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1. Introduction. Consider isothermal deformations of a linear viscoelastic material
in simple tension or compression. Let () and e(f) denote, respectively, the stress and
infinitesimal strain components at time ¢. The mechanical behavior of the material is
taken to be governed by the constitutive equation [1]

o(l) = fo " 6(t — i) dr, )

where G(t) is the relaxation modulus defined for nonnegative times. The material is taken
to be in the unstressed and unstrained virgin state for ¢t < 0.
The work done on the material during the time interval (0, T') is given by

T
W = f (el dt, ®
(1]
which can be written as the second order functional
T t
W = f [ 66 = Deayecr dr au. 3)
] 0

Sufficient conditions on G(t), which guarantee that W > 0, have been given by Breuer
and Onat in [2]. Recently, Martin and Ponter [3] have inquired into the possibility of
determining a positive lower bound for W. They found that if

Gl) = 2ce™, ¢ >0, a >0, @

i=1
then W is bounded from below by
W > (1/T)G(2/T)é(T), 6)

where G(s) is the Laplace transform of G(t). In view of (4), we may write (5) in the form

c C; 2
W2 2aiare®, ©)

which is more suitable for our purposes. As pointed out in [3], (6) provides a positive
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lower bound on the work required to produce a given strain in a viscoelastic material
at time 7 in terms of T' and ¢(T') and independent of the history of strain.

We shall rederive the result (6) by a very elementary method, using no stronger tool
than the Schwarz inequality. Our method of proof may then be generalized so as to obtain
an inequality of the type (6) for a much wider class of relaxation moduli. It does not ap-
pear that such generalization can be achieved along the lines of the method used in [3].

2. The result of Martin and Ponter. In order to derive (6), it is clearly sufficient
to consider the relaxation modulus

Gy =e*, a>0, (")
and show that
T t 1 )
Vo —at=n 0 > .
i fo f ) dr dt 2 5 ) @®)
Since ¢; > 0, (6) will follow.
Defining
o) = f ¢V d, ©)
(1]

and differentiating (9) with respeet to ¢, we obtain
a(t) = ét) — ac(t). (10)
Integrating (10) and using the fact that ¢(0) = ¢(0) = 0, we reach

t
) = o() + a/ o(r) dr. (11)
0
From (8), (9) and (10) follows now
y ]. 2 T 2
W= L) a [ S (12)
Next we define
.
X, = o), X, = f o) dt, (13)
0
and, using the Schwarz inequality, we find
.
Xi< T f 2() di. (14)
0
Defining
H = (1/2)X7 + (¢/T)X3, (15)
we find from (12)-(15) that
W > H. (16)

Next we find, on the basis of (11) and (13), that
E(T) = (X, + aX,)® (17)
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We consider, therefore, the quadratic form
F =H — \(T), (18)

where M\ is a real parameter.
The well known condition that F > 0 for all X, and X, is

A= /272 —Aa =§"7—,[1—x(2+a7')]20. (19)
- /T — N\’
That is,
A< 1/2 + al), (20)
will guarantee that F > 0. Indeed, when equality holds in (20) we find

Thus and by (16) and (18) we see that (8) is fulfilled.
3. Generalization of the result. We consider next a generalization of the method
employed in Sec. 2. Consider

o) = fo "Gt — D) dr, 22)

where G(t) is three times continuously differentiable on every finite interval [0, T, and
where, for simplicity, G(0) = 1. We are also assuming throughout that ¢(0) = ¢(0) = 0.
Equation (22) has the inverse

() = fo T = De(n) dr, 23)

where J(¢) is the creep compliance, related to G(¢) by the well-known equation

f Gt — DI dr = 1. 24)

Differentiating (24) repeatedly and evaluating the vesults at ¢ = 0, we obtain
JO) = GO) =1, J'(0) = —G(0). (25)

Moreover, the assumptions on G(f) guarantee the existence of J''(f) on every finite in-
terval [0, T.
We now make the following definition.

DEerFINITION. The function G(¢) will be called an admissible relaxation modulus if

(1) G(¢) is three times continuously differentiable on every finite interval [0, T].
2) GO) =1,G'(0) < 0.
3) J”(t) is of positive type, where J (¢) is defined by (24).

We recall that P(¢) is of positive type if for every continuous function y(f) which is not
identically zero, we have

U[T f Pt — Hy@y() drdt >0, T > 0. (26)
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We are now in a position to state the following theorem.

THEOREM. Let G(t) be an admissible relaxzation modulus, and let ¢(0) = ¢(0) = O.
If W 1s defined as in (3), we have

w >

1 2
25T 5T (1), 27

where
8% = (1/J'O)[J'(0) + J'(O)T]* > 0. (28)

Before proving the theorem, we note that if G(f) = ¢ * witha > 0, then J(f) = 1 +
at, 8* = a, and (27) reduces to (8).
Proof of the Theorem: Differentiating (23) and using (25), we obtain

() = o) + fo I = D) dr. (29)
Integrating the last term by parts, we reach
() = o) + J'O)o(l) + fo I = 7o) dr. (30)
Integrating (30) we have
«(T) = o(T) + J'(0) f., "ot di + f ’ fo I = 7yo(e) dr dt. 31)

Therefore, and since J'(0) > 0 by (25) and the definition of an admissible relaxation
modulus,

fo ’ f ST = el drdl- (32)

Since J''(t) is of positive type, we know [4] that J'/(0) > |J"'(t)| for all t > 0. Conse-
quently,

‘/;T ‘/: J'"(t — 1)o(r) dr dt ’S J(0) ];T j;‘ lo(7)| dr dt

<D < lo)] + 7'0) [ le(0] at +

(33)
< J"0) f f lo(r)| dr dt = J"'O)T fo lo(0)| dt.

Defining

Vo=@l V= [ bl e
we find from (32)-(34) that
E(T) < [Yy + (J'(0) + J"(O)D)Y.]. (35)
On the other hand, (30) and (2) yield

- %GZ(T) 4 J'(0) f () di + [0 ' fo CI = De(el) dr di,  (36)
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and, using again the Schwarz inequality and the fact that J''(¢) is of positive type, we
reach
W =M, 37)
where
M = (1/2)Y7 + (J'(0)/T)Y3, (38)

Y, and Y, being defined by (34).
Using the same procedure as before, we find that

1
w < ST BT 39
will guarantee that
M — ué(T) > 0. (40)
Indeed, when equality holds in (39), we find
2T 1 2 ’ 1/2 2
M= w2 B (‘ﬁﬁ)(y -7 (Ja(zo)) v) =0 4D

Equation (27) now follows from (37), (39) and (41), completing the proof.

It is clear that the restriction G(0) = 1 in the definition of an admissible relaxation
modulus leads to no loss in generality. If G(0) # 1, as long as it is posttive, we merely
multiply the right-hand side of (27) by G(0). Moreover, we can obtain similar results for
general deformations of linear isotropic and anisotropic solids provided the relaxation
moduli are admissible in the sense of our definition.

4. Examples. In this section we give three examples of the foregoing considerations.
Let the constants a, , a; , ¢ , ¢, satisfy the following inequalities:

C > (23 > O, c,a, > CaoQ2 > 0, C1Q2 > C2Q, > 0, a; # a, . (42)

In particular, all four constants are positive, and since ¢, > ¢, , (42) does not restrict the
relative magnitudes of a, and a. .

Next, define G(f) by

G =

(ce™™ — ce™ ). (43)

C; — Co
We shall take (43) as the basis for our illustrations. Before we do this, however, we ob-
serve that if we extend the definition of G(¢) by the requirement G(—t) = G(f) for all
t, we obtain for the Fourier transform of G(¢) the expression

Gt = 1 (2)1/2 [(cla, — ca)u’ + a,a,(cas — cza,)] >0, (44)

¢ — Cy \T. (af + uz)(az + uz)

so that according to the results obtained in [2] the corresponding W defined by (3) is
certainly positive. We are, however, in the position to find a positive lower bound for
W. 1t is readily verified that corresponding to (43) we obtain from (24)

J(t) = A1 + Agt + Aae—a‘, (4’5)




144 SHILOMO BREUER [Vol. XXVII, No. 2

where
Lamson g _ete)-es
1 2 (46)
_ o, _ ot (@ — a)
A2 - a ’ AS - az (cl _ 02)2 > 0

One can readily verify that G(¢) as defined by (43) subject to (42) is admissible. Indeed,
G0) = 1,G'(0) = (c2as — ¢101)/(c1 — ¢2) < 0 by (42), while J'(t) = a’A4;e”** is of posi-
tive type by the results of Sec. 2 and since A; > 0, @« > 0. Moreover, the results of Sec. 2
do not cover this case, because of the minus sign in front of the second exponential in (43)

We now distinguish three cases.
Case 1. a;, < a, and (a,/a2)*(c,/cz) > 1.
It is easily seen in this case that (42) imply
G@) > 0, G'@t) <0, G"(t) >0, forall ¢ > 0. 47

This is a rather conventional relaxation modulus, decreasing steadily to zero as ¢ increases
and being convex from below for all ¢ > 0. For example, we may take

G(t) = 3(4e™™ — 7). (48)
Correspondingly, we find
J(@t) = (1/25)(24 + 45t + ¢ "), (49)
with
J'(0) = 5/3, J"(0) = 4/9, (50)
and finally,
W > 1 (7). 1)

T2t G+ T
Case II. a, < @, and (a,/a)’(c,/c:) < 1.
Again we find that

G > 0, G'(t) <0, forall ¢ >0, (52)

but
2
G/() <0 for 0< 1< ———log [(Z_) @)] |
L (53)
2
G"({) >0  for P> — 1 log [(ﬂ) (C_z):l
a"’ - al al Cl
In illustration, consider
G(t) = 34 — &™), 54)

so that

JO) = (1/9)8 + 15 + &™), (55)
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J'(0) =1, J"(0) = 4. (56)

Finally,

1 y
> & 5
]V = 2 + (1 + 477)277 € (T)‘ ()7)
This is a somewhat unexpected result. The curve (54) decreases steadily to zero as ¢
increases, but it is convexr from above up to the point ¢ = (2/3) log (5/4). This point is a

point of inflection, beyond which the curve remains convex from below.

Case III.  a, > a,.

This case is even more surprising than the previous one. Upon using (42), we find that
the curve decreases steadily to a negative minimum value, being convex from below. It
never rises above the t-axis after it has crossed it once on the way down to its minimum.
Instead, it rises steadily from the minimum value through a point of inflection, beyond
which it remains convex from above and approaches zero through negative values as ¢
increases. For example, consider

G(t) = k + G.(1), (58)
where
G,(t) = t(4e™ — &™), k> 1/48. (59)

The addition of k keeps the curve above the t-axis. Its minimum value is (k — 1/48) at
¢t = log 8. The point of inflection is at ¢ = log 16. Corresponding to G,(t) there is a W,
which is, of course, itself bounded away from zero. Indeed, we find that G,(f) gives rise to
J.1(t), where

Ji(t) = 3t + eV (60)
Ji0) =17/3,  JU0) = 4/9, (61)
so that
1 2
W, > T). 62
211G + a7 ) @)
Finally,

I f f ke(ret) dr dt + W, > [za s oo LG

The foregoing three examples serve to illustrate the results of Sec. 3. Although the
relaxation moduli chosen in the illustrations are somewhat unconventional owing to the
minus sign in front of the second term, they are still very useful in two important respects.
First, they serve to provide positive lower bounds on a wider class of functionals than
those covered in Sec. 2, without interpreting them necessarily in terms of viscoelasticity
theory. It is also clear that we can take for G(f) a linear combination of any number of
decreasing exponentials, with both positive and negative coefficients, and the results of
Sec. 3 will hold so long as G(¢) is a sum of admissible relaxation moduli. Secondly, in
determining a relaxation modulus experimentally, for a given material, it may well
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happen that a curve of the type (43) will better fit the data points than one of the type
(4). Should the curve so fitted turn out to be admissible, the results obtained here may
be applied.

Finally, it should be observed that, owing to the inequalities used to derive (27), the
lower bound defined therein need not necessarily be the greatest lower bound.
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