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1. Introduction. In this paper the equation

^5 + (a - 2 Y, Q, cos 2m) V = 0 (1-1)

is studied where the variables y and t are real and the frequencies {2X,-} are a set of

linearly independent (relative to the rationals) real numbers. The coefficient of y in

(1.1) is thus a uniformly almost periodic function in the sense of [1], and the equation

viewed as an initial value problem represents an oscillator with almost periodic para-

metric excitation. Solutions are obtained which are generalizations of those for the

Mathieu equation [2]:

d2u
"^2 + (a — 2q cos 2\t) y = 0 (1.2)

and they are classified in a manner which constitutes an iV-fold generalization of the

classifications developed in the theory of (1.2), where N is the number of terms in the

sum in (1.1).

This problem may be viewed as a special case of the nonlinear problems treated by

Moser in [3] and [4] wherein the existence of a finite basis for the spectrum of an almost

periodic function is indicated by the use of the term "quasiperiodic" after Bohl [5].

Proceeding from the result of Favard [6] which states that the boundedness of the

solutions of (1.1) is equivalent to their almost periodicity, the stability of the solutions is

investigated by determining the characteristic values of a in (1.1) which will yield al-

most periodic and hence bounded solutions. The results obtained here give explicit

examples of solutions of the types which are shown to exist in [3] and [4]. By suitable

adjustment of the constant a viewed as a function of the parameters {g,} either an

even or an odd almost periodic solution of (1.1) may be obtained whose spectrum has the

base {2X,}. For other values of a, odd and even almost periodic solutions are obtained

simultaneously with a common spectrum which has a basis containing an additional

frequency, X0, and which is contained in the module of {2X,} translated by the amount X0.

Considerations of the arithmetic relationships among X0 and the X, leads to the determina-

tion of the geometric properties of the N + 1 dimensional stability surfaces a(g,). These

surfaces generalize the well-known diagram related to (1.2) (see e.g. [2]) and their

intersection with any plane (a, q,) is precisely the stability diagram for Mathieu's

equation (1.2).

* Received January 23, 1969; revised version received March 19, 1969. This work is based on a

Ph.D. dissertation in Engineering Mechanics submitted to the faculty of the University of Pennsylvania.
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2. Perturbation expansions. Proceeding formally, a perturbation expansion yielding

a power series in the fg,} may be obtained by a process wherein the suppression of

secular terms leads to the determination of the characteristic values of a for which the

fundamental solutions will have the form

2/1.2 = exp (±i\0t)<t>(±t). (2.1)

where <t>(t) is an almost periodic function with the base {2A,). The form of solution (2.1)

is a generalization of the Floquet form obtained in the case of periodic parametric

excitation (Hill's equation) and accordingly i\0 is termed the characteristic exponent.

The invariance under time reversal of (1.1) accounts for the choice of signs in (2.1).

The resulting expansions may be shown to be asymptotic in the sense of Poincar6 [7]

and subject to restrictions of an arithmetic nature on the numbers {A,} the presence of

"small divisors" is overcome and the expansions are convergent.

The solution of (1.1) for vanishing g,- becomes exp (iaU2t) and exp (— ia1/2t), and

a = Ao is obtained. The fundamental solutions may be combined to yield independent

even and odd solutions or cosine-like and sine-like solutions

S[t] = (t/, - y2)/2i ^ ^

C[t] = (?/i + Vi)/2

which will prove to be more convenient for computation. For nonzero g,- the solutions

are regarded as perturbations about cos A0t and sin A0t and the relationship between a

and the g,- such that the solutions are almost periodic is sought. The result on the spec-

trum of the solution is guaranteed by the mechanics of the expansion procedure as will

be seen. For initial conditions it is required that the coefficients of cos A0t and sin A0t

in the even and odd solutions respectively be equal to one. A suitable normalization may

be introduced later. The dependence of a on the g,- is specified as a power series in all gf :

a-Aj+EEi;... ^ *"""•■
m «= 0 r-0 p = 0

(m, n, p ■ ■ ■ u) 9^ (0, 0, 0, 0 • ■ • 0)

where A„ is a0oo---o • Similarly, for the even solution:

Omnp-'-^g 1Q2Q3 ' ' ' Qn

(2.4)

y = cos \0t + ^2 ■ ■ ■ X) C(t)mnp...llq™q?qZ ■ ■ ■ q$
m=0 n=0 v=0 n=0

{m, n, p ■ ■ ■ n) ^ (0, 0, 0, • • • 0)

where cos A„t is regarded as C(0ooo—o ; corresponding steps apply to the odd solution with

the only difference lying in the initial conditions. From this point on the summation

convention is used where possible. Using (2.3) and (2.4) to evaluate the terms in (1.1)

we obtain (the dependence of the upon t is understood in what follows):

y" = —X? cos A 0t + C"np...slq"lqlql ■ ■■ q"v ; (m, n, p ■ ■ ■ /j) ^ (0, 0, 0, 0, • • • 0) (2.5)

ay = A# cos A0t + Canv..„q"lqlql • • • q"\oc,ilc...Qq\q'2 ■ ■ ■ g°

(m, n, p ■■■ n) and (i, j, fc • • • fl) (0, 0, 0 ■ • • 0) (2.6)

simultaneously.
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The product of the two iV-fold power series in (2.6) is expressed by means of the

Cauchy product:

ay = X0 cos \0t -f- 1Q2Q3 Qn (2.7)

i = 0, 1 • • • m m = 0, 1, • • • 00

J °'1 n n 1' °° (m,n,p ■ n) 9* (0, 0, 0, ••())

k — 0, 1 ■ ■ • p p = 0, 1, • • • co

ft = 0, 1 • • • n M = 0,l,-'-oo

jv N

X] ( — 2qj cos 2\jt)y — — 2 g,- cos (2X,i) cos X0£ — 2 cos (2\1t)Cmn...„q?+1q" • • • q"N
1 1-1

2 cos (2\2t)Cmn...llq iq2 • •• q"v

- 2 cos (2\»t)Cmn...„qmiq: ■ ■ ■ qT1 . (2.8)

Inserting (2.5), (2.6), (2.7) and (2.8) in the differential equation and equating co-

efficients of each term in qYq2 ■ ■ • qN to zero yields, for example:

— Xq cos X0t + Xq cos \0t = 0 (2.9)

^ 100• • *o ~i~ XqC 100• • *oo~I- &i00"'0 cos \0t 2 cos (2XjO cos Xqt — 0. (2.10)

The general term in the differential equation is

CmnM * * * + \lcmn • •

= 2 cos (2Xi<)Cm_!+ 2 cos (2X20Cm„-,...„

+ • • • 2 cos (2\Nt)Cm

(» + j + ■ ■ • + n) > 1

0 < i < m

0 < j < n

0 < ft < m (2.11)

The general term is a recurrence differential equation in which the solution depends

on all previously determined terms and an as yet undertermined constant .

It will be seen in what follows that the choice of the amn...M is dictated by the re-

quirement that the solution of (1.1) be almost periodic. Specifically, it will be required

that each term in the expansion of y, Eq. (2.2), be bounded for all real t, — <=° < t < + co.

Inspection of (2.11) reveals that unbounded terms can arise only when the nonhomo-

geneous part, the forcing function, contains either unbounded, i.e. secular, terms, or

periodic terms with frequency X0 . Since the forcing function is derived from previously

determined Cmn...„ , which are bounded even functions, the only case which can arise

is that in which the forcing function contains cos \0t. Tims, at each step in the recurrence

process amn...„ is determined so that no multiple of cos \0t appears in the differential

equation (2.11).
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3. Classification of solutions. In carrying out the mechanics of the recursion it is

found that two distinct mechanisms exist whereby a term with frequency X0 can appear.

The first is more apparent, being the case wherein some product cos (2X,<)Cm,

upon expansion into a sum of cosines at the sum and difference frequencies gives rise to

a term, cos \0t. The second circumstance in which the frequency X0 may appear in the

right-hand side of the recurrence equation occurs when some frequency X0 — 2ml\l —

2ra2X2 — ••• — 2mN\N is equal to the number — X0 , or equivalently X0 =

m,Xi + wi2X2 • • • + mN\N (rrii integers). These considerations lead to a natural division

of the characteristic solutions into classes according to whether X0 is equal to some linear

combination of the Xf with positive or negative integer coefficients or whether X0 is not

expressible in this manner.

When X0 satisfies some relation:

X0 = mjXj + m2X2 + • • • mN\N (3.1)

the corresponding characteristic solution is termed a solution of integral order; when

X0 does not satisfy (3.1), the characteristic solution is termed a solution of fractional order.

These designations are a natural extension of the terms used to describe the bounded

solutions of the Mathieu equation, where in the canonical form the excitation has fre-

quency 2, and the integral and fractional solutions correspond precisely to X0 an integer

or a fraction. An alternate way of representing the classification of characteristic solu-

tions is to represent X0 as a point in an iV-dimensional frequency space with coordinate

axes corresponding to each of the X,- , j = 1, 2, • • • , N. The points in the space with

integral coordinates are the lattice points; hence, when X0 is a lattice point the charac-

teristic solution is of integral order and when it is not the solution is of fractional order.

4. Spectrum of solutions. By the spectrum of a function we will mean the set of

frequencies appearing in the Fourier expansion of the function. As demonstrated above,

the determination of the «„,„*•••» and hence of the characteristic value depends on the

knowledge of the frequency spectrum of the inhomogeneous terms in the recurrence

equation. The spectrum of the general term for the fractional and integral case is de-

termined now and it will be seen that the arithmetic relationships among the frequencies

are a fundamental consideration in the analysis. In this iV-dimensional frequency space,

frequencies which are linear combinations with integral coefficients of the {X,- j naturally

are represented by the appropriate lattice points. Although fractional frequencies do

not have a unique representation in this scheme, this fact causes no difficulty. A given

fractional frequency, X0 , may be represented by any convenient point, the. sum of

whose coordinates when appropriately weighted is equal to X0 . The uniqueness of the

lattice point representation follows from the linear independence of the {X, }. The locus

of all possible representations of a given fractional frequency X0 is then the hyperplane

through the set of representative points and this hyperplane contains no lattice points

by definition.

Solutions of Fractional Order. From the recurrence equation (2.11) it may

be seen that the spectrum of any component Cmn...„ is derived from the spectrum of the

previously determined 8 • The spectrum of each Cmn...„ is the result of a transforma-

tion of the set of points which represents the spectra of all the Cif... 0 appearing in (2.11)

with nonzero coefficients, that is all C,,-...n for which a are nonzero. The

multiplication of Cm_ln...„ by cos is regarded as a transformation of the spectrum of
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Cm~in which each frequency point is mapped into the pair of points 2Xi units along

the Xj axis on either side of the original point. Using the symbol SP ( ) to denote "spec-

trum of", the spectrum of M(Cmn.„) before the deletion of X0 is represented as:

SP(M(Cm„...„)) = SP(C„...Q | am-i.u_q ^ 0)

W SP(Cm_ln...„ cos 2Xj<)

W SPCC...!..., cos 2X2<) (4.1)

VJ SP(Cm„...B_, cos 2Xjv<)

W SP(amn...M cos XoO-

It may be seen that the presence of X0 in any SP (Cmi..mjr cos 2X,i) will require

that a,,..., be nonzero. By tracing the motion of the point X0 in the {X, } space under the

application of successive transformations the spectrum of the general term and the

precise conditions for the establishment of nonzero amn...„ are determined.

The spectrum of C»n...M may be viewed as the result of m transformations of X0 in

the X, direction and n transformations in the X2 direction and so on. The reappearance

of X0 in the transformed spectrum occurs whenever the number of transformations in all

directions is even, i.e. (m, n, • • • n) = (2p, 21, •• • 21), with the result then that amn...M = 0

unless m, n, • • • n are all even. It may be concluded then that the characteristic value

for solutions of fractional order is an even function of all qf :

ffl = X0 -f" <22O009l "I" &02---0Q2 ~f" ' ' ' Q,00"-2<7jV "I- ®220 • •-oS1! 92 * ' ' • (4.2)

Further consideration of the relationship between the order of the solution and the

symmetry of the characteristic values is set aside until after the establishment of the

general relationships governing the spectrum. In what preceded, one mechanism for the

introduction of X0 in SP (C„„...„) was considered. It is easily shown that the second

mechanism, the introduction of — X0 in the spectrum, is excluded in the fractional case

by showing that the assumption that — X0 does appear at some stage in the recurrence

process for a fractional solution leads to a contradiction. Assume that

SP (Cmn...M) = {—X0 and other frequencies}. (4.3)

This assumption implies that there are integers p < m, I < n, • • • , t < m such that

Xo i 2pX, zt 2ZX2 i • • ■ 2t\N — Xo . (4.4)

However, the relation in (4.4) leads to the representation of X0 as a linear combination

with integral coefficients of the {X,-}:

X0 = TpX! T ZX2 =F • • • =F t\„ (4.5)

which is excluded by the assumption that the solution is of fractional order. In terms of

the geometric representation, it may be stated simply that no combination of transforma-

tions generated by the recurrence process exists which will map a point on the hyper-

plane X0 into any point on the hyperplane — X0 .

Beturning to the expression for the spectrum of M(Cmn...„), Eq. (4.1) consider the

term, SP (Ciik...a | 0). The result on the conditions for nonzero amn...„ is

applied to ascertain which Ciik...a contribute to the spectrum of Cmn...„ . It was found

earlier that the nonzero u.,..., were those for which all indices were even; thus the
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contributing Ciika will be those for which to — i, n — j, • ■ ■ n — U are even numbers

greater than or equal to zero.

m — i = 2p p = 0, 1, 2 • • •

n — j — 2r r = 0, 1, 2 • • •

n - 0 = 2s s = 0, 1, 2 • • • . (4.6)

In essence then, the contributing Cijk--a are those whose indices have the same

parity as m, n, n or (using the notion of congruence) for which the ordered ^V-tuple

(i, i ■ • • 0) is congruent to (to, n ■ • • n) modulo (2, 2, • • • 2).

It will be convenient henceforth to utilize the equivalence relation for ordered iV-tuples

of integers whereby (to, , m2, • • • mN) is equivalent (~) to (n,, n2 • ■ ■ nN) if to,- mod 2 =

n< mod 2, i = 1, 2 • ■ • N; that is, if each element of an iV-tuple has the same parity as

the corresponding element of the second iV-tuple. It is easily shown that this relation

is indeed an equivalence relation and that it generates a homomorphic mapping under

arithmetic mod 2 of all integer iV-tuples onto the set of all possible Ar-tuples with 0 and 1

entries. With this foregoing as background the general result for the spectrum of

may be stated. The result may be proved by induction (see [8] for details).

SP(Cmn...„) = {X0 2/Xj 2r\2 db ■ • • 212X^1

1 S ™ (4.7)

r < n and (Z, r, • • • ft) ~ (to, n, ■ ■ ■ n).

n < 12

As a byproduct it has also been established that

a,nn---» = o unless (to, n, n) ~ (0, 0, • • • 0). (4.8)

From these results the expression for the spectrum of the complete solution becomes:

SP(j/(ox0) lit 0) = |X0 ± 2Z\, ± 2rX2 ± • • • ± 2ftX/V}

'=0'1"" (4.9)

r = 0, 1 • • •

a = o, i ■ • • co.

It may be seen then that the spectrum of y consists of the module generated by the

{2X,-} translated by an amount, X0 .

Solutions of integral order. The cases in which X0 is equal to some linear

combination of the {X,-} with integer coefficients may be classified by the parity equiva-

lence relation. If X0 is a lattice point in the space, {X, } i.e.:

X0 = TOiX; + m2X2 + to3X3 • • • mN\N (4.10)

then it may be placed into one of the classes generated by the relation ~:

X0 e (to, mod 2, m2 mod 2, to3 mod 2 • ■ • mN mod 2). (4.11)
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The representative elements for each class are the TV-tuples with only zero or one entries,

and there are 2N of them. The classes may be ordered in accordance with the integers for

which the iV-tuple gives the binary expansion. For example, if

Ao = (X, + A2) (4.12)

then

Ao e (1, 1, 0, 0, • • • 0) (4.13)

and the iV-tuple in (4.13) is the representative of the (2N~l + 2'v~2)th class. If A0 is

equal to a sum of even multiples of the A,■ then:

X0 e (0, 0, 0, 0, • • • 0). (4.14)

This iV-tuple naturally is the zero class and defines characteristic frequencies of

generalized even order. It will be shown later that the characteristic solutions of general-

ized even order have special properties which are common to the Mathieu functions

of even order.

Spectrum of Solutions. If X0 is given by (4.10), then the considerations of the

recurrence process, Eq. (2.11), are altered but not however in the early stages. Viewing

the recurrence as a transformation of the spectrum commencing with A0 it may be seen

that the point — A0 is not attained until the (m, , m2 , m3 ■ • • mN)i\\ stage, that is at the

determination of . Therefore the results for solutions of fractional order obtain

for Cmn...„ when

m < mx

or n < m2

or

n < mN (4.15)

and 5^ 0 for (m, n, ■ • ■ n) ~ (0, 0, • • • 0). At the (mx , m2 , ■ ■ ■ m^th stage since

the frequency — A0 will appear in the right-hand side of (2.11) it becomes necessary to

determine a nonzero to suppress the secular term. From that point on the

frequency — A0 will be attained whenever the number of transformations in each di-

rection subsequent to that stage is an even number. Thus, when none of the conditions

(4.15) is satisfied:

a,,,..., ^ 0 for (m — m, , n — m2 , ■ ■ ■ n — mN) ~ (0, 0, 0, • ■ • 0). (4.16)

Thus, two sets of nonzero amn...„ must be considered in the integral case, with the second

set entering at a stage determined by the coordinates of the lattice point. This result

leads to the introduction of odd powers of the {q,-} in the expansion for the characteristic

number (except when A0 is of generalized even order). For example, if A0 = 3A! and

N = 2:

a = Aq + £*2o9i + a02<f2 + a.30q\ + aioq\ + a^qlql + aoiq\ + ot32q\q\ + • • • . (4.17)
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In the case of generalized even order the statement (4.16) is equivalent to (4.8) and

the symmetry of the expansion of the characteristic values to all orders in the {g,} is

preserved.

The determination of the spectrum is made from (4.1) using (4.16).

SP (Cm„...„) = {X0 21\1 ± 2rX2 ± 2£2Xat} {X0 ± 2/'X[ ± 2t"'X2 ± 20'Xjy) (4.18)

with
I < m

r < n

0 < /x

{I, r, ■ ■ ■ fi) ~ (m, n, ■ ■ ■ n)

and

V < m - m,

r' < n — rrii (Ir', ■ • • 0') ~ (m — mlt n — m2 ■ ■ ■ n — mN)

0' < n — mN

which result may be proved by induction on each of the indices. The spectrum of the

characteristic solution of integral order becomes, using (4.10) and (4.18):

SP (2/(am>m,...mjv , g,,0) = [±l\i ± rX2 ••• ±0XW}

• (I, r, ■ ■ ■ fi) ~ (m, , rn2 ■ ■ ■ mN\ (4.19)

or using the equivalence notation:

SP , cji , t)) = {X | X ~ X0}. (4.20)

5. Solution classes and characteristic values. The results on the spectrum of the

components of the solution lead to the establishment of some properties of the stability

surfaces in the space (a, g,). In particular, it will be shown that for a given characteristic

frequency of fractional order, the odd and even fundamental solutions of (1.1) given

by (2.2) coexist, whereas in the case of characteristic frequencies of integral order the

stability surfaces divide for nonzero {g, } leading to a situation wherein either the even

or the odd solution will be almost periodic. As a consequence the space (a, g,) will be

divided into regions of stability and instability bounded by the characteristic surfaces

for solutions of integral order. The regions of stability consist of those points where

both fundamental solutions are almost periodic and hence bounded.

Characteristic Values of Fractional Order. The existence of a common charac-

teristic value for both the odd and even solutions may be established by comparing the

terms in the expansions

a = x? + i; i: ••• i:«„...,gT?;- &,
m = 0 n = 0 n = 0

co oo oo

b = Xo + J/ Z/ Z Pmn. . .»</ 1 Cl" ' ' " 9A'
>n-(l n-0 n-CI

(m + n + • • • n) > 1 •
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The equivalent of (2.11) for the odd solution is:

"I- ft m — i n— i • • • ii—qS j j . . .fl

= 2 cos 2\1tSm^ln..., + 2 cos 2

+ •■• 2cos2X*<S„...,_1 . (5.1)

Assume that each for all previously determined terms m' < m

and n' < n and n' < n and that each is of the same form as the corresponding

. By this, it is meant that S and C have the same spectrum with equal co-

efficients of respective terms. Then if the multiplication of some Cm„...r_i...M by cos 2X,-i

gives rise to a term cos \0t, the corresponding multiplication cos 2will

produce a term sin \0t with the same coefficient. To suppress these terms it will follow that

• (5*2)

It then follows that the inhomogeneous parts of (5.1) and (2.11) will be of the same

form with the result that will be of the same form as CTO..., . The above state-

ments permit the induction then that (5.2) and the appearance of terms of the same

form holds for all stages in the recursion. As a consequence for X0 fractional

a(Xo , q,) = 6(X0 , q,) (5.3)

and as noted earlier they are symmetric in all q,- to all orders.

Characteristic Values of Integral Order. When X0 is given by (4.9) the recur-

rence process has the character of the fractional order case until the m1m2 • • • mN th

stage. At this point the frequency — X0 will appear in (2.11) and (5.1) setting the stage

for the establishment of diverging values for the characteristic values a and b. Focusing

on this specific stage in the recurrence process we obtain

Q m imi . . . m ff ~f~ m B . . . m ̂  —i&ma — j • • • m jy—i j ' •

= 2 cos + • • • 2 cos , (5.4)

$m2 • • jy H~ ftriix — ima — / • • *m jy—j • • 'Q

= 2 cos 2\1tSmi-lm,...m,i + • • • 2 cos 2\xtSmtma...mN-1 . (5.5)

Since all the previously determined amn...„ and are equal and the previously

determined and are of the same form, it is found that the coefficients of

cos ( —X01) and sin (—\0t) in (5.4) and (5.5) are equal. The suppression of these terms

then requires that

OLmima'"mN "m N (5.6)

as a consequence of the oddness of sin ( — \0t) and the evenness of cos ( — To pursue

this question further, it is necessary to determine the relationships among subsequent

and which requires in turn that the recurrence process be examined in

more detail. To implement this investigation the equivalence relation, ~, is employed

to classify the integer iV-tuples appearing in (2.11) and (5.1) and use is made of the

arithmetic properties of the equivalence classes (i.e. their respective representatives)

under addition and subtraction. The details and proof by induction of the results appear

in [8] and we merely state here the findings in the form of two theorems.
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These theorems state the relationships among the am„p...„ and and also define

the spectra of the solution components Cmnv...„ and S . As will be evident, the

parity of the integers in the expression for the characteristic frequency, X0 , plays a

dominant role in establishing the form of the results. In addition, we recall that the

results differ depending upon whether or not the recurrence process has reached the

stage where the point — X0 is attainable.

Theorem I. For a given characteristic frequency of integral order X0 = ptXi +

P2X2 + • • • Pn^n with X0 in the equivalence class P, the solution components Cmnv...„, Smnv...„

and the coefficients in the expansion for the characteristic values satisfy the following relation-

ships.

A. For: m < Pi or n < p2 or p < p3 or n < pA :

1. The frequencies in Cmnv...^S are in the same equivalence class as the N-

tuple (m, n, p • • ■ n).

2. The nonzero aiik... oifink— a) are in the class & (all elements even).

B. For m > pi and n > p2 and p > p3 and 11 > mN :

1. If the class of the N-tuple (m, n, p ■ ■ ■ n) is denoted as Q, then the spectrum of

Cmnv...l>(Sm„v...„) is in the classes Q and Q + P.

2. The indices of the nonzero aiik... a((3ijk... n) are in the classes ft and P.

3. Denoting when (m, n, p • • • m) is in a class Qby ag , the following is true:

a. For Q = P

CHq = /3q 7^ 0.

b. For Q — Q,
= 0q 0.

c. For Q = P = ft (X0 generalized even order and even powered term in expansion)

Ot-Q ̂ PQ

but

cta + Pa ^ 0.

With regard to the relationship between the solution components the following is

found.

Theorem II. A. For (m, n, p ■ ■ ■ n) in Q and Q ^ Ct:

1. The coefficients of corresponding terms in Cmnv...„ and Smnv...p whose frequencies are

in Q are equal.

2. The coefficients of corresponding terms in Cmnand Smnv...„ whose frequencies

are in Q — P are equal in magnitude and of opposite sign.

6. Geometry of the characteristic surfaces. From the foregoing, we see that the

symmetry properties and degree of contact of characteristic surfaces of integral order

depends on the specific class of the characteristic frequency, or equivalently upon the

parity of each of the integers in the expression:

X0 = (wijXi + »72X2 + • ■ • wA-X.v). (6.1)

In the fractional case, all the characteristic surfaces are symmetric with respect to each

axis, q{ , and the characteristic values for the odd and even solutions are equal. Thus
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we may say that the surfaces for the odd and even characteristic values collapse into

one surface or that their degree of contact is infinite.

In the integral case, we may group the q, axes according to whether m, in (6.1) is

odd or even. We denote the two sets of axes by 0 and E respectively.

We found earlier that the characteristic surfaces for the odd and even solutions

corresponding to a given X0 were in contact up to the term qT'qZ'q™' • • • q"K- In addition,

we noted that the surfaces were symmetric up to terms of that order. Subsequent to the

m1m2m3 • • ■ mNth term, the expansion for the characteristic values a(q,), b(q{) contains

terms whose exponents are equivalent to the N-tuple (vix , m2 , m3 • ■ • mN). We see

then that the characteristic surfaces will be completely symmetric with respect to any

axis in the set E. Also from the relation a,, = — , we may deduce an interesting re-

lationship between a(q,) and b(q,). We denote the characteristic values as functions of

the two sets of qt explicitly to emphasize the relation:

a = a(qB , q0), b = b{qE , q0). (6.2)

We consider the effect of inverting one axis q, while leaving the others unchanged.

In the case q{ in E obviously

a(qE , q0 , ?«) = a(qE , q0 , -q() (6.3)

while by virtue of the relations between the and /3,, we have when q{ is in 0:

a(qE , q0 , q<) = b(qE , q0 , —qj. (6.4)

Thus while the individual characteristic surfaces may not be symmetric with respect

to an axis <7, , their intersections with any plane (a, qt) will be symmetric. This result

reduces precisely to the result obtained in the case of the Mathieu equation wherein

characteristic curves of even order are symmetric in q and curves of odd order obey

a0(q) = b0(—q). (6.5)

We find then that the zones of stability and instability defined by the set of charac-

teristic surfaces for the odd and even solutions of integral order are symmetric. With

respect to a given pair of surfaces a(g,) and b(q,), we have shown that both surfaces are

individually symmetric with respect to the qi in E, and with respect to the qc in 0, the

two surfaces satisfy (6.4). Thus the n + 1 dimensional region enclosed by the pair of

surfaces is symmetric with respect to all the <7, . We note one additional property of the

complete stability diagram which is a consequence of the linear independence of the

A,- . The characteristic frequency X0 can be an integral multiple of at most one of the X,- ,

say X; ; therefore X0 must be of fractional order relative to at least iV — 1 of the X,- .

Thus in each of the planes (a, g,-) (a Mathieu plane) for which Xf X,- , the odd and

even characteristic surfaces must intersect in a single curve. When X0 is not a lattice

point on any one of the X,- axes, it is fractional with respect to all TV of the X,- , and the

characteristic surfaces a(q,-) and 5(g,) intersect every plane (a, q,) in a single curve.

In Fig. 1, we show a sketch of the characteristic surfaces for the two-frequency case

N = 2 where X0 = Xi = tt and X2 = irV2. The surfaces intersect the (a, qj plane in the

Mathieu curves of order one. The two surfaces intersect the (a, q2) plane in the single

Mathieu curve of fractional order V2/2. In Fig. 2, we show the intersection of these

surfaces with planes for which q2/qi = a constant.

7. Conclusions. On the basis of Favard's cited result the question of the stability of
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(1.1) has been transformed into that of determining characteristic values a(g,) which

will yield almost periodic solutions. The expansion procedure coupled with the classical

method of suppressing secular terms has illuminated the structure of the stability dia-

gram as well as providing the means of computing characteristic values and solutions

which asymptotically satisfy (1.1). We note in particular that the results obtained here

generalize those of the Mathieu theory in many respects, some others of which will

be reported in a subsequent paper. The resulting stability diagram for (1.1) appears as a

densely ramified set of nested hypersurfaces in the space {a, q^j = 1, 2, • • • N which

enclose regions of stability in which bounded odd and even solutions exist simultaneously.

The spectra of the solutions display the general proliferation of frequency content which

can be achieved by parametrically exciting an oscillator with an almost periodic function.
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