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NOTE ON AN ASYMPTOTIC PROPERTY OF SOLUTIONS TO A CLASS OF
FREDHOLM INTEGRAL EQUATIONS*

By ROKURO MUKI (University of California at Los Angeles)

AND

ELI STERNBERG (California Institute of Technology)

In the course of studying an elastostatic load-transfer problem1 we have recently

encountered a need for determining the asymptotic behavior (at large arguments) of

the solution to an inhomogeneous integral equation of Fredholm's second kind on a

semi-infinite interval from known asymptotic properties of its kernel and right-hand

member. Since the results obtained are apt to be of interest in connection with other

applications and are, so far as we are aware, not available in the literature, a separate

note on this issue may serve a useful purpose.

Consider the integral equation

<p(x) — f K(x,s)<p(s) ds = /(:r) (0 < X < «.) (1)
Jo

and let the kernel be of the translation-type, so that

K(x, s) = \vG(x — s) + \2G(x + s) (0 < x < co, 0 < s < x ^ s), (2)
a

in which X, and X2 are real constants. Further, let the real-valued given functions G

and / have the following properties:

(a) G is continuous on (0, °°) and G(—x) = G(x) for every x y* 0;]

(b) G is absolutely integrable on [0, °°); f (3)
(c) G(x) = a/xm + 0(x~m~l) as x —> » (a ^ 0, 1 < m < a>); I
(a) / is continuous on [0, °°);

(b) j(x) = b/x' + o(x~n) as x —> o° (b 0, 0 < n < co). J (4)

Note that G may become unbounded as x —> 0, provided its singularity at the origin is

* Received October 8, 1969. The results communicated here were obtained as part of an investi-

gation conducted under Contract Nonr-220(58) with the Office of Naval Research in Washington, D. C.

1 E. Sternberg and R. Mulci, "Load-absorption by a filament in a fiber-reinforced material," Tech-

nical Report No. 20, Contract Nonr-220(58), California Institute of Technology; to appear in Z .angew.

Math. Physik.
" There is no difficulty in generalizing the subsequent analysis to

K(x, s) = XjGi(s — s) + \iGi(x + s),

where Gi and G2 are distinct functions.
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absolutely integrable. The real constants a, b, m, n, which govern the asymptotic be-

havior of G and / at infinity3, are hereafter to be regarded as known.

Our ultimate objective is the

Theorem. Let G and f satisfy hypotheses (3) and (4). Let <p be a solution of (1), (2),

such that

(a) <p is continuous on [0, oo), 1 (5)

(b) <p{x) = a/x* + o(x~") as x (a ^ 0, 0 < < <»), J

where a and n are real constants. Then

a = b/p, n = n if m > n, (6)

provided

/3 = 1 - 2Xi f G(s) ds ̂  0. (7)

Further,

<p(x) = 0(x~m) as x —> <*> if m < n. (8)

Our proof of this theorem, given later on, depends crucially on a knowledge of the

asymptotic character of the convolutions of G and <p entering (1) under various assump-

tions regarding the behavior, as x —* <», of G and <p themselves. This leads us to turn

first to the subsequent

Lemma. Let G and <p be functions obeying (3) and (5), respectively. Let

/i(x) = [ <fi(s)G(x — s) ds, I2(x) = [ <p(s)G(x + s) ds (0 < x < <»). (9)
J 0 ^0

Then, as x —> »,

2 a•Za r
I\(x) = „ / G(s) ds + o(x ") if n < m,

X J o

I,(x) = \ f [2aG(s) + a^(s)] ds + o(xn) if n = m,
X J o

(10)

h(x) = [ <p(s) ds + o(x '") if n > m,
x J0

h{x) = o(x~") if /X < m, I2(x) = ~ f <p(s) ds + o(x~m) if n > m. (11)
X J o

Proof. With a view toward establishing (10), choose numbers e and x0 subject to

l/m < e < 1, 1 < log x0 < x'0 < Xq/2 (12)

and, for every x > x0 , decompose the range of integration in the first of (9) into the six

subintervals [0, log z], [log x, x'], [.ts, x — z'J, [x — x', x], [x, x + x'}, and [x + x', »).

This decomposition, upon recourse to (3), (5) and after elementary changes in the variable

1 Condition (3c) may be relaxed by replacing the term 0{x~m l) with 0(x m !), 5 > 0.
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of integration, justifies the identity

/» log X nX * 6

Ii(x) = G(x) / <p(s) ds + 2<p(x) / G(s) ds + X (a;0 < x < °o), (13)
Jo Jq t-i

where

a

0

/Mogx /»x

i(x) = / <p(s)[G'(a: — s) — G(x)] ds, Q2(x) = / <p(s)G(x — s) ds,
0 "log i

(x) = [ (p(s)G(x — s) ds, 04(x) = [ [<p(x — s) — <p(x)](j(s) ds, f (14)
J x ' ^0

^(x) = J [<p{x + s) — ̂ (x)]G(s) ds, fi6(x) = f^<p(x + s)G(s) ds.

In view of (5), <p is bounded on [0, <*>), i.e., there is an M >0 such that

|<p(x)| < M (0 < x < co). (15)

Consequently (3b) and (3c), together with (5), at once yield the estimates4

*log x/•log X

G(x) / <p(s) as = o(a;_1) (0 < n < «>),
Jo

flogx a r

G(x) / <p(s) ds = — / <p(s) ds + o(x—) (1 < M < 00),
J o X J o

2p(x) [ G(s) ds = —[ G{s) ds f o(af") (0 < M < oo).
•'o a:" ■'.)

(16)

Eqs. (13) and (16) clearly imply (10), provided

Qt(x) = o(x~m) + o{x~") (t = 1, 2, ■ ■ ■ 6), (1 <m< °°,0</i< oo), (17)

which we now proceed to demonstrate.

To this end we infer from (3), (12), (14), (15) that

/»log x

|fti(x)| <M |G(x — s) — (7(2)| ds < M log x max \G(x — s) — G(x)|
J 0 0 < a < 1 og x

(x0 <x < oo). (18)

On the other hand, because of (3c),

|G(x - s) - C(x)| = a/(x - s)m - a/xm

+ (0 < S < log X, X0 < X < oo) (19)

and (18), (19) imply

fin (a;) = o(x'm) (0 < n < oo). (20)

Next, according to (3c) and (5b), there is an x# > x0 and a positive constant A, such

that

|<jj(s)(?(a; — s)| < A/(s"(x — s)m) (log x < s < x — log x, x^ < x < oo). (21)

All order-of-magnitude statements are henceforth understood to refer to the limit as x
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Thus, in view of the second of (14), one has

| n2(a:) | < -——— [ (ds/s") (x* < x < «>). (22)
(x — X ) Jl»e«

Carrying out the integration in (22) and bearing in mind that 0 < « < 1, m > 1, one

confirms readily that

fi2(x) = o(x~") (0 < M < 1), 0»(x) = o(x~m) (1 < n < co). (23)

Proceeding to an estimate of , we note from (14) and (21) that

|a*wl < A C 7^-< * (x-< 1 < <24)

Evaluating the integral in (24) and observing from (12) that an > 1, one arrives at

Q3(x) = o(x~") (0 < m < m + 1),

B,(x) = o(x~m) (m + 1 < n < »). (25)

As far as and 05 are concerned, (14) and (3), (5) yield the bounds

104(x)| < max \<p(x — s) — <p(x)\ / |G(s)| ds (x0 < x < «>),
0<«<i" Jo

105(x) | < max |<p(x + s) — <p(x) | / |C?(s)| ds (xQ < x < °°),
0£«<i* J0

(26)

from which, by virtue of (5b), follows

Sit(x) = o(x'"), n«(s) = o(x~") (0 < n < ®). (27)

Finally,

fi6(x) = o(x~") (0 < n < °°)> (28)

as may be inferred directly from the last of (14) in conjunction with (3) and (5). Com-

bining (20), (23), (25), (27), and (28), one sees that (17) holds true and thus the proof

of (10) is complete.

It remains to verify (11). For this purpose, we first draw from (9), (12) the identity

/•log x /»Iog x

I2(x) = G(x) / <p(s) ds + / <p(s)[6(a: + s) — G(a;)] ds
Jo Jo (29)

+ / tp(s)G(x + s) ds (x0 < X < ro).
J log X

The asymptotic behavior of the leading term in the right-hand member of (29) is known

already from (16). Further, a procedure similar to that used in estimating6 yields

/•log x

/ v(s)[G(x + s) — G(x)] ds = o(x~m) (0 < m < 00)• (30)
J 0

■See (18), (19).
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Next, (3) and (5) assure the existence of positive numbers and A, such that

f <p(8)G(x + s)ds < A (x„<x< »). (31)
I ̂  log x J log* s (x + S)

An estimate of the right-hand side of (31) for m > 1 gives

[ <p(s)G(x + s)ds = /o(-X ^ (° - 11 ~ 1)' (32)

\(x~m) (1 < n < ®).

Now (29), together with (16), (30), and (32), implies (11). This completes the proof

of the lemma in its entirety.

We are now in a position to turn to a

Proof oj the theorem. Consider first the case in which m > n. Suppose in this instance

0 < n < n. Then (1) and (4), (5) imply

lim Jjr" J K(x, s)<p(s) dsj = a, (33)

while from (2) and the lemma,

lim x" f K(x, s)ip(s) ds = 2\j« f G(s) ds. (34)
£—»0O L Jo J Jo

But (33) contradicts (34) since, by hypothesis, (7) holds and a ^ 0. Hence n > n.

Suppose next that ti > n. Then (1) and (4), (5) lead to

lim x" f K(x, s)<p(s) ds = —b, (35)
x—»00 L J 0 J

whereas (2) and the lemma furnish

lim |jEn J K(x, s)<p(s) <isj = 0, (36)

which is incompatible with (35) because b t6- 0. It follows that

n = n if m > n. (37)

To confirm the first of (6) as well, multiply both sides of (1) by x and proceed to the

limit as x —> , invoking (37), (3), (4), (5), and the lemma. This yields

1 — 2\j J G(s) dsj = b, (38)

and (38), in view of (7), assures that

a = b/fi if m > n. (39)

Finally, consider the case in which m < n. Suppose n < m. Arguing as before, one

finds that the mutually contradictory equations (33), (34) hold true once again. Hence

n > m and this conclusion, in conjunction with hypothesis (5b), validates (8). The proof

of the theorem is now complete.
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