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1. Introduction. Solution of the Navier-Stokes equations has become possible for
increasingly important and complicated problems in recent years. A considerable litera-
ture has developed on numerical methods for such problems. Most of the work has been
on two-dimensional problems using the vorticity and stream function as dependent
variables [1], [2]. However, some methods (Chorin (3], [4] and Harlow and Welch [5])
have been proposed in which the velocity components and the pressure are retained as
dependent variables. In recent years two methods for attacking three-dimensional
problems have been described (Aziz and Hellums [11], Chorin [4]). The method of Aziz
and Hellums for three-dimensional problems involves formulation in terms of a vector
potential. Such a formulation is possible for incompressible flows and the approach
has been shown to be promising. The vector potential may be thought of as a three-
dimensional generalization of the usual two-dimensional formulation in terms of the
stream function. A most interesting feature of this approach is that there is some diffi-
culty in expressing the boundary conditions in the most convenient form. This difficulty
is in direct contrast to the two-dimensional case where finding restrictions on the stream
function on the boundary is relatively simple.

A general procedure has been developed for this boundary condition problem [6], [7]
and the present work may be regarded as an extension of this prior work. In incompressi-
ble flows the velocity field may be expressed as the curl of a vector potential as in the
prior work. It is also possible to express the velocity field for incompressible flows as the
sum of the curl of a vector potential and the gradient of a scalar potential. This formula-
tion in terms of two potentials is the subject of the present work. It will be shown that
the use of two potentials yields much simpler boundary conditions in some cases and a
general procedure will be given for finding these boundary conditions. It will also be
shown that the use of two potentials makes it possible to treat a restricted class of
compressible flow problems.

The basic boundary conditions are simply the restrictions on velocity of the original
problem expressed in terms of the potentials and the vorticity. These basic restrictions
leave a great deal of freedom. From the definitions it is clear that the vector potential is
determined only up to a gradient of an arbitrary scalar and the scalar potential is de-
termined only up to a scalar constant. A method will be given below for specifying
restrictions on the potentials which are compatible with the basic boundary conditions
and which lend themselves to numerical procedures.
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2. Hypothesis and basic differeatial equations. Let the region of space for which
we wish to determine the flow field be denoted by V, and let it be a regular or an infinite
regular region of space as defined by Kellogg [8]. Let S be the surface that is the boundary
of V. Let the velocity field V have continuous derivatives of the second order in the
interior of V, continuous one-sided derivatives normal to S on S, and continuous first
derivatives with respect to the surface coordinates on S.

The development of the theory is based on classical potential theory for stationary
fields. Thus, to satisfy the hypothesis it is necessary for the flow field to be stationary or
for a disturbance at any point in a nonstationary field to be felt everywhere in the region
instantaneously, i.e., infinite speed of sound. However, compressible, nonstationary
flow may be represented if the speed of sound is sufficiently greater than the product
of the maximum frequency of any disturbance and the maximum length of the region.
Batchelor [9] gives a more detailed discussion of the circumstances in which the com-
pressibility may be neglected.

The scalar potential, ¢, and the vector potential, 4, are defined by the equation
=-V¢+V X4 2.1)

It is well known that these potentials exist under the hypothesis and that an 4 can be

found such that
V-4=0. 2.2)

A differential equation in the scalar potential may be derived by taking the diverg-
ence of Eq. (2.1)
2 == — .
V¢ vV @.3)
= -0

where O is the divergence of velocity or the rate of expansion of the flow field.
A differential equation in the veetor potential is derived by taking the curl of (2.1)

and applying (2.2):
VA = V(V-4) — V X (V X 4)
-V X (V X 4) | (2.4
==V XV
= -W

where W is the vorticity.
The other equations required to determine the system are derived from the con-

servation of mass, linear momentum, and cnergy, together with equations of state and
the constitutive equation. For simplicity assume that the fluid is Newtonian with con-
stant coefficients of viscosity. The vorticity transport equation may be derived in the
usual way by taking the curl of the equation of motion.

DW/Dt — W-VV + OW = V X f/p + vW’'W — (Vp) X DV/DL. (2.5)
Boundary conditions in terms of the vorticity may be found from the specified velocity

distribution using the definition of vorticity, the curl of the velocity.
3. Boundary conditions. As mentioned carlier, the specification of the velocity on



19701 NOTES 295

the boundary, as is the usual basic condition in fluid mechanics, does not imply a unique
set of boundary conditions on the potentials. Hence, additional restrictions must be
imposed and these restrictions may be selected to simplify the procedure of solution.
Of course, the additional restrictions must be compatible with the basic boundary con-
ditions. A set of conditions which seems most advantageous is given below. These
-comprise one restriction on the complete boundary on the scalar potential and one on
each component of the vector potential. The great advantage of the conditions given
below is that it is possible to require the tangential components of the vector potential
to vanish on the entire boundary.
The scalar potential is specified to have the boundary condition that

n-Veé = d¢/n 3.1
= —n-V.
From (2.1) this implies that
nVXxX A=0 (3.2)

The vector potential as defined by (2.1) and (2.2) is not unique but is arbitrary
by the gradient of a harmonic function. Let

A= A4—Vy (3.3)

where V% = 0 is another vector potential that satisfies (2.1) and (2.2) and v will be
specified later.
Since n-V X A = 0, the tangential projection of A on S may be expressed as

Ar = VS'P (3-4)
where
P
Y(P) = f A-dX.
Po
P, is an arbitrary point on S and Vs is the surface gradient operator. Let y = ¢ on S.
Then
Ar = A, — Vsy
= Ar — Vsy (3-5)
= 0.

Thus, 4’ is a vector potential satisfying (2.1) and (2.2) and by (3.5) has a zero tangential
projection on §; i.e., it is normal to S. It is easy to show that the vector potential A’
with these properties is unique [7]. Hence, for boundary conditions on the tangential
components of the vector potential one may require that the components vanish. Such
a restriction is not possible on the normal component. Instead, from the requirement
that 4 be solenoidal, we have

ad
55 il AG)] = 0 (3.6)

if (', 2°, 2°) is an orthogonal coordinate system with z° in the normal direction. In the
special case of a flat boundary with Cartesian coordinates (3.6) reduces to 94 (n)/on = 0.
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On the scalar potential we have the differential equation (2.3) with the condition
given by Eq. (3.1). From these equations we see that ¢ is an arbitrary constant for
the important special case of incompressible flows bounded by solid surfaces. In the
general case it is clear that © is nonzero and time-dependent and the scalar potential
may be a function of time.

On the vector potential we have (now letting A denote what previously was called
either A or A’) the vector differential equation (2.4) with conditions that the tangential
components of 4 vanish, as by Eq. (3.5). The condition on the normal component is
given by (3.6).

It can easily be proved that the vector potential that is a solution of (2.4) with
boundary conditions (3.5) and (3.6) does in fact satisfy the condition V-4 = 0. The
proof is similar to that given by Sommerfeld [10] for the case of an unbounded flow
field.

The equations and conditions are written above formally as if ® and W were specified
in which case (2.3) and (2.4) could be solved independently to yield the potentials.
However, the equations are coupled into the system of equations as described previously.
It has been found to be advantageous in numerical work to solve (2.3) and (2.4) at
each time step as if uncoupled. Then the coupling and other nonlinearities are taken into
account by an iterative procedure. In this way it is possible to make use of some of the
well-developed linear methods of numerical analysis.

Aziz and Hellums [11] give a numerical solution for three-dimensional time-de-
pendent free convection using the approach discussed here. They considered the special
incompressible case in which the scalar potential plays no role.

4. Conclusion. The theory presented here gives a general method for determining
the simplest boundary conditions on the scalar and vector potentials consistent with a
specified velocity distribution on the boundary. In incompressible flows, the scalar
potential can always be required to vanish identically. However, imposing this require-
ment may cause the boundary conditions on the vector potential to be more complicated
and more difficult to determine. Hence, it is advantageous to use both potentials except
in cases where there is no flux across the boundaries.

REFERENCES

[1] J. E. Fromm, Report LA-3522, Los Alamos Scientific Laboratory, 1067
[2] K. E. Torrance, J. Res. Nat. Bur. Standards 72B, No. 4 (1968)
[3] A. J. Chorin, A. E. C. Research and Development Report No. NYO-1480-61, New York, 1966
[4] ———, Bull. Amer. Math. Soc. 73, 928 (1967)
[5] F. 1L Harlow and J. E. Welch, Phys. Fluids 10, 927 (1967)
6] G. J. Hirasaki and J. D. Hellums, A general formulation of the boundary conditions on the vector
potential in three-dimensional hydrodynamics, Quart. Appl. Math. 26, 331 (1968)
[7] G. J. Hirasaki, A general formulation of the boundary conditions on the vector potential in three-dim-
ensional hydrodynamics, Ph.D. thesis, Rice Univ., 1967
[8] O. D. Kellogg, Foundations of potential theory, Dover, New York, 1953
[9] G. K. Batchelor, An introduction to fluid dynamics, Cambridge Univ. Press, New York, 1967, pp.
164-171
[10] A. Sommerfeld, “Mechanics of deformable bodies,” Lectures on theoretical physics, II, Academic Press
New York, 1950, p. 150
[11] K. Aziz and J. D. Hellums, Numerical solution of the three-dimensional equations of motion for laminar
natural convection, Phys. of Fluids 10, 314 (1967)



