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TWO-DIMENSIONAL PULSE PROPAGATION IN A TWO-PARAMETER
ANISOTROPIC ELASTIC SOLID*

ROBERT G. PAYTON

Adelphi University

Summary. A perturbing body force, in the form of an impulsive point source, is
suddenly introduced into an anisotropic elastic body. The anisotropic solid is character-
ized by two parameters. After placing suitable restrictions on these parameters, integral
representations of the transient displacement components are found. Explicit expressions
for the displacements are obtained along two perpendicular lines which are centered at
the point of application of the point impulse and parallel to the coordinate axes. Wave
front singularities are identified and graphical results for the wave shapes are presented.

1. Introduction. In this paper a study is made of the linearized, two-dimensional,
impulsive motion of an anisotropic elastic solid. The solid is characterized by (essentially)
two free parameters (stretch parameters) and could, for example, model a finitely strained
body excited by a small perturbing body force.

In order to insure explicit results herein, certain restrictions are placed on the stretch
parameters (see Sec. 3, below). Even so, the displacements have only been found along
two perpendicular lines (centered on the point impulse body force) and parallel to the
x and y axes. In Sec. 5 the wave front singularities are briefly discussed and numerical
results are presented for the displacement components, in Figs. 3 and 4, when the stretch
parameters take on specific values.

As typical of other recent work on anisotropic elastic wave propagation, the papers
of Scott and Miklowitz [1] and Cameron and Eason [2] may be mentioned.

2. The equations of motion. The problem to be investigated herein concerns the
plane motion of an anisotropic elastic solid whose displacements u(x, y, t) and v(x, y, t)
are governed by the equations

Lu[u\ + Ll2[v] = -p0a15(a: - x0)8(y - y0)S(t), ^

L21[u] + L22[v] = -Poa2d(x - x0)8(y - y0)8(t).

The differential operators L,, are given by

and

^2 (3 d
Ln ~ 2X1a11^2 2\2(Zi2^2 1

c)2 ^2
Z/22 = 2 "4~ 2A2&22T—2 P0~T42dx ay dt

L12 = L21 =
dxdy

(2.2)
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The constants a,, are related to the positive numbers Xx and X2 (stretch parameters) by

an/n = 9X^/4 + X22/4 - 1,

a22/n = X?/4 + 9X^/4 - 1 (2.3)

and

a21/iU = a12/V = 3(Xi -f X2)/4 — 1.

Here u is the (horizontal) displacement component parallel to the rc-axis and v is the
(vertical) displacement component parallel to the y-axis. The mass density of the body
is denoted by p0 and is a physical constant having the dimensions of force per unit area.
The forcing terms on the right-hand side of Eqs. (2.1) correspond to a body force in the
form of a point impulse of strength (ax , a2) in the (x, y) direction.

Since the constants p. and p0 can be absorbed into the time variable, there are basically
two free parameters in the problem, Xj and X2 . In this connection it is worth noting that
in the special case Xx = X2 = 1, Eqs. (2.1) reduce to the two-dimensional Navier equa-
tions for an isotropic elastic solid, provided both Lam6 parameters are set equal to n-

3. Integral transform set up for the plane strain problem. By means of the linear
transformation

x' = x — x0 and y' = y — y0 , (3.1)

the origin in the (x', y') plane is made to coincide with the location of the source. The
equations of motion (2.1) then become

L'u[u'] + L'12[v'] = -p(Ja15(x/)5(?/')5(0,

and (3.2)

LUW] + L£2[v'] = - p0a28(x')5(y')8(t),

where the primed operators are the same as those in (2.2) after replacing x and y by x' and
y'. Also

u(x, y, t) = u(x' + x0 , y' + y0 , t) = u'(x', y', t),
and ^ '

v{x, y, t) = v(x' + x0 , y' + y0 , t) = v'(x', y', t).

Introduce now the Laplace (in t) and double Fourier (in x' and y') transforms by

m*'(£i , I2 ,s)=f [ f u'(x', y', t) exp (-st - i^x' - i&y') dx'dy'dt,
«/q V — CO J —CD

and inverse transforms by

u'(x', y', I) = ^3^ J w*'& , & , s) exp (st + i^x' + i&j') d^dyis. ^ ^

A bar will be used to denote the Laplace transform (with parameter s) and a tilde and
star to denote the Fourier transforms (with parameters ^ and £2). Assuming now that the
body occupies the entire (x't y') plane and that initially (i.e. prior to the application of the
point source) the body is at rest, the transformed equations (3.2) become

[2Xian£i + 2X2a12£2 + pas2]u*' + [2/xX?X2£n£2]D*' = pua1 , (3.5)
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and

+ [2Xia21£i + 2X^22^2 + pus2]S*' = p0ci2 ■

The system determinant of the two algebraic equations (3.5) is given by

A = 4Xjana2i£i + £i[4XiX2aua22|;2 + 2Xianpus2 + 4X2X2ai2£2 + 2X?a12p0s2 — 4jLi2XtX2£2]

+ [2X|ai2?2pus2 + 2X2a22PoS2£2 + p2s4 + 4X2a12a22£2] • (3.6)

The following assumption will now be made
(i) The roots of A = 0, regarded as a function of £2 , are to be negative and distinct.
Condition (i) will be shown below to place certain restrictions on the stretch param-

eters Xi and X2 . So far nothing has been said about the type of the system of partial dif-
ferential equations (3.2). However, the number of initial conditions used on (3.2) in
going to (3.5) has tacitly assumed that the system (3.2) is totally hyperbolic. A sufficient
condition for the system (3.2) to be totally hyperbolic is, according to Courant and
Hilbert [3], that the s roots of A = 0 are pure imaginary and distinct. Condition (i) above
is somewhat more restrictive than that needed for hyperbolicity and is used here for
mathematical convenience. Condition (i) will force certain branch point singularities
[see Sec. 4 below] to lie on the imaginary axis, as they do in the case of isotropic elasticity
theory for the corresponding problem.

The equation

A = 0 (3.7)

is a quadratic equation in |i . After dividing through by ana2I , the condition that both
of these roots be negative certainly requires that the coefficients of §2 and £" be positive.
Furthermore, if this is to hold uniformly in £2, then (l/a12 + l/an) > 0 (from the coef-
ficient of £2 as£2 —>0), a22/an > 0 (from the coefficient of as£2 —* co), and l/(ana12) > 0
(from the coefficient of as —> 0). Here s, the Laplace transform parameter, has been
treated as a positive constant. It is easily seen (by contradiction) that the above three
inequalities are satisfied if

flu > 0, (X12 — &21 > 0 and a22 > 0. (3.8)

It is now advantageous to change from the £1 , §2 transform parameters to fby
means of the substitutions

Xl?1 ~ and X^2 ~ ' (3'9)

Then

A   d\I yt I v2t-21^11^22 1 1 X1X2M j | fl-22 v4
2 4 — Si i~ S 1S 2 V 2 "I -L 2 I I $2

PqS Cl\2 \ &12 &12 ' &12

+4^ + 1 +4- + i) + i- (3-10)
\Cfi2 / \^12

If
a 11/0*12 = a, a22/a12 = /?, (3.11)

then from (2.3)

M2X?X22/a?2 = (3a + 0)(a + 30)/16 - (a + p) + 1,
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so that

where

A/Py = art + Art + B, (3.12)

A = yil + (a + 1), B = (/3f2 + l)(f2 + 1),

and

7 = — 3(a — /3)2/16 + (a + /3). (3.13)

In terms of the new parameters a and /3

(3.14)

2 _ 3a + ft — 4 2 _ « + 3ft — 4
1 3a + 3/3 - 10 ' 2 3a + 3/3 - 10

an 4a  Oij 4  , £22 4/3 
M ~ 3a + 3/3 - 10 ' n ~ 3a + 3/3 — 10 an M ~~ 3a + 3/3 - 10

Because of conditions (3.8) and the fact that X2 and \'i are necessarily positive, attention
is restricted to that portion of the (a, /3) plane for which

a > 0, j8 > 0, 3(a + /3) - 10 > 0, 3a + <3 - 4 > 0, and a + 3ft - 4 > 0. (3.15)
The five conditions of Eq. (3.15), while necessary, are not sufficient to insure that the

roots of (3.7) are negative and distinct.
From Eq. (3.12) it is seen that in order for the £, roots of (3.7) to be negative and dis-

tinct

A > 0, B > 0 and {A2 - 4aB) > 0, (3.16)

these conditions holding uniformly for 0 < fij < Since /3 > 0, Eq. (3.13) shows that
B > 0 is automatically satisfied. Thus if there are any further restrictions on the allowable
a, /3 values they must come from the conditions A > 0 and (A2 — 4aB) > 0. Also by Eq.
(3.13) certainly A > 0 if

7 > 0. (3.17)

Now

A'2 - 4aB = rt(72 - 4a/3) + 2tf[(a + 1)7 - 2a(/3 + 1)] + (a - l)2, (3.18)

so that (A2 — 4:aB) will be positive if

Case (1) (72 - 4a/3) > 0 and (a + 1)7 - 2a(/3 + 1) > 0, (a ^ 1) (3.19)

or if

Case (2) (7s — 4a/3) >0, (a + 1)7 — 2a(/3 + 1) < 0, (a 5^ 1) and

(a - 1)2(72 - 4a/3) - [(a + 1)7 - 2a(/3 + l)]2 > 0. (3.20)

But the third inequality in Eq. (3.20) can be simplified to

(a - /3)2(a + 3/3 - 4) (3a + /3 - 4) < 0,

which, in view of Eqs. (3.15), cannot be satisfied. Therefore, case (2) is ruled out. Finally,
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the inequalities of case (1) will be satisfied when

7 > 2(a/3)1/2 > 2a(0 + 1)/(« + 1), (3.21)

these conditions being compatible with a portion of the (a, /3) plane meeting conditions
(3.15).

In summary the allowable (a, /3) region R (see Fig. 1) is the triangular region defined by

a = 0, 4 < (3 < 16/3

3a + 0 = 4, 3 < jS < 4
and

= (<*l/2 + 4/31/2)2, 3 < (3 < 16/3.

T

3 '

o
Ot

Fig. 1. Allowable a, /3 region

Then if (a, /3) lies in the interior of R (not on the boundary) the inequalities (3.15) and
(3.21) are satisfied, with the consequence that the f2 roots of (3.7) are distinct and nega-
tive. As pointed out above, restricting (a, /J) to R is stronger than the hyperbolicity re-
quirement. In fact the region R does not include the simple case a = 0 wherein A is
easily factored as in the corresponding case for isotropic elasticity.

4. Inversion of the displacement transforms. If the algebraic equations (3.5) are
solved for the transformed displacements and the Fourier inversion formulae of (3.4)
are invoked (taking account of Eqs. (3.9)) then

lV(r, s = pq i, r r ur^ + ^ + D-aj^r,)!
2/zaX2A2 (27r)2 L (fi + <f>t)(ti + $2) J

•exp (ims(tix'/\ + f2//X2)) d{2 , (4.1)
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and

*(x'> y,'s) = 2^^lchfL L a^'jaS* + Ta + 1) — a-iK^itz)
(fi + <t>i)(?i + <t>2) _i ^ 2)

• exp (z'msCfjx'/X, + ^y'/K)) d£, df2

where

$(^2) =

4 - (42 - 4<xB)'/2
2a

1/2

, 02(r2) =
.4 + (A2 - 4aB)U2

2a
(4.3

K = (a + 3;8 - 4) (3a + (3 — 4)/16 and m = (p„/2a12)1/2.

Note that, because of the restrictions placed on a and 0, cf>i(f2) and <£2(r2) are positive
throughout the entire f2 integration range.

Since the integrands of Eqs. (4.1) and (4.2), regarded as a function of fi , have as
their only singularities simple poles at ±i<t> 1 and dbi<f>2 , the fi integration is easily per-
formed. Accounting for the odd or even properties of the subsequent f2 integrands gives

u'ix', y', s) = [/,(*', y', s) - L(x', y', s)]
(4.4)

and

v'ixy', s) = [7.(1', y', s) - /„(*', y', s)]
(4.5)

where

7i = Re- f 1 exp [sm(- |x'| + i \y'\ f2/X2)] df2 , (4.6)
TT Jo 0l(02 01/

1 f exp tsm(_ lx'l "fcAi + i \v'\ ^2/^2)] df.2 , (4.7)
^0 02 (.02 01/

- [ texP tsm(- k'l <^iAi + * Ij/'I r2/x2)] , (4.8)
7T Jo 02 01

- [ 72 ^"2 ,2 exp [sm(- |x'| 02/Xj + z |?/| f2/X2)] c/£2 , (4.9)
71" ̂ 0 02 01

J5 = Re- f ^ 2+J~2 2~!~ 1 exp [sm(— |.t'| c^/X, + i |y'| f2/X2)] , (4.10)
7T J 0 01 (02 01)

and

/6 = Re - [ ~~hexp [sm(- |z'| ^/Xj + i \y'\ f2/X2)] df2 • (4.11)
7T J0 02(02 — 01/

The method of Cagniard [4] will now be used to determine explicit expressions for
the u and v displacements along the lines x = x0 (x' = 0) and y = y0 (y' = 0). It might

/ 2 = Re
7T

I3 = Im
IT

L = Im
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appear, since no boundaries are involved in the problem treated here, that it should be
just as easy to determine the displacements along any line through the origin in the
(x', y') plane. However, the use of the Cagniard method for general (x', y') values requires
a knowledge of the path in the complex f2-plane along which the exponent in Eqs. (4.1)
and (4.2) is real. Due to the complicated nature of <£i(f2) and</>2(f2), this path is not easily
found. A technique whereby the proper integration path is found numerically has been
used by Kraut [5] on a problem involving anisotropic elastic wave motion. In order to
keep the (a, /3) parameters as free as possible (at least along the line y = y0), such a
scheme as Kraut's will not be considered in this paper. Lighthill [6] has also suggested a
method for the approximate inversion of integrals such as (4.1) and (4.2). In Lighthill's
method the (xy') axes are rotated so that one of the axes coincides with the line along
which the displacement solutions are desired. The (fi , f2) axes must also be suitably
rotated. It is this latter rotation which spoils the analysis insofar as ease of evaluation
goes, since the denominator A in the integrand of Eqs. (4.1) and (4.2) will no longer be a
simple quadratic in (the new) , but rather a full fourth degree polynominal. Other
ways for simplifying such multiple integrals have been presented by John [7] and Gelfand
and Shilov [8].

Proceeding now with the displacement evaluations along y' = 0, Eq. (4.4) gives

u'(x', 0, s) = [Ux', 0, s) - I2(x', 0, s)]. (4.12)

Now from Eq. (4.6)

U(x', o, s) = - f gr,(f2) exp (-sm \x'\ 0,/X,) df2 , (4.13)
7T J o

where

f7i (r 2) = — (0? + Ptl + l)/0i(0a — </>?)•
The Laplace inversion of (4.13) is now immediate

li(x', 0, t) = - f 0i(f2)S[< - m \x'\ 0,/Xi] df2 , (4.14)
TT J0

where S is the Dirac delta function. A similar expression can be obtained for I2(x', 0, t).
Calling

t = Xit/m \x'\, (4.15)

allows u'(x', 0, t) = u(x' + Xq , 0, t) = u(x, y0 , t) to be written as

tu(x y a = (3a + 3/3 - 10) V 
«iPo ' Jo ' ' ((3a + p - 4)(« + 30 - 4))'

where

fei(r) — h2(r)
a , (4.16)

h,(r) = [ gifa)8[t — <#>i(r2)] dti and h2(r) = f g2(^2)8[T — #2(f2)] df2 , (4.17)
Jo ^0

with ff2(f2) = (—4>l + /Sf2 + l)/<£2(<£2 — 4>?)■ g°inS fr°m (4-12) to (4.16), the relations
(3.14) have been used to express the product XjX2 in terms of (a, (3). From the sifting
property of the delta functions, hl (r) will have the form
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hi(j) = (4-18)

where ki(t) is the positive root of r — </>i(f2) = 0. If there is more than one such root,
then hi(r) must be summed over all the roots. Because of the restrictions placed on the
stretch parameters (see Sec. 3), the function ^(f2) = r — <f>i(f2) is a monotonically de-
creasing function of f2 in the range 0 < f2 < 03. Thus in order for ^(f2) = 0 to have a
root, r — (f>x(0) must be nonnegative. In this case there will be just one root ki(t) satisfying
i//(k,) = 0. Hence, in order to bring out the wave propagation features, the expression
for hM in Eq. (4.18) must be multiplied by the Iieaviside unit step function
H[t — <t>i(0)], thus:

hM = ^//[r - *,(())]. (4.19)

Omitting the algebra, the complete expression for /ii(r) is now given by

. / n q:(/3ki + 1 - - 1)  ,
M Ki([7r2 - 03 + I)]2 - 4/3(aT2 - l)(r2 - 1))'/2 '

where

V - (B + 1) + ([yr2 - Q3 + 1)T - 4/3(ar2 - l)(r2 - 1))'/2"*iOO =
2/3

The expression for h2(r) is similarly obtained:

(4.21)

<*(/3k2 + 1 — t)H(t — a ''2)
kM «2(,[yr2 - 03 + I)]2 - 4/3(ar2 - l)(r2 - 1))1?5 ' (4'22)

with

*2(t) =
7T2 — (/3 + 1) — ([7t2 — (ft -f l)]2 — 4ft(aT2 — !)(/ — 1))'/2

2/3 (4.23)

Equations (4.20)-(4.23), when introduced into (4.10), give an explicit expression for the
horizontal displacement component along the line y = y0 passing through the origin of the
impulsive source.

The v displacement along y — y0 can be found in exactly the same way as u(x, y0 , t)
was determined; hence only the result will be recorded here:

16 th , . (3a + 30 — 10)2t [h5(r) — h6(r)
W{x, y0 , i) - fl<i_ a _ __ ,4w1/^ a

)1
a2Po ""V~' y° ' ((3a + ft - 4)(a + 3ft - 4))

where

(4.24)

h (T) = »(«? + 1 - ar2)g(r - 1)  .
M k,([7t2 - 08 + l)]2 - 4/3(,r2 - l)(r2 - 1))1/2 ' ( 5J

and

a(«2 4" 1 — ar2)//(r — a 1/2)7 / \   !±> 2__1__Z  / v ' J  (A r>/»\

M ~ «2([7r2 - 08 + l)]2 - 4/3(ar2 - l)(r2 - 1))T75 ' (4"26)

In order to evaluate the displacement integrals along the line x' — 0, it is desirable
to alter the integration path for the integrals (4.6)-(4.11) so as to coincide with the posi-
tive Im f2-axis. In this case (since x' = 0) the exponents in these integrals will be real.
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From Eq. (4.4)

«'(0, y', S) = [7,(0, y', s) - 1,(0, y', s)] , (4.27)

where

7

and

i(0, y', s) - 72(0, y', s) = Re - f F({2) exp (msi \y'\ f2/X2) df2 , (4.28)
7T J q

P(y \ — o \i/2 1 + (a/3)1 2[(f2 + 1//3)/(|"a + 1)]' ___ ,
~ [/a) [A + (A2 — 4qJ3)1/2]I/2 + [A — {A2 — 4oB)i72]i/2 '

Regarded as a function of the complex variable f2 , the only singularities of F(f2) are
branch points at dLii3~1/2 and dzi. At the points f2 = ±ia, ±ib where

= 7(a + 1) — 2q(/3 + 1) + ([t(« + 1) ~ 2g(j8 + l)]2 — (1 — q)2[72 ~ 4q/3])1
72 — 4q/3

and (4.30)
\l/2~|l/S

b =    """■"7(« + 1) ~ 2a(/3 + 1) - ([7(a + 1) - 2q(/3 + l)]2 - (1 - q)2[72 - 4qff])1/2"|1/2
72 — 4q/3 J '

(4.31)

the quantity (A2 — 4aB) vanishes. However, these points are only apparent branch
point singularities of F(f2) since F(f2) is easily seen to be an even function of (A2 —
4aB)1/2. The denominator of F(£a) does have branch points where B — 0 but from Eq.
(3.13) these are just the points 2 and ±i. Let the branch cuts for F(f2) be in the
second and third quadrants of the complex f2-plane along the half lines Im f2 = ±1,
Im f2 = ±/3~1/2, with Re f2 < 0. The branches of the various multi-valued expressions
of F(£a) are chosen so that these expressions are positive along the positive f2-axis.

If the positive f2-axis integration path of (4.28) is joined by a large quarter circle
|f2| -» + «, 0 < arg f2 < tr/2, plus a path returning to the origin along the positive
Im f2-axis (see Fig. 2), then

7,(0, y', s) - 72(0, y', s) = Re F(&<1/2) exp (-ms \y'\ £/X2) d£

+ [ F(&"/2) exp (—ms \y'\ £/A2) d\

+

3-./.

(4.32)j^ F(&'r/2) exp (-ms \y'\ £/A2) dt,

The result of Eq. (4.32) follows from an application of Cauchy's theorem, and the fact
that the quarter circle contribution to the contour integral vanishes as |f2| ro (by
Jordan's lemma) since F(£2) = 0(|f2[_1)- Furthermore, the real part of the first integral
in Eq. (4.32) contributes nothing since Im F(£e 1T/2) = 0 for 0 < £ < /3~1/2. Taking the
Laplace inverse transform of (4.32) gives
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im y2

-Rejr2
Fig. 2. Branch cuts and integration contour in the complex — plane

7,(0, y', t) - I2(0, y', t) = Re -
7T

fl F(te^/2)S(t - m\y'U/\2)d^
_ J Q-l/3

+ F&"/2)S(t - m\ a)d£

j3 1/2 < CO < 1, /,(«) = A + D + |A + £>| (a/3)1/2(A + /))1/2

co2 - 1/flY72rj - (|-4 - Z)))11 — CO

, 1/2

1

1 + )'

Calling
CO = \2t/m \y'\, (4.34)

allows u(xo , y, t) to be written as

167tm , ,   (3a + 3— 10)2 r -/ / \ _i_ j r \i (a o-\
alP„ (x°' y' 0 " a((3a + 0 - 4)(a + 3~/3 - 4))1/2 [a,/l(co) + (4'3o)

where
/i(to) = Im F(pie"/2)H(u — 1), (4.3G)

and
/2(co) = Im /'Xcoe"r/2)[7/(co - /TI/2) - //(co - 1)]. (4.37)

Explicit expressions for /i(co) and /2(co) are

(4.38)

1 < CO < b, /,(u) (2a) + ^1 y/2 + + D\)l/2 - (4-39)

b < co < a, /j(co) - (a)1 (-4a/3y^i/2 . (4.40)
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and

0> - 1//A172
<- ^ I ( \ _ /o s.1/2 1 + (gp)U2\ CO2 — 1 /  , r,[

' /l(aj) " (~a) (|A + D\f~2 + (|A - D\fA1 ' (4'41)

where D = (A2 — 4ctB)1/2 and the functions A and B (see Eqs. (3.13)) are to be evaluated
with = — w2- As implied by Eqs. (4.38) and (4.40), 1 < & < a. This can be proved for
values or a and /3 contained in region R of Fig. 1.

The v displacement along the line x = x0 is similarly found to be

167T/X . .  (3a + 3— 10)2 r j t \ i t i w n ao\
a2p0 ^X° ' V' ® ~ a ((3a + 0- 4) (a + 3/3 - 4)),75[w:f3(a,) + u^(u^ ' ^AT>

where

*(2a)1/2
-1/2 < w < 1, /4(a>) = A + Z> + |A - Z)|

2
CO

(4.43)

1 + 1 { «2 - 1

!<.<!>, f.to - -»<2«)■'■ + • <«4>

1 + ^
A <- r i ( ^ - / \l/2 (a/3)' \<Q — 1//3/ o < co < a, j3{a>) — a(a) (4q.S)1/2)1/2 ' (4.45)

and

1 +
- 1

fM u/2 M) \w — 1//3/ , .
a < oi < co, /3(co) = —a(2a) ^ + i)!)172 + (|4 — D\)m' ^ '

It is understood that the functions /3(co) and /4 (co) are identically zero for any positive
« range in which their values are not explicitly given by Eqs. (4.43)-(4.46).

It is worth noting that the expressions for the u and v displacements, along the line
y = yo and x = x0 , can be written in terms of a single variable (either r or u) with the
exception of the multiplying time factor t.

5. Discussion of results. Due to the impulsive nature of the source, certain singular
displacements are introduced at the wave fronts. Near these singularities the displace-
ments, etc., become unbounded and in no sense remain small. However, the present
solution can be used, by familiar methods, to obtain the displacements for other problems
in which smooth distributed sources are present. In such cases the displacements would
be physically meaningful (nonsingular). In this respect it is useful to remark that this
very same approach is emplo3red in isotropic elasticity theory where singular solutions
are well known.

'The derivation of Eqs. (4.38) — (4.41) has tacitly assumed that k, the value of w for which A = 0,
lies in the range /3-1'2 < k < 1. Should k be larger than this (it cannot be less than p~112), then the above
expressions may differ somewhat in detail.
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Along the line y = y0 , the u displacement has a reciprocal square root singularity at
the wave front corresponding to r = oTl/1. The u displacement is smooth at the (faster)
wave front r = 1. On the other hand the v displacement is smooth at r = a~'/2, but has
a reciprocal square root singularity at t = 1.

Along the line x = x0, the u displacement has a reciprocal square root singularity at
the (slower) wave front co = 1 and is smooth at the wave front co = 0"l/2. The v displace-
ment has a reciprocal square root singularity at the wave front co = 0~1/2 and is finite
at the front co = 1. The v displacement, however, is not smooth at co = 1 since the left
and right derivatives approach different values at this point, resulting in a kink in the
curve.

As the point (in two dimensions) x = x0 , y = y0 is approached

lim u{x, y0 , t) = limw(x0 ,y,t)= u(x0 , y0 , 0 = M/t,
x-*To V~*Vo

where

,, =  q1po(3a + 3/3 - 10)2 ("jy + (y* - 4a0)1/s
16irn((y2 — 4a0)(3a + 0 — 4)(a + 3/3 — 4))1/2|_\ 2/3

7 — (y2 — 4a/3)
2^

(5.1)

(5.2)

For the v component of displacement

lim v(x, y0 , t) = limi;(xo , y, t) = v(x0 , y0 , t) = N/t, (5.3)
x-+x0 U~*Vo

where

\j _ a2p0(3a + 3/3 — 10)2 [jy + (t2 — 4a/3)
iv - „ i . „w„   _ 4))1/2|^16ttm((7 - 4a/3)(3a + 0 - 4)(a + 3/3 - 4))1/2Ll 2/3

- (72 - 4ctj3)'/2\1/2

20

(5-4)
) ](1 + («/3)1/2).

The first limit process in (5.1) and (5.3) corresponds to r —» m, while the second limit
process in these equations is obtained by letting co —* <&. Equations (5.3) and (5.4)
clearly show that the displacements at the point (x0 , y»), where the impulsive source
was applied, varies inversely with the time which has elapsed since the source was initi-
ated.

Figures 3 and 4 show plots of the displacement functions, calculated from the results
of Sec. 4. For these figures the values a = 1/20, /3 = 4 were used. The corresponding
values of the stretch parameters are A2 = 3/43 and X2 = 161/43. For the above a, 0
values, /3~1/2 = 0.5, k = 0.966, b = 1.006, a = 1.384, and cT1/2 = 4.472. These curves
clearly show the various singularities, kink, and limiting values discussed above.

Along the line y = y0 the two wave fronts move with the speeds X,/m (corresponding
to the front r = 1) and A,a'2/m (corresponding to the front r = a~I/2), while along the
line x = x0 the two wave fronts move with the speeds \20W2/m (corresponding to the front
co = 0~1/2) and X2/m (corresponding to the front co = 1). The fact that the wave fronts
travel with different speeds in different directions is, of course, caused by the anisotropic
nature of the equations of motion.
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Fig. 3. Variation of u and v displacement components with t along the y = y«. Time is fixed and a =
0.05, 0=4.
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Fig. 4. Variation of u and v displacement components with w along the line x = x0. Time is fixed

and a = 0.05, (3 = 4.
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