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1. Introduction. One of the problems of steady flow magnetohydrodynamics which

has attracted considerable attention during the last decade is the determination of the

flow past a fixed obstacle in the presence of a magnetic field. The early papers dealt

with the situation in which the free magnetic field is uniform and aligned with the

uniform stream at infinity. More recently, several authors have been concerned with

the case in which the free field originates inside the obstacle. In particular Barthel and

Lykoudis [1] have considered the problem of flow past a fixed magnetized sphere in

which there is an axially symmetric magnetic dipole located at the centre. The velocity

field was calculated for small values of the Hartmann number and an expression found

for the drag coefficient. Tamada and Sone [2] have obtained similar results, and in

addition have found an asymptotic solution for large values of the Hartmann number.

Riley [3] has considered the case in which the sphere is magnetized by a magnetic pole

at its centre. In this problem the flow equations are reduced to a pair of coupled ordinary

differential equations and a solution can be found in series form for arbitrary Hartmann

number.

In this paper the field originates inside the sphere which is supposed conducting,

and is produced by an electric current dipole located at the centre of the sphere and

directed along the axis of symmetry. However, the associated magnetic field inside the

sphere is toroidal, consisting of one component perpendicular to the meridional plane.

It is shown that both the hydrodynamic and electromagnetic boundary conditions can

be satisfied provided that the fluid velocity is axially symmetric (without swirl) and the

magnetic field in the fluid is toroidal. The Stokes flow perturbations are calculated for

small values of the Reynolds number R, the magnetic Reynolds number Rm and the

Hartmann number M. The primary interest is in the effect of the magnetic field on the

fluid motion near the sphere and the vorticity generation at the boundary.

For M2 > 6Rm a region of reversed flow occurs about the forward stagnation point

and spreads over the front face of the sphere with increasing values of M2/Rm . The

force on the sphere is found to be reduced by a factor of 0(M2) of the Stokes drag, from

which it is concluded the effect of the term of order il/2 is to retard the fluid motion,

consequently reducing the viscous stresses around the sphere and hence the drag. The

magnetic field also contributes to a force on the sphere which also reduces the drag by a

term of order M2. It is shown that the dominant characteristics of the flow field are not
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affected by the magnetic field at large distances from the sphere, and the magnetic field

decays exponentially upstream and algebraically downstream.

Finally, it may be anticipated that the results presented here are typical of toroidal

fields produced by electric current multipoles at the origin or a linear combination of

such singularities.

Flow equations. The conventional magnetohydrodynamic equations describing

the steady flow of a viscous conducting fluid are

— [HA curl H] + (q-V)q = —grad — + i>V2q
Po Po

j = curl II = <tE + crjLt[g A II] ^

curlE = 0, div q = 0, div II = 0,

where ~q is the fluid velocity, H the magnetic field, E the electric field, p the pressure, p0

the density, n the permeability, j the current density, and a the conductivity. Consider

an axially symmetric fluid motion without swirl in the presence of a toroidal magnetic

field. Then q and H may be expressed in the forms

q = curl s — <f>\ , II = — <f>, (2)
^ CO J co

where (z, co, 4>) are cylindrical polar coordinates and $ is the unit vector directed perpen-

dicular to the azimuthal plane <t> = constant and in the sense of <t> increasing. \p = \p (z, u)

is the Stokes stream function and U = U(z, co) may be regarded as a flux function for

the current density j. In terms of i and U Eqs. (1) simplify to

2n II dU codjip, 7,_,(iA)/M2j Ti/,\ /on
2 o i" n/ \ — vLj-i\y)) (3)

Po CO dz d(z, w) v '

U/w\ T

where tlie Stokes operator

L = — + — - - —
1 dz~ da)2 co du

To determine how flows of the type defined by (2) can arise, let S be a fixed conducting

solid of revolution of permeability n arid conductivity a. Then the electric and magnetic

fields inside S are governed by the equations

ji = curl Hi = aEi , curl E, = 0, div IIi - 0 (5)

where the subscript i denotes the fields inside S. Now if the magnetic field is toroidal

inside S then

Hi — —<t>, L-1(U<) = 0. (6)
CO

In this Ui may be regarded as a flux function for both the current density and electric

field. Now consider flow past S due to a uniform stream of velocity —VS at infinity

directed along the negative 2-axis in the presence of a magnetic field originating inside S

and of the type described by (6). The boundary conditions for the fluid velocity are
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- Sr = 0 = ~ H 011 c' as r = (« + z°y/2 m (y)
cc d?l co do

where d/dn, d/dS denote differentiation along the outward drawn normal and along the

tangent to the meridian curve C bounding S respectively. The electromagnetic boundary

conditions are

(i) the magnetic field is continuous on C, that is

V = U{ on C (8)

(ii) the tangential component of the electric field is continuous on C, that is

H A E = n A E{ on C. (9)

In terms of U and U, (9) may be expressed as

~ = ^ on C. (10)
On dn

In addition the field vanishes at infinity so that

|H| = \U/oi\ —> 0 as r —> <».

Exterior to S, ip and U are governed by (3) and (4).

Flow past a sphere. Now let S be a sphere of radius a and centered at the origin

of coordinates and suppose that the field inside S is produced by an electric or current

dipole directed along the axis of symmetry.1 Thus if z = r cos 6, w = r sin 6 define spheri-

cal polar coordinates then

U i ~ Ma sin2 6/r as r —> 0 (11)

where M0 is the dipole strength. If nondimensional quantities as defined by

r = a r"1, q= 7„q\ * = V0aV, U = M0U'/a,

„ V„a p Vad ,,2 M M0 1 p Ma p,\ (12)
K =   , lim = - , M = - , Ji = ~~3 & ,

v Tj po a t]v a a

are substituted into (3) and (4), and then primes are removed, the scaled equations of

flow are

v _ LiiW, (I®
/t„co oz a(z, a;)

T d\ip, U/w} T ,,n

a(».») " (I4)

with boundary conditions

\p = — 0, r = 1, \p ~ 5r2(l — (:f) as r
dr

(15)

U n T- TT 9U dU' , A
0 as r —* oo, --- = -r— r = 1, /3 = cos

dr drCO

and Ui ~ sin 6/r as r —> 0. R is the Reynolds number, /(*,„ the magnetic Reynolds

number and M the Hartmann number.

The results do not depend on whether or not the dipole is directed along the ± z-axis.
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Slow motion solution. In view of the coupled nonlinearity of (13) and (14) it is not

possible to determine an exact analytical solution even for special values of the hydro-

magnetic parameters. For small values of the parameters it is customary to employ

perturbation techniques to determine approximations to the fields. Now since the only

singularity of the magnetic field is located at the centre of the sphere and the field

vanishes at infinity, the primary interest is to determine the flow in a vicinity of the

spherical boundary where the dominant magnetic field effects are present. Thus, if all

three hydromagnetic parameters are small, the convection terms in the equations of

motion will be neglected since Reynolds number effects are only of secondary interest

and the first order effects are O(R). It is readily seen from (13) and (14) that there are

expansions2 for \p, U, Ut of the forms

i = i°0 + M'Rl'iU + 71/Vi + M'R-'rpi, + • • • , (16)

U = Ul + RJJ\ + M2U\ + • • • , (17)

U, + U°< o + Rmul + M2U\0 + ■■■ , (18)

where the superscript indicates the power of M2 while the subscript denotes the power

of Rm . Now in order to preserve consistency in respect to the assumptions already made

it is clear that convection terms like

RM* . L-MU)Ao2i
Ri a d(z,«)

are small in a vicinity of the sphere provided that R1/2M2R~1 <<C 1. This condition also

ensures that higher order terms also contribute convections effects which are small in a

vicinity of the boundary. Now for a conducting fluid such as mercury Rm/R = 0(10~7)

so that if R1/2M2R~l = O(10"2), say, then for R = 0(10"6), Rm = 0(10~13), andMX =

0(10), ilf = 0(1()~6). It will be shown later that the case M2R~l = 0(10) is the flow of

most interest in the present paper. Substitution of (10) and (17) in (13) and (14) and

application of the boundary conditions yields the leading terms which are found to be

U°0 = (1 - /32)/r, Ul = (1 - ?)/r, 0 = cos 9, (19)

£ = (§r2 - fr + l/4r)(l - /32), (20)

where is the well-known Stokes flow for the field free case. The determination of <p-i

is then straightforward and is given by

*1, = |(1 A - 1/2r2 - Ml - /32)- (21)

Now the equation satisfied by U" is

L.M = , (22)

subject to the boundary conditions

J--0 r\ r-n rr<1 dU\ dU i\ . /OQ\
C71 —> 0 as <* , I , == i „ , — = —r— , r = 1, (23)

or or

' The complete expansions are of the forms ^ U =
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where U0^ is a solution of L-i (//",) = 0, which is finite at the origin (or at least less

singular than U% at the origin). The solutions are found to be

U°n = -iV/3(1 - /32) (24)

Ul = ( — 1 + 9/8r + 1/4r3 - 9/10r2)/?(l - p2). (25)

The term of order M2, that is U\, can be found in a similar manner. For the purposes of

calculating the drag coefficient the term \f/l0 is required. This function satisfies the equation

r 2 / , i\ 2 j..jo dUi . -j-jo dUol
!-,(« - rT(TZT^j \u° + u< ̂ 7/ . (26)

subject to the boundary conditions \p\ = d\pl/dr = 0, r = 1, and H —* 0 as r —> <*> .

After some calculation the solution is found to be of the form

H = F(r)( 1 - /f) + G(r)(5/32 — 1)(1 — /32), (27)

where F and G are given by

, 2 J 3 log r L _L_i_JL_i__1L._L\ /oov
(r) 5 I 40r 16 280r3 + 80r2 + 560r + 112 r) ' ( 8)

, 9 lo g r _3^ _401_ , 109 \ /oft.
( ) 5 \80r °S r + 12 + 224r3 20r2 + 6720r3 + 2240rJ ' ^ ^

The most interesting case occurs when M2R> 6, and the stream function may be

represented in the form

i = {tr + 1 - 3 CQS/| sin2 8, (30)
4r [ r cos 80) v '

where M2/QRm = a/6 = sec 80 ■ It follows that the sphere and axis are streamlines and

also the curve C defined by

2r + 1 —- 3 cos 8/ rcos d0 = 0. (31)

This curve C encloses a vortex or a region of reversed flow exterior to the forward portion

of the sphere and meets the sphere at the point P0( 1, 60) and the axis at the point

r = 1(1 + 4a)1/2 - i, 0 = 0. (32)

The fluid velocity along the axis is positive for 1 < r < f(l + 4)1/2 — f, 9 = 0, and

this latter point is a stagnation point for the flow. There is also a stagnation point inside

the region bounded by C and exterior to the sphere defined by the equations

- 4r(2r + l)/3 + a(l - 3/32) = 0, r(4r2 + r + 1) - a/3 = 0. (33)

Now let X be the angle between the tangent and the radius vector and mesured counter-

clockwise from the radius; then

tan X = —2r(4r + l)/a sin 8. (34)

Thus as 8 —» 0. tan X becomes infinite so that the closed streamline intersects the axis

orthogonally. Again for 0 < 8 < ir/2, tan X < 0, indicating that X is obtuse. When

r = 1, tan X = — 10(a2 — 36)~1/2, implying that the curve C comes in below the radius

vector. Now the sign of depends on the last factor contained in (30). If local polar
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coordinates (p, <j>) are defined by

r sin 0 = sin 0O + p sin (60 + <t>), r cos 0 = cos 0O + p cos (0O + <£) (35)

then applying the approximation (1 + 2p cos <p + p2)1/2 = 1 + p cos 4> for small p,

the sign of \p locally at the point of separation depends on

p(5 cos 0O cos 4> + 3 sin 0O sin <£) (36)

where 0 is measured counterclockwise from the outer normal to the sphere. Since 0 <

0O < 7r/2 it is clear that ^ > 0 for 0 < <f> < 7r/2 and \p — 0 for

tan </> = cot 0O = — 10(a2 - 36)",/2. (37)

Since — tt/2 < </> < ir/2 the angle A defined by (37) is negative and

i > 0, A < 4> < w/2, (38)

i < 0, -tt/2 < 0 < A < 0. (39)

The vorticity of the fluid arising from the dominant terms is given by

t = ——a £-.(*) = —^ U-i(\0 + ~ i-,(^i)} (40)rsm 0 rsm 0 I Rm 1

{l5 + fk (I ~ ?)cos 4sin 6' (41)

and its value on the boundary r = 1 is

t = | (l ~ J|r cos 0^ sin 0, (42)

Thus, if M and Rm are small with M2Rsmall then the vorticity is positive 0 < 0 < tt

and is decreased on the front face of the sphere 0 < 0 < ir/2 and increased on the rear

face tt/2 < 0 < ir. Now if Reynolds number terms are included in the expansion then

it is found the vorticity is increased by a term of 0(R) on the front face and decreased

on the rear. The magnetic field thus inhibits Reynolds number effects in a vicinity of

the sphere. For the more interesting situation in which M~/Rm > 6, the vorticity vanishes

at 0 = 0O and is in fact negative for 0 < 0 < 0O . This is of course indicative of a region

of reversed flow about the forward stagnation point.

Finally it is noted that the ^-component,

M~ U d(J 3.1/2 sin3 0 cos 0 . >

h> « dz ~ r4 ( )

Fig. 1. Sketch of the streamlines for M2 > 6Rv illustrating region of reversed flow about forward

stagnation point
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of the Lorentz force which produces the vortex corresponds to a symmetric push and

pull in the fluid medium and is clearly directed against the flow for 0 < 6 < -k/2 and

with the fluid for tt/2 < 6 < it.
Magnetic field at large distance from the sphere. At large distances from the sphere

\p |o)2 so that the governing equation (14) for U may be obtained by replacing \p for

Jo;2, and U satisfies an Oseen type equation given by

(L_x + R'm d/dz)U = 0. (44)

Now as r —> <», U/u —> 0, and the inner boundary conditions are U = Ut , dU/dr =

dUi/dr, r = 1 and U { ~ sin2 0/r as r —> 0. For small values of Rm a solution of (44)

satisfying the outer boundary and the inner boundary conditions correct to zero order

in Rm is

TT —Rmr( 1 + (3) [~ 1 , Rm
U = exp t  |_- + Y (1 - P2), (45)

U, = (1 r pt)- (46)

The significance of this solution is that it shows that at upstream infinity (/3 = 1) U

decays exponentially while at downstream infinity (/? = —1), U decays algebraically

in the wake.

Velocity field at large distances. At large distances from the sphere the governing

equation for the dominant terms, \p = is the inhomogeneous Oseen

equation given by

(L_> + R d/dz)L_,(*) = -6Af2/3(l - P2)/Rmrd. (47)

Now \po is a solution of the homogeneous equation and the approximate solution is

i°0 = |r2(l - p2) + (1 - ^2)/4r - (3/2/2)(1 - /3)[1 - exp {-Rr{ 1 + p)/2), (48)

and from (21) it is readily shown that the dominant term in can be found from the

solution of the homogeneous Oseen equation given by

m. I +;)« - w ~ 4wr, ■ (49)
which behaves as (M2/Rm){ 1 — /32)/3/8 for small R and finite r (0 ^ —1). It is readily

found from (48) and (49) that the vorticity decays exponentially upstream (/3 = 1) and

decays algebraically downstream (fi = —1) at the same rate as the ordinary field free

hydrodynamic case. Thus the magnetic field does not affect the dominant characteristics

of the flow field at infinity.
The force on the sphere. The force on the sphere is composed of two parts, namely,

the force due to the dynamic viscous stresses in the fluid and a force derived from the

magnetic field stresses. The former contribution is expressed by a formula due to Stimson

and Jeffery [4], that is,

Fd = -Kp[tvaV f A (L=Mjds
Jr an \ co /

, T/J, 8il/2\
= — 07Tp0va V0| 1 — 3Y5QI'

(50)
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The latter contribution is given by

af2 r ->
Fm = 2waF0 g- / - 02(f-lc)]u ds

Km J C
(51)

= irpovaVoM2,

and the total force on the sphere is

F = Fd + Fm = —Qirp0vaV0(l - 23M2/G300), (52)

the negative sign indicating that F is directed along the negative z-axis. It is noted

that terms like M2/Rm , M4,/Rm , etc., do not contribute to the force on the sphere as

they produce equal and opposite forces on the front and rear faces. Again it may be con-

cluded that the main effect of the perturbation term i/„ is to retard the fluid motion

close to the sphere, consequently reducing the viscous stresses and hence the drag. If the

Reynolds number R is of the same order as M2 then (52) should be modified as follows:

Fd = -6W[/.(1 + |R - 8M2/3150). (53)
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