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CONSTANT SURFACE HEATING OF A VARIABLE
CONDUCTIVITY HALF-SPACE*

BY

LEONARD Y. COOPER

Bell Telephone iMboratories, Incorporated, Whippany, New Jersey

Abstract. A solution to the problem of constant surface heating of an initially
constant-temperature, T*0 , half-space where the material in question has a temperature-
dependent thermal conductivity is obtained. The thermal conductivity, k*, is specifically
given by k* = k% exp [X(T* — T*0)/T%]. The solution is valid for both heating and cooling
of the material where X and k% are arbitrary in magnitude, and X can be either positive
or negative in sign.

The technique of solution of the nonlinear problem considered here is an extension
of an integration method used for the boundary layer equations of fluid mechanics. The
present success and generality of the technique suggest its use for the solution of more
complicated variable property transient heat conduction problems.

I. Introduction. Most problems in unsteady heat conduction can be mathematically
described by boundary value problems of the linear theory of diffusion. It often happens,
however, that such phenomena elude the convenience of such a classical analysis. This
study is concerned with the possible application of integration techniques, successfully
used in the nonlinear problems of boundary layer theory in fluid mechanics, to nonlinear
problems of unsteady heat conduction (and, of course, other diffusion phenomena). In
particular, the present work treats a specific "test" boundary value problem in the
diffusion of heat and incorporates in its solution the integration technique of Meksyn
[1] as applied to boundary layer theory.

The specific problem under consideration is the constant surface heating, //*, of an
initially constant-temperature half-space where the dimensionless thermal conductivity,
4>, is given by exp [A0]. Here d = (T* — T*)/T*0 is a dimensionless temperature, 7'*
being the initial temperature of the medium.1

Transient heat conduction through such a variable conductivity material half-space
has been previously considered for conditions of imposed constant surface temperatures
rather than constant heat transfer rates. Crank [2] discusses the solution to this problem
at length. As it happens, this problem has a similarity variable rj ~ xt~1/2 (x and t are
dimensionless distance into the slab and time respectively). Thus the second order partial
differential equation for, say, $ can be reduced to an ordinary differential equation. This
state of affairs is analogous to the boundary layer problem for flow over a flat plate.

For the present problem, however, no such reduction is possible. Here the situation
is analogous to, say, flow over a flat plate with suction. Nevertheless, as in boundary
layer theory, it is useful to pose the problem in terms of the independent variables t]
and t (we will use f ~ tl/2). Using these variables the resulting boundary value problem
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'Starred and unstarred quantities always refer to dimensional and dimensionless quantities res-
pectively.
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governing $ is such as to suggest an asymptotic form for large ?/ of $>, (obtained from a
first integral in rj of the governing equation). This form of $, is found to be ^(j?, f) exp
[ — t72/2] where, compared to exp [ —?/2/2], ^ is a slowly changing function in rj. The idea of
Meksyn incorporated here is (a) to represent ^ by its Taylor expansion about 77 = 0, (b)
to perform the integration of as represented in the above form out to ?j —> <», and (c) to
apply to the resulting representation for $( «=, f) the boundary condition required by the
solution function $ at tj —> 00. The application of this procedure results in equations in-
volving slowly convergent or divergent infinite series which are rendered (more rapidly)
convergent by use of the Euler transformation [1], [3]. The solutions to these equations
eventually yield results for the coefficients of the double expansion of the solution func-
tion $ about (17, f) = (0, 0).

2. Formulation of the problem. Consider an isothermal body of temperature
T*0 filling the half-space x* > 0 where the material is such that the density, p*, and
specific heat, C*, are both constant while the thermal conductivity, k*, is a function of
temperature, T*, and is specifically given by

k*(T*) = k*0 exp [X(T* - T%)/T*0] (1)

where k% is the conductivity at temperature T% and X is arbitrary both in magnitude and
sign. At an initial time, t* = 0, the surface of the body, x* = 0, is exposed to a constant
and uniform heat flux, H* (of arbitrary sign), while no other heat sources throughout
x* > 0 are allowed.

To obtain the temperature history, T*, of the above material as a function of x* and
t*, we define the following dimensionless variables along with a dimensionless heat
flux:

* = x*(T*C*'*)W2p*/k* ; t = t*r*C*2p*/k*

e = (T* - T*0)/T* ; $ = k*/k* ; H = H*/[(T*0C*)3/2p*].

The pertinent boundary value problems which must be solved either for the dimensionless
temperature, d(x, t), or the dimensionless conductivity, 3>(x, I), then take the form

+ Hdr)2 = 6, exp [ —X0] or = $, ; x, t > 0

0,(0, t) = —H exp [ —X0(O, 01 or f>,(0, t) = —X//; t > 0 ,
w

6(x, 0) = 0 or $(.-r, 0) = 1; x > 0
lim 6(x, 0 = 0 or lim $(z, /) = 1.

x—*co ; t fixed x—»oo ; t fixed

Clearly the above formulations are valid for the constant-conductivity case, X = 0.
We will consider here the case X ^ 0. If the solution can be obtained, we would expect
that taking the limit as X —■> 0 would yield the well-known constant-conductivity solution
[4]'

We now define new variables rj, f, and V as

„ = x/C2tyn- f = —\H(2t)l/2) V = X0. (4)

Then the problem for $ becomes

(5)
lim $, = f; lim $ = 1. (6)

»J—»0 ; f fixed »j—.00 ; f fixed
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We will seek a solution to the latter of these problems. The solution for the new dimen-
sionless temperature V can then be obtained from the simple relationship

V = In $. (7)

3. The solution. The solution of the problem of (5) and (6) incorporates techniques
of Meksyn originally suggested for the general two-dimensional boundary layer equations
of fluid mechanics.

Basically, the technique of solution is one of using an expansion in rj and f of the de-
pendent variable $. The boundary condition at the body surface (the first condition of
(6)) is automatically incorporated in such an assumed expansion. The important con-
tribution of the Meksyn solution technique utilized here is the integration over rj of <!>,,
obtained from a first integral of (5), where this function is represented in a "quasi-
asymptotic" form. As will be seen, this allows for a definite representation of $>(», f)
(in terms of a slowly convergent or divergent infinite series of functions of f) from which
some meaning can be extracted by use of the Euler transformation.

We assume that $ has an expansion sbout rj = 0 which has some "reasonable" radius
of convergence (possibly f-dependent) in the t] plane. Thus we assume

$ = X) (8)
n = 0

where a^f) = f. Note that this assumed solution form automatically satisfies the first
boundary condition of (6).

Taking the above solution form and using it in (5), we equate coefficients of like powers
of n, thereby obtaining solutions for the a„(f) as functions of a0(f) through the following
recursion relations: For n > 2,

a»(f) = \n{n - l)a0(f)] 1 foJ_2(f) - (n - 2)a„_2(f) + n(n - 2) {1 + (-l)"}a2K(n)(f)/S

- 12 {(« - i)(n ~ i - 1) + j(j - l)}o,-(f)a»-/(f)1
,-1 J

(9)

where

a'Jf) - a„(f)c/f " 7., > In/2 forn even«(«) =
aj(f) = f [(n — l)/2 forn odd.

It should be noted from the above that a„(0) = 0, n > 1.
We now expand a0(f) about f = 0.

«o(r) = i + E «»r". (io)
n-l

The leading term of 1 in the above expansion allows continuity of $ at (rj, f) = (0, 0).
We assume that such continuity, not required by the boundary conditions, is a feature
of the solution. In view of our expansion for $ and the recursion relationships for the
a„(f), a solution for an(f), i.e., the Taylor coefficients, am , of a0(f), would complete the
formal solution to our boundary value problem. It is the application of the remaining
boundary condition of (6), of course, that will eventually determine those constants.

From the second condition of (6) it is clear that —> 0 and —* 0 for —» °o. If we
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assume that = 0($,) or at least for rj —» oo , then for large v the asymptotic
form for a first integral of (5) will be $, ~ ^(tj, f) exp [ — rj2/2], where for large ?/, ^ is
slowly changing compared to exp [ — -q2/2], We therefore take the form for $, as

= ¥(rj, f) exp [-VV2]. (11)
In consonance with the above equality sign the function ^ will be represented according
to its expansion about 17 = 0 rather than in an asymptotic form. With 3>, taken in this
"quasi-asymptotic" form it will easily be possible to perform a second integration over
■q thereby obtaining an equation for $. Moreover, to this resulting equation for <T>, valid
within the radius of convergence of SI7 and in some sense representitive of $ outside such
a region, we will be able to directly apply the second condition of (6) at rj —> <».

We now expand ^(?), f) about 77 = 0. For later convenience we take the following
form:

Hv, r) = Z [2(1-",/2!7,Xr)/r{(n + l)/2}]„" (12)
n = 0

where r(x) is the gamma function. Substituting this above expansion for VI' and the ex-
pansion of (8) for $ into the right- and left-hand sides of Eq. (11) respectively, we expand
exp [—7j2/2] about 17 = 0, equate like powers of ?? and eventually obtain the following
solution for the gn(£) in terms of the a„(f):

0,(r) = 2,"-,)/2r{(n + l)/2} "jr (» - 2p + l)a„_2p+i(f)/(2pp!); n> 0 (13)
2> = 0

where R(n) is defined after Eq. (9). Note that for all n, gn(0) = 0.
We now use our expansion (12) for xl' in the first integral expression of (11) and per-

form another integration over the variable v- This results in

*(v, f) = fi [2a-n,/V,(f)/r{(n + l)/2j] exp (-m'/W dm + a„(f)
" 0 71 = 0

or, interchanging integration and summation,

Hv, f) ~ Z 9ntt)P{(n + l)/2, V2/2\ + a„(f) (14)
n-0

where P(x, y) is the normalized incomplete gamma function

P(x, 1i) = r"'(x) f e"V~l d,u.
*>0

It should be noticed that the exchange of integration and summation above would only
be valid for i) within the radius of convergence (in the tj plane) of the expansion of and
that in general the results of this exchange of operation will yield a relationship for $
that is not necessarily an equality. Thus for r? —► , a case that will be of particular
interest here, the quantity 011 the right-hand side of (14) can at best be considered as
representitive of the function $.

We are now in a position formally to satisfy the remaining boundary condition of (6).
Doing so with the use of Eq. (14), we obtain

Z 0.(r) ~ 1 - «o(r). as)
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By considering the Taylor expansions of the g„(£) and a0(f) about f = 0 we would hope
to relate coefficients of in the above expression, thereby obtaining equations for the
Taylor coefficients, am , of a0(?) and completing the solution. To this end we make the
following definitions:

a„(r) = ± An.mr-, gX() = ± Gn,mr; n> 0. (16)
m = 0 m = I

Using the above definitions for the An,m in the recursion relations (9) for the a„(f)
along with the definitions of a, .CO and a, (("), we find that the An,m and, as a consequence
of (13), the can be expressed as

An,m = Q'n mam + m ; Gn,m = Cn,ma„ + (17)

where the Q'm and C„,m are constants and the 5^tm and are polynomial functions of
the a„, p < m. The solution for these are specifically found to be

e'0,m =1, m > 1; all e'n_0 = 0; all e[,m = 0;

C'i.m = (m ~ n + 2)e^_2,m/{n(n — 1)1, n > 2, m > 1;

ffj.o = 1, all other 5^,0 = 0, all other ffo,m = 0;

ffi'.i = 1, all other = 0, all other 51,, = 0;

S',„ = (m — n + 2)9:,'_2,„/{n(n - 1)}
m-1- Ep= i — (n — 2)jl + (—l)"}yle(„)iI,^lfi(n)im_J>/{8(n — 1)}

+ 2Z f(n ~ j)(n ~ J ~ 1) + i(i - 1)}.4;,pAn_,,„_„/{»(« - 1)} , n, m>2;
,=1 J

(18)

je„.J = 2<.-i)/.r{(n + 1)/2j {(,, _ 2p + i)/(2'pi)}l®:-a"+I-l.
k,J p"0

Having expanded the gn(£) according to (16) and o0(X) according to (10), we group like
powers of f in Eq. (15) and eventually obtain

m > 1. (19)
n=0

Thus, if the above sums have any meaning, e.g. if they convei-ge, we would expect to
have a set of recursion relationships for each am in terms of the an , n < m. Moreover,
these relationships would be linear in the unknown am of interest. Actually, as will be
seen, the above sums appear to be either very slowly convergent (for m = 1) or divergent.
They can, however, be rendered convergent, or more rapidly convergent, by application
of the Euler transformation. Meksyn makes extensive use of this transformation where
the terms have known numerical values. Here, of course, the terms themselves contain
the particular unknown, am , being sought.

We will be interested in taking the Euler transformation of the columns of an array
. Such a transformation, designated here by the symbol £, is defined by
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S(3TC„,m) = Sa>(3TC„,m) = 2_<"+l) £ 3RC.„[«!/{(» - q)\ <?!}]. (20)
a = 0

Repeated use of the Euler transformation is also of interest. Thus, for p > 2, we define

S<p> (3U„,m) = S!S(p^l>(3U„,m)}. (21)

4. Calculation of the am. We now proceed to calculate the Taylor coefficients,
am , of the expansion of the function a0(f) for our problem. As, mentioned, we obtain
these constants, one at a time, from the equations of (19) where the computation for a
given am depends on all preceding a„ , n < m. As it happens, the problem in such a
computation is a problem of forcing convergence, or at least more rapid convergence, of
the sum on the left-hand side of (19). To illustrate this point we proceed to calculate .

Using 9 terms in the series of (19) for m = 1 we obtain

Z = (tt/2)1/2 + a, + (ir/2)V2/2 + 2a,/3 + 3(x/2)1/2/8 + 8a,/15
Ti-0

+ 5(tt/2)1/2/1<3 + 16a,/35 + 35(7r/2)1/2/128 + ■ •   a, . (22)

From observing the relative size of alternate terms it is clear that even if the above series
was assumed to be convergent one could not expect a great deal of accuracy from an a,
calculated from the existing number of terms of the above equation. In any event we
solve for and obtain

a, = -.84337087. (23)

Hoping to render convergent or more rapidly convergent the above series, we apply
the Euler transformation of (20) to the OnA . This results in

Z £(<?»,.) = (tt/2)1/2/2 + [(x/2)1/2 + «J/4 + [3(71-/2)1/2 + 4o»]/16
«-0

+ [15(71-/2)1/2 + 22cr1]/96 + [35(7r/2),/2/256 + 5a1/24]

+ [63(tt/2),/2/512 + 183a,/960] + [693(tt/2)1/2/6144 + 169a,/960]

+ [429(tt/2),/2/4096 + 4409^/26880]

+ [6435(x/2)V2/65536 + 69a,/448] + • •   a, . (24)

Solving the above for we obtain

= -.79782941. (25)

Using this last value for a, we evaluate the individual terms of 8(6'„,,) with the result

£ S(G„,i) = (t/2)'/2[1 + .1877 + .0568 + .0208 + .0082 + .0034 + .0015
n-0

+ .0007 +•■•]■ (26)

Assuming this series of terms to be convergent, the accuracy to the infinite sum,
y. S(Gn l), obtainable from the partial sum of a given number of terms appears to have
been improved over the similar accuracy obtainable in (22). We conclude, then, that it
is consistent to assume that the application of the Euler transformation to the series of
Eq. (22) has resulted in forcing more rapid convergence of this infinite sum. The meaning
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of the word "consistent" is best understood in the context of the following recapitulation:
(1) We have assumed that the Euler transformation forces convergence or more rapid
convergence of the series of Eq. (22), and we have applied this transformation; (2) con-
sistent with (1) we assumed that truncation of the resulting series of (24) after the ninth
term will yield an accurate representation of its sum; (3) we solved for in (24) based
on these latter two assumptions; (4) using the calculated value for , we have shown that
the terms of the above series, evaluated with this solution for ai are consistent with our
original assumption.

As it happens, can be obtained exactly, e.g., from the solution to the problem of
Eqs. (5) and (6) for ij = 0 in the limit f —> 0. Such a limiting process leads to the solution
for the surface temperature distribution for the problem where the material thermal
conductivity in question is given as a constant. This well-known solution [4] dictates that

a, = -(2/7r)1/2 = -0.797884561 ••• . (27)

We have clearly obtained our approximate result for a, in (25) to within 0.007% of its
exact value. We would hope that using more terms in our series would increase our ac-
curacy in this calculation. A computer computation for at using (24) with the series
truncated to 34 terms has been performed. The result was a value for a, , compared to
the above exact value, accurate to 12 significant figures.

Note that the value for cci given by (23) and computed from the untransformed series
of (22) was 6% in error. That the result of that calculation should even be this accurate
is due to the alternating signs of the terms of the original series. It is, in fact, this property
of the original series that allows for the success of the Euler transformation [3].

In view of the above, it appears that there may be a significant improvement in ac-
curacy of the sums represented in Eq. (19) after application of the Euler transformation.
With this in mind we proceed to the calculation of a2 .

Using the results of (17) and (18) and the exact value for a, as given in (27), Eq.
(19) for m = 2 becomes

E G«,2 = [0] + [2a2 - 2/tt] + [1/2] + [2a2 - 2/tt] + [1/4] + [2a2 - 22/15tt]
n = 0

+ [1/4] + [2a2 - 34/21,r] + [1/4] + • •   

As it happens, the \ value of alternate terms continues to persist as more terms of the
series are considered. For this reason the above series is clearly not convergent. We apply
the Euler transformation to the (?„,2 . Then, using the 9 terms at our disposal, we solve
the equation E S(Cr„,2) = —a2 and obtain the result a2 = .12494787. Inserting this value
back into the series E £(^.,2) we obtain

£ S(G„i2) = — .09668[0 + 1. + .3535 + .0303 - .0505 - .0375 - .0116 + .0025
n~ 0

+ .0055].
We assume that this series is convergent. Here, however, the terms are not monotonically
decreasing as in the series of (26) for the computation of a, . There appears to be an
oscillation of the terms about zero along with a decaying trend in their magnitude.
Unfortunately, any definite conclusions here, with the few terms at our disposal, would
be purely speculative. In view of this apparent oscillation of terms it is also difficult to
ascertain the possible error in the value of a2 given above.
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A computer calculation for a2 from the equation ^ S((?„,2) = a2 was obtained where
the series was truncated to 50 terms and the exact value of aL was used in the com-
putation. The solution obtained was

= I (28)

accurate to 16 significant figures. Using this solution the terms £((?„, 2) are computed, the
magnitude of the latter terms indicating that our accuracy for the value of a2 is only to
11 significant figures. In any event we assume that a2 is exactly given by a2 = f, and this
value will be used in further calculations. We mention that the oscillation about zero of
the terms S((?„,2), along with a decaying trend in their magnitude with increasing n, as
noted in our earlier calculation, continues to persist through £(G49:2) of the present cal-
culation.

The technique of applying the Euler transformation to the terms of an infinite sum
in order to improve or possibly induce convergence is not necessarily successful. Especially
when one deals with series whose properties are unknown, as in the present problem, it
is only with the hindsight of the transformation results in hand that one can determine
the success of the technique. And even then the determination of success or failure can
generally only be argued in an heuristic fashion, e.g. our above "consistent" argument.
Thus far we have used the Euler transformation in its simplest form. Namely, we have
applied it only once to the various infinite series of Eq. (19), and we have applied it
always starting with the first term, G0?m . It is known that if the Euler transformation
is successfully applied to a given series so as to, say, improve convergence of same then
it is possible that applying the transformation a multiple number of times will further
improve convergence. On the other hand, repeated transformations can slow down as well
as speed up convergence. Moreover, for best results, the transformation need not neces-
sarily be initiated with the first term of the series in question [1].

The single Euler transformation of the (?„,2 starting from the first (zero) term ap-
peared to be the optimum transformation for rendering Gn,2 most rapidly convergent;
thus the above evaluation for a2 . In considering the calculations for further am the
various , m > 3, were made (more rapidly) convergent by consideration of mul-
tiple transformations of the type (21). Thus, only transformations initiated with the first
term of these infinite sums were considered. In this way, the representations of (19) were
changed to the following "apparent" equalities:

± ZlPim'\G„,m) = —am . (29)
n-0

The solutions for the am ,m> 3 were obtained from the above equations with the infinite
sums truncated to 58 terms. The results are

a3 = 0.595407 X 10~2; a4 = 0.106534 X 10~2; a5 = 0.2655 X 10"3

a6 = 0.780 X 10~4; a7 = 0.254 X 10~4; «s = 0.8S X 10"5; (30)

a9 = 0.32 X 10~5; a10 = 0.12 X 10"5; a„ = 0.5 X 10~6; a12 = 0.2 X 10~6

where the significant figures shown for a given am are dictated by the order of magnitude
of the higher order terms of (Gn,m). As for m = 2, it should be noted that for m > 3
the S1"1"0'((?„,„) tend to oscillate about zero and decay in magnitude with increasing n.
The function p(m) up to p(12) is given by
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p( 1) = p(2) = 1; p( 3) = p(4) = p( 5) = p(6) = p(7) = p(8) = 2; ^
p(9) = p(10) = p(ll) = p(12) = 3.

Presumably more accuracy could be obtained and more of the am could be evaluated if
the sums of (29) would be approximated by a larger number of terms than used here.

5. Evaluation of 4>( 17, f). Using the expansions (10) and (16) of a0(f) and gJt)
respectively in (14), and grouping coefficients of like powers of f, we obtain

1
Hi, f) ~ 1 + Z E Gn.mP([n + l]/2, ,2/2) + a™ r- (32)

Note that, in view of (6), taking lim ij —* with f fixed reduces the above to (19) from
which the am were eventually computed. It is therefore expected that, just as the series

Gn,m , to > 1 in (19) required Euler transformations in order to be rendered con-
vergent, so our present sum X) Gn,mP([n + l]/2, j?2/2), 77 ̂  0 will require similar trans-
formations. We will therefore apply the multiple Euler transformation, g[p<m),j to the
terms of the internal sums of (32), thereby obtaining the following "apparent" equality:

rn~ 1
Hv, r) = 1 + E Z &[vhn)][Gn,mP{[n + l)/2, v2/2)] + «, r. (33)

In our work $ has been evaluated according to (33) where the inner sum was truncated
to 58 terms and the outer sum to 12 terms. In this computation the am are given by (27),
(28) and (30) and the Gn,are computed from these according to (17) and (18). Moreover
the p(m) are given by (31). At least for = 0, it is estimated from the latter terms of the
resulting finite series that the error in $ from such a computation will be less than 5%
provided |f | < 1.8, this error greatly diminishing as |f | —» 0. The results of this computa-
tion are given in Fig. 1 where <T> is plotted as a function of f with y as a parameter.

_! I I I I 1 I •£
-I.B -1.6 -1.4 -1.2 -1.0 -.8 -.6 -.4 -.2 O ,2 .4 .6 .8 1.0 1.2 1.4 1,6 1.8

Fig. 1. The dimensionless conductivity, <&, as a function of f with 7; as a parameter.
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Since the temperature history of the half-space as a function of time and depth was the
specific goal of the originally posed boundary value problem, this has been obtained from
our calculations for $ and our definition (7) of the dimensionless temperature, V. This
result is presented in Fig. 2 where V is plotted as a function of \\H\ x with \H |X//| t
asfa parameter.

—v

3.0

2.0

U Hlx

-1.0

Fig. 2. The dimensionless temperature, V, as a function of |X.ff| x with \H |Xff| 1 as a parameter.

6. Results and conclusions. The physical phenomenon involved in heating the
half-space under consideration is clearly seen in Fig. 2. This figure exhibits the intense
surface-concentrated heating or cooling when \H < 0 as compared to the more diffuse
heating or cooling when \H > 0. The situation for \H < 0 is readily understood when
one considers, for example, X < 0, H > 0. Here we have a situation where the required
heat transfer into the surface continuously lowers the thermal conductivity most sig-
nificantly in the neighborhood of the body surface, thereby giving increasing resistance
to the transfer of heat into the inner depths of the half-space. The result is that a larger
and larger amount of the heat, which the body must continuously absorb, ends up being
used primarily to increase the temperature of this confined neighborhood of the body
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surface; hence the catastrophic temperature rise at x = 0. A similar argument for the
case \H > 0 leads to the result of continuously increasing thermal conductivity at the
surface region and correspondingly decreasing resistance to heat flow between the surface
and the larger depths of the body; hence the more diffuse temperature distributions.

The technique of Meksyn for integrating the boundary layer equations of fluid me-
chanics has been successfully incorporated here in the solution to a problem in nonlinear
heat diffusion. One would conclude that this technique in particular could be used as a
basis for solving other more complicated problems of nonlinear diffusion, and that the
understanding of such phenomena could be greatly enhanced by incorporation of pre-
vious successes of boundary layer research in general.

The author would like to express his thanks to Messrs. A. J. Schepis and W. W.
St. Cyr for their interest and for the stimulating discussions engaged in throughout the
course of this work.
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