is shown that a knowledge of the one point averages

of the random coefficients is sufficient to obtain bounds from classical variational princi-

ples only for deterministic admissible fields. In addition, a consistent approach is given

for the selection of the particular deterministic admissible fields which provide the best

bounds that can be obtained from classical variational principles, for this restricted class

of admissible functions. The closeness of the upper and lower bounds is of the same order

as for the elementary bounds on effective properties.

In the first sections we consider randomly heterogeneous elastic media. The results of

a general development are applied to the derivation of bounds on the average radial

displacement of the inner surface of a hollow sphere under pressure. Another application

provides bounds on the elongation of a cylinder acted upon by uniform axial forces.

In the following sections we are concerned with elastically supported beams for which

the flexural rigidity and foundation modulus may vary in a random manner along the

beam length. An illustration is given in which bounds are derived for the average de-

flection of a simply supported beam directly under a concentrated force.
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All developments which follow are explicitly presented for continuous random

parameters. But with minor modifications in the derivation of the extremum principles,

the final results remain valid for piecewise continuous random parameters.

2. Heterogeneous elastic media. We shall consider several problems governed by the

equations of linear elasticity. For an isotropic medium with spatially varying elastic

coefficients Hooke's law may be written as

<ru(x) = 2G(x)eij(x) + (k(x) - %G(x))ei,(x)da (I)

where

an is the symmetric stress tensor,

en is the symmetric strain tensor,

G{x) is the shear modulus and h(x) the bulk modulus.

Although the medium is required to be locally isotropic, we allow that it may be

randomly heterogeneous. The elastic coefficients of this medium are then random func-

tions of position which can be written as

G(x) = Gix) + G'{x),

k(x) = k(x) + k'(x).

The overbar indicates an average in an ensemble sense. Primes denote fluctuating com-

ponents which have zero mean.

If the distribution of material properties is homogeneous in a gross or statistical

sense, then G and k are independent of absolute position. Statistical homogeneity is a

concept most usually applied to media of infinite extent. In the present work, however,

bodies of finite extent are considered. It is obvious, therefore, that in the present context,

statistical homogeneity of random coefficients implies statistical homogeneity only

within the regions of the given bodies. We note that a statistically homogeneous distri-

bution of material coefficients need not be assumed for the general developments of this

paper, although it is sometimes necessary for the calculation of final results in particular

problems.

The random nature of the material coefficients does not explicitly alter the form of the

governing equations. Relations between the strain tensor and displacements are given by

<-KS+£)- ®
The equilibrium equations are

diTij/dXj + Fi = 0 (3)

where the components of body force per unit volume, Fi, are assumed to be deterministic.

Combining (1), (2), and (3), the equilibrium equations may be expressed in terms of

displacements as

2 —
dXi

g(~
_ \dXj + HI + f l"(* -1e) irldxj _ dXi _\ 3 / d-CiJ

+ Fi = 0. (4)

We assume the elastic medium to occupy a region R bounded by a surface »S*.

Displacements are prescribed on the portion of the surface Su, while tractions, given



222 A. SOMOROFF [Vol. XXVIII, No. 2

by Ti = CijTij , are prescribed on the portion of the surface ST . The ni are components

of the unit outer normal on S.

The above equations, along with compatibility relations, define the general problem

with which we are concerned.

Variational principles of elasticity—minimum potential energy. The

functional

Vp = i f dR - f dR - [ TiUi dS (5)
J R " R JSt

which may be expressed in terms of displacements as

-»/J dU,Y (duA2 . du, dltj

dxj Id.*;;/ ^ Ox,- dXi.

+ (fc - fG) ~2 - 2Fiu\dR - [ TiUi dS (6)
dXi dXm J J St

is stationary and attains its absolute minimum value for that admissible displacement

field which corresponds to the equilibrium state [5].

Admissible displacement fields are required to be continuous and satisfy displacement

boundary conditions. The displacements of the equilibrium state also satisfy Eqs. (4),

and yield stresses which satisfy the traction conditions on ST ■

If the extremum value of the potential energy associated with the equilibrium dis-

placements is denoted by V„ , and the functional corresponding to any admissible dis-

placement field, u" , is denoted by V° , then we have the following inequality:

r, < v°. (7)

We wish to use the inequality of (7) and another inequality provided by the com-

plementary energy principle to obtain upper and lower bounds on quantities which

characterize particular problems. In those problems for which fields are statistically

homogeneous, effective material properties may conveniently provide this characteri-

zation. The present formulation, however, must be applicable to nonhomogeneous

problems, and be suited to the derivation of bounds on quantities other than effective

properties. These quantities do not possess the generality of effective properties but are

more usually associated with specific geometries and conditions.

The nature of problems which can be treated is exemplified by the derivation of

bounds on the average radial displacement at the inner surface of a randomly hetero-

geneous hollow elastic sphere. A uniform pressure, pA , is assumed to act on the inner

surface of radius A. The tractions on the outer surface of radius B and the body forces

throughout the sphere are taken as identically zero. It is clear that for these conditions

the stress and strain fields will not be statistically homogeneous, since even in a uniform

body there would be radial variation of the fields.

While the notation used in the general formulation is adequate to describe this

problem, a spherical coordinate system is more natural for a specific treatment. In

spherical coordinates the conditions specified above can be expressed as follows:
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(a) Tr = pA , T) = 7^ = 0, on the inner surface of radius A . .
(P)

(b) Tr = Tg = T+ = 0, on the outer surface of radius B

where r, 8, and <j> are the usual coordinates of a spherical system.

Even with these relatively simple conditions the expression for Vv as given in (6),

is not appreciably reduced in complexity. As the general development progresses, we will

consider this heterogeneous sphere problem further, and in particular seek some knowl-

edge of the radial displacements on the inner surface.

Continuing with the development, the inequality (7) provides an upper bound on the

potential energy functional, Vv , associated with the actual displacement field. However,

the potential energy does not have a meaning of sufficient significance for values of the

functional itself to be of any utility. The form of the functional Vv must therefore be

modified so that it may be possible to bound a quantity more characteristic of a given

problem. The theorem of virtual work provides the following useful relation among

quantities at the equilibrium state.

f (Tain dR = f TiU{ dS + f FiUt dR. (9)
Jr Js Jr

The use of Eq. (9) allows Vv to be expressed as

Fp = \ [ 2\u, dS f TiU{ dS f Ftu, dR. (10)
Z J su a J St ^ J r

Combining (7) and (10) we have

\ [ T,Ui dS - \ [ TiUi dS - I [ F,Ui dR < V° (11)
Z J Su ^ J S T ^ J R

where

2 JR [2 L \dXj/ \dXi/ dZj dXiJ

- f F,u° dR - f T,u° dS. (12)
J R J S T

Considering again the heterogeneous sphere, introduction of the conditions of (8)

into (11) gives the following inequality:

- | / Va(u,)a dS < V° (13)

where the integration is carried out over the inner surface, and (ur)A is the radial dis-

placement on this surface. This later form is greatly simplified, and we note that (ur)A

is now the only random variable which explicitly appears in Vv .

In general, since G(x) and k(x) may be random functions of position, it follows that

Vv and F° will have random values, differing for each member of an ensemble of macro-

scopically similar systems. If both sides of (11) are averaged in an ensemble sense, the

result is

H 7\Ui dS — \ [ dS - \ f F,u< dR < V°v (14)
£ JSu £ J St & JR
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where F° is given by

V° — — f I"(^U A -t- (4- 9 ^U' '1 (1• 2f) —U° rIT?
v" - 2 JR \2 Lw + W + 2 dXi dx< J + (fc- °G) to, dxj dR

- [ F,u° dR - f T~u? dS. (15)
Jr J St

The ensemble averaging process makes the evaluation of the admissible functional

more tractable. Depending upon the choice of admissible functions, V° may be evaluated

in terms of a limited amount of statistical information, usually no more than low order

correlation functions. By contrast the evaluation of F° as expressed in (12) requires total

knowledge of the random elastic coefficients for individual physical systems of the

ensemble.

In addition to the difficulty in evaluating the bound on a quantity associated with an

individual system of the ensemble, the information provided is of value only in the

context of similar information for a great many systems. It is perhaps more direct to

bound an ensemble average quantity which in an overall statistical sense provides a

better measure of the problem.

We note that the fluctuating part of a quantity vanishes in those regions for which

the value of the quantity is prescribed. It follows that

?, = T, and T\ = 0 on ST,

Ui = Ui and u[ = 0 on Su.

Thus since T{ and ut are deterministic on ST and Su , respectively, the functional

VP which appears on the left side of (14) may be expressed as

Vp = \ f T,u, dS - I [ T-Ui dS - I [ F&i dR. (16)
Z J Su ^ J S T ^ J R

The ensemble average value of Vp can thus generally be expressed in terms of pro-

ducts of average quantities. We note, however, that the average of Vv as expressed in

(6) would involve correlation functions not usually identified with quantities of interest.

The form of (16) is considerably more useful for the purposes of this work, as is illustrated

by the following expression to which it reduces for the heterogeneous sphere problem:

VP = f vA(&r)AdS. (17)

Principle of minimum complementary energy. The functional

Vc = i f cr, dR ~ f T,Ui dS (18)
Z JR J Su

which may be written explicitly in terms of stress as

' • " I /, [l7T " I (I " I) dR - L '*>« (19)
and, where the admissible stress fields are symmetric, satisfy the traction boundary

conditions, and the subsidiary conditions

daa/dXj + F{ = 0 in R,
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is stationary and has an absolute minimum for the stress field which satisfies the com-

patibility relations or, equivalently, which is derivable from a displacement field u{ such

that

ajx _ I (i. _ 2\ _ lfdiij du,\
2G 6 \G 3k)*"" 2W,- dxj'

Employing previous notation, we shall denote the extremum value of the functional

corresponding to the actual state of stress by Vc , and the value of the functional associ-

ated with any admissible stress field, <r,° , by V° . The complementary energy principle

then yields the inequality

Vc < V° . (20)

Following a procedure similar to that employed for the potential energy theorem, we

utilize the virtual work expression to provide a modified form of Vc, which appears below:

Vc = \ f T,u, dS - I [ TiUi dS + \ f Ftu< dR. (21)
& J St & J Su A J R

If we introduce (21) into (20) and for previously expressed reasons take the ensemble

average of both sides of (20), we obtain the following result:

\ [ T>u, dS - | f T,Ui dS + \ f F,u, dR < V° (22)
Z J s r 6 J Su £ J R

where the expression for V° is

= IL h -1 (s -1) *"'»]dR - L T°u-ds• (23)
For the particular problem of the heterogeneous sphere, inequality (22) reduces to

the form below:

[ VM)a dS < V° (24)
" s

Admissible Functions. Referring to (14) and (15), it can be seen that the ex-

pression for V° , which must be evaluated in order to obtain an upper bound on Vp ,

is in terms of correlations of the elastic coefficients and the admissible displacement field.

These correlation functions are generally quite difficult to obtain. We shall therefore limit

our choice of admissible functions to those which are statistically independent of the

random elastic coefficients. Although the possibility of finding a useful admissible func-

tion which has a fluctuating component and which is uncorrelated with G(x) and k(x)

cannot be entirely eliminated, it is highly unlikely. In a practical sense, therefore, we are

limited to admissible functions with no fluctuating component, henceforth referred to as

deterministic admissible functions.

With a deterministic admissible displacement field, the expression for V° , as given

in (15), reduces to the form

V° II duty (dU°X 9 du° du°

dxj \dxj " dXj dx,_

f F%u? dR - f TiUf dS. (25)
J R J S t
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We note that the evaluation of V° can now be carried out with a knowledge of only

G and k.

Although the restriction that admissible functions be deterministic certainly re-

duces the amount of information necessary for an evaluation of the bound, it must be

realized that admissible fields with relevant random components would possibly yield

better results. Recent work [G] with statistically homogeneous problems has, in fact,

verified that the quality of bounds obtained from classical minimum principles may be

improved through the inclusion of more statistical information, specifically higher order

correlation functions of material coefficients. It has been found [7], however, that the

application of these procedures to problems which are not statistically homogeneous is

considerably more complex and requires explicit statistical information, not generally

available.

Proceeding with the development, we observe that since V° provides an upper

bound on Vp , it is desirable to minimize V° for any restricted class of admissible func-

tions which is being used. In particular, we seek the deterministic admissible field which

provides the minimum value of V° . Pursuing this objective, we note that V° as ex-

pressed in (25) may be identified with the potential energy functional of a fictitious body.

This fictitious body is subjected to the same boundary and loading conditions and is

identical in all respects to the actual randomly heterogeneous body except that it has

elastic coefficients G and k. Utilizing the theorem of minimum potential energy, it

follows immediately that this functional assumes its absolute minimum value for the

admissible displacement field which corresponds to the equilibrium state of the above-

defined fictitious body. Thus the deterministic admissible displacement field which

provides the minimum value of V°T , and hence the best bound on Vp , is the solution of

a "reference" problem completely analogous to the actual problem but with elastic

properties G and k. The quantities associated with the solution of this reference problem

will be denoted by an (*). For this choice of an admissible field, utilization of the virtual

work theorem allows modification of the form of V° from that of (25) to the expression

which appears below:

V° = i f T*u, dS — ~ f T,u* dS - \ f F,u* dR. (26)
£ J Su ^ J St - J R

The inequality of (14) may then be written as

|j J T,u, dS - | J TiUi dS - P\u. dRJ

< f T*u, dS - | J T,uf dS - | / F,u* rfflj • (27)

We next consider evaluation of the bound provided by the complementary energy

principle. For reasons analogous to those stated above, admissible functions are again

restricted to be deterministic. V° then reduces to

f ■ - \ L H- (I) -1 [(g) -1 (!)] "<•"} "R - L T°»■ <*■ (28>
V° provides an upper bound on Vc . It follows that as V° decreases, the quality of

the bound improves. We observe that expression (28) is the complementary energy
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functional associated with a fictitious body identical to the actual body but with elastic

coefficients

and

It then follows directly from the theory of minimum complementary energy that of all

deterministic admissible stress fields, the one which provides the absolute minimum

value of V° for this restricted class of admissible functions is the solution of a "reference"

problem completely analogous to the actual problem but with elastic coefficients

[ffl]"and

We denote the quantities associated with the solution of this reference problem by (**)

superscript. The introduction of this admissible field into V° and utilization of the

virtual work expression finally allows the inequality of (22) to be written in the form

f TV; dS - TiUi dS + \f FiUi dff]

< [| / T,u** dS-±f T?*u<dS + F,uf* dftj • (29'.

The above discussion of admissible functions can be applied directly to the hetero-

geneous sphere problem. Recalling the values of Vp and Vc which were previously ob-

tained for this problem, the general inequalities (27) and (29) provide the following lower

and upper bounds, respectively:

Pa [ (w*)a dS < pA [ (ur)A dS < pA [ {u**)A dS. (30)
J S J s J s

We assume now that the distribution of material properties within the sphere is

statistically homogeneous and isotropic. The macroscopic symmetry of the configuration

then allows that (ur)A , the ensemble average radial displacement at the inner surface,

and the analogous quantities associated with the reference problems are independent of

angular variation. This macroscopic symmetry permits the further reduction of (30) to

the following bounds on (ur)A :

(u*)A < (ur)A < (u**)A . (31)

Introducing expressions for (u*)A and (u**)A , the bounds take the final form given

below:

VaA(2A3 + B3) (1\ (1

12(53 - il3) l\G/ \k
I PaA^ 6 i)" I (I

< {Ur)A < in/03 A 3\
PaA

6
ri-ii.
_G 3/cJ (32)pAA(2A3 + If) 1 4

12 (B3 - .43) L(? ̂  k.

While the above bounds on the ensemble average radial displacement certainly do

not comprise a complete solution, they do provide some information about a quantity

characteristic of the problem.

In general, the problems for which the inequalities of (25) and (29) may provide
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useful results are those for which the geometrical boundaries and prescribed conditions

allow a quantity of interest to be isolated in the fimctional expressions. For those prob-

lems in which these conditions are fulfilled, final results follow direct Iv upon the intro-

duction of the proper admissible functions.

An illustration of this statement is provided by the following problem:

Heterogeneous elastic cylinder under uniform axial load We consider a

randomly heterogeneous elastic cylinder of cross section S0 and length 2L. The axis of

the cylinder is taken to be in the z3 direction of a coordinate system with origin at the

geometric centroid. Uniformly distributed tensile forces of intensity an act on the end

faces of the cylinder. The traction on the other cylinder surfaces and the body forces

are assumed to be zero. Boundary conditions for this problem can then be written as

follows:

(a) T3 — o"o at == Lj T3 — o* o at ~ L.

(b) All other components of the traction vector are identically zero over the entire

surface.

We now assume the random distribution of elastic properties to be statistically

homogeneous and isotropic, and the body to be large compared to a characteristic length

of the inhomogeneities. Combining this assumption with conditions (a) and (b), we

would expect the ensemble average displacements to be uniform over the end faces.

The inequality of (27) then reduces to

^ (w 3)jTj--lJo'o'So • (33)

The macroscopic symmetry of the problem with respect to the X3 = 0 plane indicates

(u3)x,.L is equal to — (u3)X,.-L , and (u%)x,_L is equal to — (w*).y, = _L . Relation (33)

then provides a lower bound on the ensemble average value of the elongation, actually

one half the elongation, (u3)Xa=L '■

(u3)x.-l > (u%)x,_L , (34)

Similarly the inequality of (29) gives an upper bound

(u3)Xa-L < . (35)

Combining (34) and (35) with the easily obtained expressions for (u%)x,_L and (uf*)x,,L

gives the following result:

3k -f- G ^ \ ^ r
<r0L

L 9kG ^ (fis)X*-L ^ Co L

9
L

(36)

It is noted that no assumptions concerning the statistical homogeneity of the stress

and strain fields were made in the general development leading to (27) and (29). How-

ever, it seems very reasonable due to the particular geometry and prescribed conditions

of this problem that the ensemble average stress and strain fields are homogeneous. It

may be shown that the volume average value of ari is equal to an, while the volume aver-

age of all other stress components is zero. These are also the ensemble average values of

the stress components which can reasonably be expected. We can then assume that

ensemble average and volume average stresses are interchangeable for this problem.
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If an effective Young's modulus, (E)eU , is defined for the heterogeneous material, it

provides the following relation:

s0 = <T0/(E)eIt

where e0 is the uniform value of i33 . But e0 is just equal to (u3)x,.l/L, so

(A.)*.-* = c0L/(E)eu . (37)

The introduction of (37) into (36) yields bounds on (E)ett

-1

+

- s £ WTO' (33)

The bounds of (38) are the same as those obtained by Paul [1] also through the use of

classical variational principles, but in a manner somewhat different in detail than the

approach used presently. They are derived here to illustrate that where the concept of

an effective property is applicable, previous results can be regained.

Classical variational principles have in the past been used to obtain elementary

bounds on effective properties relevant to several physical areas. The formulation of the

problems was always based upon the assumption of statistical homogeneity of the random

material properties and the physical fields. Reference to the previous work would indi-

cate that the admissible functions used in the derivation of the elementary bounds were

deterministic and associated with homogeneous fields. These admissible functions were,

in the context of the present paper, the solutions of the relevant reference problems,

analogous to those defined above. It follows from the discussion accompanying the

definition of the reference problems that the elementary bounds on effective properties

are the best which can be found through the use of deterministic admissible functions

in classical variational principles. The quality or closeness of the bounds derived with

the methods of this paper is of the same order as for the elementary bounds on effective

properties. They are of numerical value only when the dispersion of the random co-

efficients about their mean values is relatively small.

3. Elastically supported beams—governing equations. The theory governing

elastically supported beams and by direct mathematical analogy thin axisymmetric

circular shells is well developed and widely known. The derivation of these problems from

more general considerations points out the limitations and restrictions of the classical

"strength of materials" approach which will serve the needs of this paper.

We consider an elastically supported beam, extending from X = 0 to L, for which

the elastic support is provided by a load-bearing foundation distributed along the beam

length. There may also be additional supports at the beam ends. The beam is loaded by

transverse forces which cause the beam to deflect. In turn, these deflections produce

vertical reaction forces in the supporting medium which oppose the deflections. It is

assumed that the intensity of reaction forces at any point is proportional to the de-

flection at that point.

The equilibrium of vertical forces and bending moments acting on a beam element

of infinitesimal length gives the following equation

d2M/dx'' — kw = —p (39)
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where

M(x) is the bending moment at a section,

w(x) is the vertical deflection of the neutral axis of the beam,

p(x) is the deterministic applied load per unit length,

k(x) = bmf is the foundation stiffness when b is the beam width at section x and

m, is the foundation modulus which has dimensions of force per unit area per unit length.

Deflection and applied loads are taken as positive downward. A positive moment

puts compression in the upper surface. The shear force V = dM/dx is positive down-

ward on the right face of an element and positive upward on the left face.

The moment curvature relation gives

(a) M = —EI d2w/dx2

which may be equivalently rewritten as (40)

(b) M/EI + d2w/dx2 = 0.

E is the Young's modulus of the beam material and I is the moment of inertia of a

section about its neutral axis. The introduction of (40) into (39) gives the equilibrium

equation in terms of displacement:

d2

dx2
(EI S) +kw =v' (41)

In the present work both EI and k may be random functions of position along the

beam, with the restriction that variations be consistent with the generally accepted

limitations imposed by classical beam theory. Thus in this problem random parameters

of both a constitutive and nonconstitutive nature occur. The parameter EI appears in

equation (40), which is essentially a constitutive relation, while the nonconstitutive

parameter k appears only in the equilibrium equation.

The problem definition is completed by the following boundary conditions:

(a) either M or dw/dx must be prescribed at X = 0 and L, and

(b) either V or w must be prescribed at X = 0 and L.

The deflection, slope, moment, and shear force are continuous along the beam. An

exception is the shear force at sections where point loads are applied. However, even

there it may be realistically assumed, if necessary, that the load actually acts over a

finite distance, thus preserving the continuity of the shear force.

Variational Principles. We will utilize two variational principles associated

with the beam problem. The first is a variational principle for which the deflection w

is the variational variable and the equilibrium equation (41) is the extremum condition.

This pinciple, which is essentially the principle of minimum potential energy, may be

stated as follows.

The functional

7. {L [El (d'wY , k , . ,
u-~l LyUv 2

, (IW
dx + M —

dx
- Vw

(0) (0)
(43)

is stationary and an absolute minimum for the admissible deflection function which

satisfies the equilibrium equation and all boundary conditions of the problem.
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The ( ) notation on a boundary term of Uw indicates that the term actually appears

at a point only if M or V is prescribed at the point. Thus M dw/dx appears at X = L

only when M is prescribed at this point.

A straightforward application of variational methods allows for the demonstration

of the above principle. It is shown that satisfaction of the equilibrium equation and

boundary conditions is necessary in order that the first variation of U„ may vanish.

Functions admissible to the variational principle are required to be continuous and

satisfy the kinematic boundary conditions. An admissible function, iv°, may be expressed

in the form w° = w + Aw where w is the actual deflection and Aw any continuous func-

tion which vanishes where deflection is specified and which has zero derivative where

the slope is specified. We introduce such an admissible displacement into the functional

associated with this principle. Then using integration by parts, the extremum condition,

and the innate positive character of EI and k, it can be shown that the extremum value

of the functional is the absolute minimum value for any admissible function. This yields

the inequality

Uw < U° (44)

where Uw now denotes the extremum value of the functional, and U° the value associ-

ated with any admissible function, w°.

If the above minimum principle is to be useful in the present work, the form of U„ ,

as expressed in (41), must be modified. We seek a form more favorable to the isolation

of quantities of interest in particular problems.

Using integration by parts, equation (41), and the following relations:

J2... J /
,, „T d w , Tt d („T d w

M= ~EITx" and T ~dx{EITx5
U'U/ Ltfcv \ U/*v

=

dx \

the functional Uw may be rewritten equivalently as

tt 1 f' , , dw L . „. du

V. = —2 Ja 0+MTx

If the ensemble average of (44) is taken, the result is

Uw < U° . (46)

(L)

+ hVw
(0)

Vw (45)

In order to evaluate the bound on Uw , we must evaluate

(l)

= I [¥ (**£) +1 ̂ °)2 - dx+mdw°

dx
— Viv°

<0) (0)
(47)

The above functional can be evaluated in terms of the average values of EI and k

only for those admissible functions which are statistically independent of the random

coefficients. Recalling the discussion following expression (24), we see that these ad-

missible fmictions must in general be deterministic.

It can be demonstrated in a straightforward manner1 that the deterministic ad-

missible deflection field which provides the minimum value of U° for this restricted class

of admissible functions is the solution of a reference problem analogous to the actual

problem but with properties EI and k. Quantities associated with the solution of this

reference problem are denoted by an (*). For the admissible function w*, the functional

1 See Appendix A.
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U° may be rewritten in a form similar to expression (45). The inequality of (46) can

then be expressed as

T 1 fL — i i ,ydw L . .. dw (i) , 1t-.l t, J(L,1
~2 / pwdx-hM-j- + M j- +hVw - Jw

1_ 6 Jo tlx 0 <*X (0) 0 I (0)J

r 1 CL dw* L dw* <L) lL l(i)l
< -S / Pw* dx - W* ^T~ + M ~ + \V*w*\ - Fty* • (48)
~~ L 2 J0 dx o dx (o) |0 I (o) J

The expression for U„ which appears on the left side of (48) can, of course, be ob-

tained only because one quantity or the other of each pair of quantities which occurs in

the boundary terms is specified at the boundary point. This allows the average of the

product to be written as the product of the averages.

We shall now consider a variational principle analogous to the complementary

energy principle for which both the bending moment and the deflection are variational

variables. It can be shown that the functional defined as

u- = I [ [w + «v]> > dw
dx + M --

dx

lL) dM

(0, dx W (0)
(49)

is stationary and an absolute minimum for those admissible functions which are related

by the constitutive equation

M/EI + d2w/dx2 = 0. (40-b)

All admissible moment and deflection functions, denoted respectively by M° and w°,

must satisfy the equilibrium equation, (39), as a subsidiary condition. In addition ad-

missible moment functions must be continuous and satisfy the prescribed boundary

conditions on M and dM /dx = V.

The notation ( ) on boundary terms associated with UM indicates that the term is

actually present only if w or dw/dx is specified at the point.

Denoting the extremum value of the functional by UM and the value of any ad-

missible functions by U£ , the above minimum principle gives the following inequality:

UM < US ■ (50)

Utilization of the extremum condition (40), and subsequent use of integration by

parts and the equilibrium equation, allows UM to be expressed as

UM = 7> f pw dx — |A/
Z J o

i AT —

dx

L i K/r dw
+ M T~

0 dx

<£)

+ hVw '' - Vw
o

(51)
(0)

Taking the ensemble average of (50) we have a bound on UM

UM < US ■ (52)

As U°, decreases the quality of the bound will improve. For reasons similar to those

presented earlier, we choose deterministic admissible moment functions. It can be shown2

that the deterministic admissible moment function which provides the minimum value

of U for this restricted class of admissible functions is the moment associated with the

solution of a problem completely analogous to the actual problem but with properties

1 See Appendix B,
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IM and

Denoting this particular admissible moment by M**, defined by

d2w**

\EI).
(a) M** = -

ffi)a, d<b) S

dx

M d2w**'

dx2

and combining (a) and (b) gives

+

where

w** = p,

(53)

, v d2M**

(C) "*?"
w** = —p.

Admissibility requires 'hat M** satisfy the boundary conditions where the moment

or the shear force are prescribed, while w** satisfies the boundary conditions on w and

dw/dx.
We note that although the chosen admissible moment, M**, is deterministic, the

admissible deflection, w°, associated with this choice is not deterministic due to the

presence of the random parameter k{x) in the subsidiary condition, Eq. (39). The

function w** is not admissible because it does not satisfy the subsidiary condition for the

choice, M° — M**. Combining (53c) and the subsidiary condition, the admissible de-

flection function w° can be expressed in terms of w** as

-i

w**

The introduction of the above admissible functions into U , followed by some ma-

nipulation, allows a modification of the functional form so that the inequality of (52)

may finally be written as

[u:_ , , did
pw dx — f M —

L . yy dw
+ M —

o dx
+ \ Vw

(0)

- Vw
0

(L)

(0).

<-[llL diD**
pw** dx - \M** ~—

L + M'** ~

f) dx

(L)

(0)

L (L)

- V**W\0 I (0).

(54)

Simply supported beams. Consider a beam on an elastic foundation which is

simply supported at X = 0 and X = L and acted upon at its midpoint by a concentrated

force of magnitude P.

The following conditions are thus satisfied:

w = 0 at A' = 0 and L,

M = 0 at X = 0 and L, and (55)

p(X) = PS(X - L/2).

Introducing these conditions into the general bounds (48) and (54) yields the following

lower and upper bounds, on {w)x.i.,a , the average midpoint deflection, respectively:

(W*)x-i/2 ^ (wOx-L/2 ^ (W**)x-L/2 ■ (56)
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Assuming the random coefficients are distributed in a statistically homogeneous manner

along the beam length, the bounds on (u>)x,L/2 may be more explicitly given as

Pj3 sinh 13L — sin 0L < / ^ Py sinh yL — sin yL ,

2k cosh 18L + cos (1L ~~ A~L/2 — 2(1 //c)_1 cosh yL + cos yL

where

b 11/4

and 7 =
AEI.

~U/4

If the statistics of the random coefficients were not homogeneous, the calculation of the

bounds could have proceeded with a knowledge of

and jL.

There are other problems of a similar nature for which results can be obtained.

These first order bounds may also be combined in a kind of hierarchy to provide bounds

on the ensemble average influence coefficient and various correlation fmictions. A num-

ber of the above-mentioned results may be found in reference (7) along with analogous

results for elastically supported plates.

Appendix A.

Demonstration that w* provides minimum value of U° for any deterministic

admissible function. The introduction of a deterministic admissible deflection

function into the expression for U° given in (47) yields

^ - /; s &-+ 7) (t»°)! — PW , . , , dxo°
dx + M -3—

ax

<£)
- Vw°

(0)

(.L)

(A-l)
(0)

As previously stated, the particular admissible function denoted by w* is the solution

of the "reference" problem presented below:

<•> £■ iEI f-)+
(b) w* satisfies the kinematic boundary conditions, (A-2)

(c) M* = EI d2w*/dx2 and V* = —d/dx(EI d2w*/dx2) satisfy the moment and

shear force boundary conditions.

We now define a general deterministic admissible function w° as

w° = w* + Aw" (A-3)

where w* is the solution of the problem (A-2), and Aw° is an incremental field of arbitrary

magnitude. The admissible function w° satisfies the following conditions:

(a) w° is continuous, (A-4)

(b) w° satisfies the deflection boundary conditions.

The incremental field, Aiv°, satisfies:

(a) Aw° is continuous, (A-5)
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(b) Aw° = 0 at the boundary points where the deflection is specified and

d Aw°/dx — 0 where dw/dx is specified.

Introducing iv° from (A-3) into U° gives the following expression:

=o:+1f ■>'
+ /„L \p +£w*Aw° ~ pA™°]dx+M

dAw°

dx

(L)

VAwQ . (A-6)
(0)

The first term U* is the value of the functional for w*. Using integration by parts

and the conditions (A-2(a) and (b)) and (A-5 (b)), it may be shown that the last three

terms on the right side of (A-6) vanish. Since

i:

2

+ k{Aw°)2 dx

is greater than or equal to zero, the following inequality results:

U*W<U°. (A-7)

It has thus been shown that the deterministic function which satisfies the "reference"

problem defined in (A-2) provides the absolute minimum value of 0° for any deter-

ministic admissible function.

Appendix B.

Demonstration that M** provides the minimum value of U£ for any deter-

ministic admissible moment functton. Given any admissible moment and deflection

functions, the functional U£ takes the form

u- "I f Pf? + j j- dw Hof" dM°
ax + — M I — w (B-l)

dx | (o) dx

As previously noted, the admissible functions must satisfy the following conditions:

(a) d2M°/dx2 - kw° = -p, (B-2)

(b) M° satisfies the prescribed moment boundary conditions,

(c) dM°/dx satisfies the prescribed shear force conditions,

(d) M° continuous.

Making use of the condition of admissibility, equation (B-2 (a)), we may express

w° in terms of the admissible moment as

- i [„ +
diMc

dx2 (B-3)

For deterministic admissible moment functions we may write

M° = M** + A M° (B-4)

where M** is defined by the reference problem associated with the equations and dis-

cussion of (53), and AM° is an incremental deterministic field which is required only to

satisfy the following conditions:

(a) AM° = 0, where the moment is specified, (B-5)
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(b) d AM°/dx — 0, where the shear force is specified,

(c) AM° continuous.

With the introduction of M°, as written in (B-4), into (B-3) and the use of expression

(53c), we have

1
ur = ,

/c
(B-6)

Thus the ensemble average value of the functional expressed in (B-l) assumes the

following form for any deterministic admissible moment function:

+ (|)"'(«,«)■ + + @(^)'] &

dw dw !(/) dM**
+ ^M**\ +~AM°

dx j (o) dx I (o) dx

(L> dAM° !(L)

(0)
w~nr~ i ■ <B"7)

Regrouping terms we have

U°m = l/ft* + I f+ (*£F) @]dx

+ ^ + w"^d AM° dx + ~ A M°
dx

<L) dAM°
— w

rfa;

(2.)

(0)\EIJ ' \ ^ ~ ' (B-8)

where (7J,* is the value of U for the choice M° = M**. Using (53a), integration by

parts, and the boundary conditions imposed on w**, it may be shown that the terms

<£>

f[ 1 \ , _ d'AM°
+ w**

, , dw , ...
dx + — AMc

dx

(i) dAM°
— w

dx

vanish. Then since

rL f 2/T\ /A'1 a ,ir°\2/T\~l
dx/: M)+m

is nonnegative, the relation of (B-8) yields the following inequality:

tffc* < l7Sr . (B-9)
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