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WAVE PROPAGATION IN AN ELASTIC SOLID WITH A LINE OF
DISCONTINUITY OR FINITE CRACK*

G. C. SIH

(Lehigh University)
AND

J. F. LOEBER

(.Knolls Atomic Power Laboratory, Schenectady, New York)

Abstract. With the aid of integral transforms, a method is presented for solving
the problem of scattering of plane harmonic compression and shear waves by a line of
discontinuity or crack of finite width embedded in an elastic medium of infinite extent.
When the incoming waves are applied in an arbitrary direction, the scattered-wave field
may be determined by separating the crack-surface boundary conditions into functions
even and odd with respect to the variable along the line crack. The problem is reduced
to the evaluation of a system of coupled Fredholm integral equations with special em-
phasis placed 011 finding the near-field solution which consists of a knowledge of the de-
tailed structure of the displacements and stresses in a small region around the crack
vertex. Dynamic stress-intensity factors, the critical values of which govern the condition
of crack propagation, are defined and found to be dependent on the incident wave length
and Poisson's ratio of the medium. At certain wave lengths, they are larger than those
encountered under static loading. Such information is of particular importance in per-
dicting the fracture strength of structures subjected to oscillating loads.

Introduction. Although the scattering of waves by obstacles of different shapes has
been the subject of many past investigations in various branches of physics [1]—[3], to
the authors' knowledge none of these investigations analyzed, in detail, the singular
behavior of the stresses near a scatterer in the form of a line of discontinuity or finite
crack. The main reason for this omission is the lack of an effective mathematical method
for obtaining the near-field solution, which is of considerable theoretical interest and has
innumerable applications in the field of fracture mechanics as well as in electromagnetic
and acoustic theory.

A popular approach to the diffraction of waves from obstacles has been that of separa-
tion of variables, where the formal solution of the wave equation is given by an infinite
series of orthogonal functions. Such an approach, however, is effective only for obstacle
shapes adapted to those coordinate systems in which the wave equation is separable.
For this reason, the dynamic stress concentrations around circular and parabolic ob-
stacles have received considerable attention in the past. A comprehensive survey of the
literature in a field as wide and diversified as the propagation of elastic waves is clearly
beyond the scope of this paper. In recent years, the Mow-Pao-Thau school [4]—[6] has
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published a number of papers on this subject. References to other work can be found in
[4]-[6],

It is well known that problems involving diffraction of plane harmonic, horizontally
polarized shear waves (SH-waves) by a semi-infinite crack can be formulated in terms of
integral equations, and solved by the Wiener-IIopf technique [7]. As pointed out by
Sih [8], however, since the static limit of the semi-infinite crack solution is zero, it is not
possible to estimate the precise magnification of the stresses due to dynamic effects. To
overcome this shortcoming, Loeber and Sih [9] proposed to add another characteristic
dimension into the problem, namely the crack width, and managed to obtain the exact
behavior of the crack-front displacement and stress fields for the case of SH-waves dif-
fracted by a finite or internal crack. Ang and Knopoff [10] have attempted to solve the
internal crack problem earlier but their method yields results which are restricted to
low frequencies and to distances far away from the crack. In elastodynamics, the far-
field crack solution is not useful in the sense that it offers no information to the develop-
ment of the theories of crack propagation. Generally speaking, the far-field solution can
always be determined by the standard method of Wiener-Hopf [7] in a straightforward
manner. On the other hand, considerable difficulty is encountered when the Wiener-
Hopf method is applied to find the near-field solution. One of the difficulties arises from
the factorization of certain functions into functions analytic in the upper and lower half
planes. The problem of the diffraction of electromagnetic waves' incident upon a slit has
also been treated by Schmeltzer and Lewin [11] using the function-theoretic approach.
Their results are left in terms of several complicated integrals the evaluation of which
becomes a problem in itself, particularly in seeking the analytical form of the solution
in the vicinity of the slit.

Having discussed the previous work related to crack problems of SH-waves, it is
natural to follow the discussion with a few remarks concerning the diffractions of plane
harmonic compression waves (P-waves) and vertically polarized shear waves (SY-waves)
by a line crack. Although both Miles [12] and Papadopoulos [13] have investigated crack
problems of this type, their work discusses only the qualitative character of the displace-
ment potentials without any explicit information given as to the nature of the local stress
distribution. The mathematical description of these problems is somewhat complex
because the scattered waves, caused by the line crack, are composed of both compression
and shear waves even though the input wave may be of one type, either the P- or SV-
waves. For this and other reasons, the near-field solution of waves scattered by a crack
with finite width is yet to be found.

The purpose of this paper, aside from obtaining the stress solution close to the crack
point, is to offer a method of solution for solving diffraction problems involving P- and
SY-waves incident upon a line of discontinuity. The method can handle different types
of boundary conditions2 on the line of discontinuity. For illustration, only the case of a
traction-free crack will be considered. An important conclusion is that within certain
ranges of wave lengths the dynamic stress distribution around the crack is quite sensitive
to changes in the wave number. This is displayed graphically for different values of the

irThe scattering of plane-polarized electromagnetic waves by a screen in a fluid medium is mathe-
matically analogous to the SH-wave crack problem in elastodynamics.

2By following the steps outlined in this paper, it is clear that the problems of a rigid and rigid-
smooth strip can be solved in the same way.
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Poisson's ratio. The knowledge gained in this investigation is believed to add further
impetus to the understanding of the propagation of cracks under fluctuating loads.

Field equations and input waves. Consider the propagation of elastic waves,
produced by the action of oscillating compressional and shear forces, which vary har-
monically in time and are applied in the .xy-plane containing a through crack. In the
plane, there arise both compressional and shear waves, and the resulting displacements
can be expressed in terms of two scalar functions <j> and *p each of which depend upon x, y,
and t. The rectangular components of the displacement vector are

ux = d<t>/dx + Sip/dy, uy = d<f>/dy — d\p/dx, (1)

Substituting Eq. (1) into the equations of motion under the conditions of plane strain,
the following wave equations on (/> and <p are obtained:

2 (d2<t> d2<t)\ d2<t> 2(d~\p d2\p\ d2 \p ..
C\^? + W2) = ^• c*\d? + w) = d?" ()

In Eq. (2), cl and c2 stand, respectively, for the velocities of compression (irrotational)
and shear (equivoluminal) waves in an infinitely extended elastic medium; they are given
by

c, = [(X + 2m)/p]1/2, c2 = (m/p)1/2 (3)

with p being the mass density. As usual, in the case of generalized plane stress the Lame
constant X in Eq. (3) is to be replaced by 2\/i/(X + 2/x), while the shear modulus of
elasticity u remains unchanged. From the stress and displacement relations, it is found
that

(d^ ay \
\5x'2 dx dy/ 'vxx = XV </> + 2fx

- - +2" @ - £i) ■ «

= (o _ ?Jk i <W\
<Tlv " V ax dy ax2 + dy2) '

With reference to the rectangular coordinate system x, y of Fig. 1, let a line crack be

//\ -a-'
LINE OF

DISCONTINUITY

Fig. 1. Polar coordinates on line of discontinuity.

placed along the .r-axis from —a to +a, and an incident plane harmonic compressional
wave (P-wave) be directed at an angle with the .r-axis so that
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</>(0 = <t>o exp { —i [a, (x cos ih + y sin u,) + wt\\ ,

^(i> = 0
(5)

in which <£0 is a measure of the wave amplitude, o> is the circular frequency, and =
co/ci is the wave number for compression waves.

In preparation for subsequent work, the stresses of the incident P-waves will be com-
puted by inserting Eq. (5) into (4); the results are

(fz'x = —fj.aZ4>f,)(l — 2 k sin2 Uj),

cr^y — — ''(1 — 2k2 COS2 Uj), (6)

<«> _ 2 ,(•) 2 • D
axu — — na2<t> k sin Zvlt

where the elastic constant k — fe/cO2 takes the value (1 — 2v)/2(1 — v) for plane strain
and (1 — v)/2 for generalized plane stress. The maximum value of the normal stress
acting on the incident plane compression wave front is — ;ua2$0 which is assumed to re-
main finite as ai —> 0.

Similarly, if an incident plane harmonic shear wave (SV-wave) impinges on the crack
at an angle v2 with the x-axis, then

= 0 ,

\p{,) = \p„ exp {— i [a2 (x cos + y sin v2) + to/]} ,

and the corresponding stress field is

<•> 2 i <•') o<jxx = —not2\f/ sin zu2 ,

71,v — ~c.

<«') 2 «(i)

(8)
= n<x2\p * cos 2v2 ,

in which is the maximum shear stress acting on the shear wave front and is nonzero
as a2 —> 0. The quantity \p0 is a constant, and a2 = cj/c2 is the shear-wave number.

In view of the harmonic time-variation of the input waves given by Eqs. (5) and (7),
the displacements, stresses, and potentials 4> and ip will all contain the time factor
exp ( — iwt) which will henceforth be dropped.

Since both Eqs. (5) and (7) are already solutions of the wave equations, the main
burden of the analysis is to determine the potentials <£<r> and 4/{') of the scattered-wave
field governed by the Helmholtz equations

dYr) dYr)
dx2 + dif

dV'r) d2xPM
dx2 dif

*Wr) = 0,

(9)
ali(r) = 0

for problems involving steady-state motion. The total wave field may then be taken as
the linear sum of the displacement potentials of the incident and diffracted waves as

4> = </>"■' + + ^<r>,
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where

as (x2 + if)U2^ ®.

The same general relationships apply to the total displacement and stress fields.
For a traction-free crack surface, the total normal and shear stresses at y = 0 and

\x\ < a must vanish, i.e.,

Vyy {x, 0) + <Ty'J (x, 0) = 0, |a:| < a ,

crl'y (X, 0) + aiy (;X, 0) = 0, |x| < a

from which the boundary conditions of the scattered-wave problem may be established.
For convenience, the problem will be split into two parts, namely, that of finding the
solution of Eqs. (9) for the following conditions:

Case A.

Case B.

uj (x, 0) = <rx'y (x, 0) = 0, |a;| > a,

a l:\x,0) = (s,0); <#(*,0) = o,
(10)

(11)
u(xr\x, 0) = o-yy'ix, 0) = 0, |x| > a,

<rln(x, 0) = 0; <Tzl\x, 0) = —<xiy(x, 0), |a:| < a.

Clearly, the stress solutions for Cases A and B are even and odd in y, respectively;
consequently, the former case will be called the symmetric problem and the latter the
skew-symmetric problem. The desired solution of the original problem can be obtained
by superposition of the solutions for the two Cases. Because of the symmetry conditions
in Eqs. (10) and (11), it is possible, in each case, to lay down certain conditions on the
plane y = 0, and consider the problem for the half-plane, y > 0, only.

Case A—symmetric problem. The resulting stresses of the scattered waves are
said to be symmetric with respect to the crack plane y = 0, if the crack is opened' by
oppositely acting normal tractions. These normal tractions are taken to be the negative
of those shown in equations (6) and (8), i.e.,4

<rlJy(x, 0) = —<rl'y(x, 0) = (—1)'2ixPj exp { — ictjX cos V,), |x| < a, (12)

where j - 1, 2 such that
Pi = o(l — 2k COS v i)

corresponds to the incident P-wave and

P2 = h<xltpn sin 2i>2

to the incident SV-wave. To make use of the Fourier sine and cosine transforms, the
problem will be further divided into parts that are even and odd in x by separating the
real and imaginary parts of Eq. (12).

3When the tractions change in sign, it is obvious that on the compression cycle the two sides of the
crack will come in contact with each other. Such a violation of the free-surface condition, however, is
not serious, and can be easily corrected. A detailed account of this point is reserved for later discussion.

4The factor ( — 1)' (j = 1, 2) is defined for values of 0 < v2 < t/4. Appropriate changes should be
made for other values of v%, say ?r/4 < U2 < x/2.
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1. Normal Tractions Even in x. Taking into account only the real part of u{^(x, 0),
which is even in x, the potentials <t>'" and \p'T' may be represented by the cosine and sine
integrals

<t>{'\x, y) = - [ At(s) exp (-0,?/) cos (sx) ds, y > 0.
TV J0

y) = - f A2(s) exp (-&?/) sin (sx) ds, y > 0.
7T J0

(13)

The branch cuts of the functions

H, = (s2 - a])u* = -i(a) - S2),/2, j — 1,2

have already been discussed in [7] and thus no additional comments are needed. Applying
the boundary conditions in Eqs. (10) to the appropriate expressions of displacement and
stress obtained from putting Eqs. (13) into Eqs. (1) and (2), the results may be written
in the forms

- f [—f3iA,(s) — sA2(s)\ cos (sx) ds = 0,
t J0

z > a

[ ['(«'- i4 A-(s) + /32A2(s) sin (sx) ds

(— 1)' P, sin (a,x cos Vj) - , ^
=     1 — — , \x\ < a

ctj COS Vj

and the condition of <j'x'u](x, 0) = 0 for all values of x is satisfied by setting

sfiiAiis) + (s2 — %a2)A2(s) = 0.

Now, define a function A (s) through

A(s) = — PiA^s) — sA2(s)

so that

P'l,(S)j = 2 A® j (s2 - a*2)"
U2(s)J a^1 L —«/3, _

Under these considerations, it can be confirmed from Eqs. (14) that -1 (s) is governed by
the pair of dual integral equations

2 r
- / j!(s) cos (sx) ds = 0, |x| > a
7T J o

2 r
- j(s) 4(s) sin (s.r) ds
IT J o

(15)
Ixl < rt(— l)'Pi sin (ctjX cos Vj)

otj cos Vj

in which

f(s) = -h~ [(s2 - - s20,ft>].
a-iPiS

The objective is to reduce the problem to an integral equation of a standard type.
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Introduce the function

a(x) = - f /l(s) cos (sx) ds
ir Jo

and by the Fourier inversion theorem, it is obvious that

^4(s) = / a(x) cos (sx) dx.
Jo

According to the first of Eqs. (15), a(x) vanishes for |.t| > a and thus

A(s) = / a(x) cos (sx) dx.
Jo

Elimination of A (s) from the second of Eqs. (15) then gives

2 r \ ■ t \ 1 r , s / \ i (~ 1)'-P/ sin (oiiX cos v,) , , „- / us) sin (sx) ds / a(r) cos (sr) dr =   , \x < a (16)
7T J0 J o a,- COS Vj

which involves a(r) as the only unknown function.
From the physics of the crack problem [14], the displacements at the end points

x = zta of the crack must be bounded and are of the order (x T a)1/2 as ji] —■* a, i.e.,

a(x) = \(a)(a — x2)I/2 + 0(1), as [z| —> a. (17)

Guided by Eq. (17), it is assumed that a(x) admits the representation

P rdr
a(x) = / \(t) 2 2TT72 , o < X < a (18)

Jz (t — X )

where A(r) is required to be continuous on the interval [0, a]. Equation (18) may be in-
tegrated by parts to give

a(z) = X(o) (a2 — x2)1/2 — J X'(r) (r2 — a:2)1/2 dr, 0 < x < a

which agrees with the preassigned form of a(x) in Eq. (17). In what follows, the function
X (r) is permitted to depend on the physical parameters in the problem.

Substituting Eq. (18) into (16), and applying the Dirichlet formula for interchanging
the order of integration [15] render

[ /(«) sin (sx) ds [ tX(t) J0(st) dr = sm ("<« cos Hi) _ |x| < a (19)
J0 Jo ai cos Vj

where use was made of the identity [16]

r cos (sx) dx tt r / \
jo = 2j°(st)-

Here, J0 is the zero-order Bessel function of the first kind. For the purpose of reducing
Eq. (19) to a standard Fredholm equation, let

g(s) = f(s) + (1 - k) -> 0(s~2), as s -»• «

and recall the discontinuous integral

f J0(st) sin (sx) ds = |^' 0 < i < r
ll/(^2 - r2)1/2, 0 < r < X.
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After a permissible reversal of the order of integrations with respect to s and r, Eq. (19)
takes the form of Abel's equation [15]

f x« (x» = h(x) (20)(x

provided

(— 1 )'~'P; sin («,x cos Vj)
h(x) = (i - Ky +

a,- COS Vj
/ tX(t) rfr / g(s)J,,(sT) sin (sx) cfe

J 0 J 0

The Abel equation may be inverted to free X(r) from the integration, i.e.,

w \ _ ? f dx n <" <- „ rt>nA(r) — 1,2 2\ 1/2 > 0 ^ r ^ Ct. v^l/
7T J0 (r — X )

The result of inserting the derivative of h(x) into Eq. (21) is

X(r) = (1 — K ) (—1)' Pjjr>(fXjT COS Vj)

+ Jg tMf) d? J sg(s) Jo(st) J0(sf) dsj, 0 < T < a

whose kernel may be symmetrized by the introduction of the dimensionless quantities

, r r (-l)'(l - K2)rx(«?) n , , „ .
* = a' V = a' ® =  p"  ' * -

This leads to a regular integral equation of Fredholm's second kind

Aft) - f A(?j) Fft, „) dv = (-1 cos.,), 0 < £ < 1, (22)
Jo

where

ffc. v) = (1 ~ iT'Gv)"2 f sg[^jJM)Jo(sv) ds, 0 < f < 1; 0 < , < 1. (23)

In view of (3,- = (s2 — a2)17*1 (i = 1, 2) (connected with the out-going waves) being com-
plex, both Aft) and Fft, ??) in equation (22) are also complex functions. Separating these
functions into their real and imaginary parts in accordance with

Aft) = A!ft) + ?'A2ft), /'"ft, v) = Pjfti v) + ^2ft, i)
the following system of coupled integral equations are obtained:

Aift) — f [A,(rj)F,(£, tj) - A2(ij)F2(£, 77)] dt] = (— l)'£1/2«/„(a,a£ cosy,),
Jo

A2ft) — [ [A,(v)F2(ti, rj) + A2(??)F1(£, 1))] rfi? = 0, 0 < £ < 1. (24)
Jo

The kernels /*',(£, r;) (7 = 1, 2) are given by

2 ,,/s f™ I, (s\ I S
a2(l - K2)Fft, ^) = Jin Jo ~ + ^2(1 — K2)

= «£l-7) (^)I/2 I s [m'(a) + w2(f)_

•J0(sQJ0(sy) ds, (25)
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where 0 < £ < 1, 0 < ij < 1, and

jk(s) = s'Hs2 - bat)2— 1/ 2 1 2\ 2 0, s < ak

9i(s)

U/(s — ak), s > ak

(O, S < a,
1/2 2vl/2 wl(s — ai) , S > a,

( \ -1/ 2 1 2\2 ® S akmk(s) = s (s - fa2) j
10, S > ak

(/ 2 2\ 1/2(a, — S ) , S < a,

0, S > a;.
n,(s)

The above format is employed with the knowledge that the solutions for the scattering
problem of P- and SV-waves are obtained, respectively, by setting k = 1, I = 2 and
k = 2, I = 1.

To improve the rate of convergence of the numerical calculations, it is desirable to
evaluate the singular parts of the integrals in Eqs. (25) in closed form by letting

p(s) = 1+2 ^^ - :2-/i(s) - g2(s) _ M
al(l - K2) s2 + m2

in which m and M stand for

2 , 2 (l + 2«2 - 6*4 + 5k'\ „ , , (3 - 4k2 + 3k4N|
m = M 3 — 4k2 + 3k4 J ' M = l-*2 J'

With the aid of the identity [16]
ft ao ^

/ 2 I -Jo{Zs)JoM ds = I0(m£)K0(mrj), 0 < £ < v,
J o o '''

where 70 and K0 are the modified zero-order Bessel functions of the first and second kind,
respectively, Fi(£, ri) becomes

m, V) = 0Zr,)W2[a2MI0(am!;)K0(amv)

+ J Sp(^~Jjo(sl;)Jo(sri) rfs], 0 < £ < JJ < 1 (26)

and its continuity on [0 < £ < 1, 0 < ?; < 1] is assured by the behavior of 70 and /C, in
a neighborhood of the origin. The advantage of this alternative representation of F^, n),
as compared with the first of Eqs. (25), is apparent from

p(s) —> 0(s~6), as s —> oo;

The system of integral equations for A,(£) (j = 1,2) may be solved numerically on an
electronic computer. With the knowledge of A(£), the only unknown A (s) in the scattering
problem with normal tractions even in x can be evaluated:

^(s) = (~1}' 2(1*-°')« - /V«(o£») A©
^1/2 </{}. (27)
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The displacements and stresses everywhere in the elastic medium with a crack can then
be calculated without difficulty. As mentioned in the Introduction, this method of solu-
tion is particularly suited for obtaining the explicit form of the crack-tip stress field,
which together with the numerical results for A(£) will be presented subsequently.

2. Normal Tractions Odd in x. Suppose that the normal tractions on the crack are
given by the imaginary part of <j^ (.r, 0) in Eq. (12). Then the correct evenness and odd-
ness properties in x for the potentials of the scattered waves may be represented by

4>"\x, y) = - [ Bi(s) exp (-13,y) sin (sx) ds, y > 0,
r 0 (28)

2 f00
^(r)(z, y) = " / B2(s) exp (-&>?/) cos (sx) ds, y > 0.

7T J0

As before, the boundary conditions in Eqs. (10) lead to a pair of dual integral equations

- / B(s) cos (sz) ds = 0, |x| > a,

2 r T
- / f(s)B(s) sin (sx) ds = i(— 1)' 'P, sin (a,a; cos u,), |x| < a
TT J o

in which B(s) is connected with B,(s) (j = 1, 2) by

^ 2B(s) f(s2 - H)
L B2(s) ctiPi s

Making use of the first of Eqs. (29) and the Fourier inversion theorem, B(s) may be linked
to a function b(x), i.e.,

B(s) = / b(x) cos (sx) ds.
Jo

The singularities to be expected in the function b(x) will be pre-assigned. Knowing the
nature of the stress singularities at the endpoints of the crack [14], it will be assumed that

i / x aS* , f y(r) dr n
h(x) - (a2 - x2)C/~2 + i (r2 - X2)1/2' 0 < X < a. (30)

Here 5* is a constant and y(t) a function continuous on the interval [0, a]. This implies

ad*
b(s) = ^2 _ xzy/z + 0(1), asrc—0<z<a

which preserves the (x =F a)_1/2-type of stress singularities at the crack tips, x = ±a,
respectively. The function B(s) may now be expressed in terms of the newly introduced
function y(r) as

B(z) = | a5*J0(sa) + [ J0(sT)y(T) dr
Jo

(31)

The constant 5* can be evaluated from the condition that the displacements at the
crack tips are bounded, i.e.,

lim / b(x) dx = 0lim / b(x)
x—o J 0
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which gives

5* = — — f y(r) dr.
d J o

Inserting Eq. (31) into the second of Eqs. (29), and rearranging the subsequent result
yield an integral equation of the Abel type:

J0 t2)'/2 = ^ ~ K_2) W-iy-P; sin (a,x cos v,)

/• co pa

+ / g(s) aS*J0(sa) + / J0(st)-y(t) dr
J o L * o

The inverted form of the Abel equation is

7(7-) = (1 — k) 'r {i(—1 )'Pjaj COS Vj J0(a,T COS u,)

J sfif(s)^aS*J0(sa) + J0(s£)y({) df+

sin (sx) rfsj, 0 < x < a. .
(62)

J0(st) dsj, 0 < t < a. (33)

With the aim of symmetrizing the kernel in Eq. (33), introduce the change of variables
£ = r/a, 77 = f/a, and set

8* (—1 )'Pj cos Vj
1 21 — K

S
i1/2m

, 0 < f < 1.

Thus, Eq. (33) assumes the form of a Fredholm integral equation

r(£) — f r(ij)F(£, rj) dr) = i(—\)'~'laia£/2JQ(pija% cos v,) + 5F(£, 1), 0 < £ < 1, (34)
Jo

where the kernel F(£, rj) is the same as that shown in equation (23), and

s = — f1 d£. (35)
J 0

Since F(£, ij) and

r(£) = i\(£) + ;r2(i)

are complex, Eq. (34) may be further decomposed into real and imaginary parts:

r,U2 dr,, 0 < £ < 1 (36)

I\(£) — [ [Ti(v)Fi(!-, v) ~ r2(ri)F2(t, J7)] di7
Jq

= - £ l) - r,(,)F2(E, l)

r2($) - f [^(17)^2(5, v) + rt(v)Fi(^, y)] dr,
Jo

= (— l)'~ta,a£1/2J0(a,a| cost,) - f [r,(i?)F2(£, 1) + DV2^.
Jo

This constitutes a system of two Fredholm integral equations for the determination of
the two functions r,(£) (j = 1, 2). The problem is essentially solved as the original
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unknown may be calculated from

B(s\ — (~1) TrPjO'
(j 2(1 - k)s

where

T(1 )J0(sa) — cosw,- [ Z1/2J0(sa£)T(Q d£
Jo

0 < £ < 1, (37)

T(l) = - 5 cos Vj = cos vt [ £1/2r(£) d£. (38)
Jo

Case B—skew-symmetric problem. The scattering problem, in which tangential
tractions

o-^'(x, 0) = —u^(x, 0) = (—1)'2nQj exp (-ia,x cos u,), \x\ < a (39)

are applied to the crack surface, is said to be skew-symmetric with respect to the crack
plane y = 0. With j = 1, 2, the quantities Qi and Q2 in Eq. (39) are related, respectively,
to the amplitudes of the P- and SV-waves:

Qi ~~ 2Q-2&0K sin 2ui , Q2 == cos 2v2 .

Since the skew-symmetric problem may also be reduced to the solution of a system of
coupled integrations in the same way as that of Case A, many of the detailed derivations
will be omitted and only the essential steps will be given.

1. Tangential Tranctions Even in x. In this case, 4>(" is odd in x and \p(r) even in x.
Replacing 5,(s) in Eqs. (28) by C,(s) (j = 1, 2), the vanishing of tr^'(x, 0) along the
entire x-axis requires

(s2 - - sp2C2(s) = 0.

By having

such that
C(s) = 30,(8) - fi2C2(s)

2CJs) SI32

.(s2 - W2)_

CM
LA(s)J

the boundary conditions in Eqs. (11) lead to

2 r- / C(s) cos (sx) ds — 0, |x| > a,
IT J 0

? f" vt (s)C(s) sin («) ds -
TT Jo Ctj COS Vj

for the determination of C(s). The function m(s) is equal to (/3i//32)/(s) with /(s) being
given previously by Eq. (15). The solution of Eqs. (40) is

C(S) =ll dr, (41)
where

4>(t) = (1 - ^-'[(-^'-'Q.Jofer cos vi)

/»a /»<»

+ / f0(f) d$ / sn(s)Ju(st)J0(sf)
J 0 " 0

ds
(42)

0 < t < a
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is continuous on the interval [0, a], and

n(s) = m(s) + (1 — k) —> 0(s-2), as s —>

Performing the substitutions

t r f (—1)'(1 — K2)£U2<t>(a£) n - t " i
a' 71 ~ a' m ~ Q, ' 0 < ^ 1

on Eq. (42), there results a Fredholm integral equation

$(0 - f Hv)G(H, v) dv = (-1 )r/oM cos u;), 0 < f < 1 (43)
Jo

whose kernel (?(£, 77) is

(?(£, ,) = (1 - K*)-Xto)1/a Jo sn{~j,IM)Jo(sv) ds, 0 < £ < 1; 0 < v < 1 (44)

For the purpose of computing the real and imaginary parts of $(£) numerically, a system
of coupled integral equations can be deduced from Eq. (43):

$1© — [ [$i(y)Gi(£, v) ~ ^Av)G2(£, 1?)] dv = (-1 )'£I/2./0(a,a£ cos u,),
(45)

$2© - [ v) + $,(ri)G^, v)} dn = 0, 0 < £ < 1

In Eq. (45), (?, (£, ij) (j = 1, 2) represent

Gift, v) = &y/2\_aNI0(nat)K0(nav)

I "th+ / Sf?(-Jj0(s?)./o(si?) rfs

^ v) = g(i - K2) ft") I sl m2l-) + «>lr

o < £ < 77 < 1
(46)

JM) Jn(sy) ds,

where

?(s) 1 "4" 2 2/ , 2\ "3 r 772 )
f2(s) - gM N_
ai( 1 - k2) s2 + n

and

2 1 2/ 1 + K | >r ,2
n — 2a2\x _j_ K4/ ' — 4£*2

l±a
1 - K') •

Finally, C(s) is found:

C(s) = {^(l)./l(6-a) - £ &/.(«# ^1/2 dff- (47)

2. Tangential Traction Odd In x. When the tangential surface tractions on the crack
are odd in x, Eqs. (13) apply provided that A,(s) are to be replaced by D,(s) (j = 1, 2).
From the defined relationship

D(s) = — s[sDi(s) + /32D2(s)]
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and symmetry consideration, D,(s) are expressible in terms of D(s) as

DM
M).

223(g)
a

->2

_(s2 -

Now, the boundary conditions in Eqs. (11) require that D(s) satisfies the dual integral
equations

- f D(s) cos (sx) ds = 0, |a;| > a
T J° (48)

- [ vi(s)I)(s) sin (sx) ds = i(— sin (a,x cos v,), |.r| < a.
TT J0

Let D(s) be connected with another function ip(r) through the relation

- 1at* J,0(sa) + / \J/(t)J0(st) dr
Jo

where

e* = f '/'(t) dr.
CI J o

Then, the second of equations (48) renders

\p(r) = (1 — k) 'rStX— l)'QjOtj COS Vj J0 (a,r COS u,)

+ [ sn(s) ae*Ju(sa) + [ iKf)«A>(sf) <*£
Jo L ^ o

■J0(st) ds( , 0 < t < a. (49)

Further, set £ = r/a, t) = f/a and adopt the notations

e i _ (-D'(i - k2) r e*
Qi cosUi [*(«*)j

This carries Eq. (49) into

*G) - [ *(v)G(Z, v) dv = i(-1 y-'aM^JoicxM cos V,) + eG(£, 1), 0 < £ < 1 (50)
^0

which can be separated into the following system of equations:

^i(S) — [ v) — ̂ 2(v)G2(^, 1?)] di}
Jo

= - T [*i(u)G,& 1) - tf.OOG.G, '?)]'?I/2 d,, 0 < $ < 1 (51)
J 0

^2© — [ [~&i(v)G2(£, v) + ViWGid;, 17)] drj = (—l)'~la,agnJ0(ct,at, COS v,)
J0

- f [*»(u)G<a(f, 1) + *,(>?)(?,(£, 1)]V/2
J0
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The kernels (?,(£, v) (j = 1, 2) are given by Eqs. (46). Once ^(i;) is known, D(s) follows
from

S2(l )J0(sa) — cosi;, ^ ^ i/M . (52)

where

S2(l) = — € cos Vj = cos Vj f $1/"^r(Q d£.
J 0

Singular behavior of the near-field solution. The chief interest in the solution to
the crack problem concerns its singular behavior at the crack points since it is the stresses
and/or displacements in the vicinity of the crack that control the condition of crack
propagation [17]. The singular character of these stresses for Cases A and B will be ex-
hibited individually.

1. Case A. The symmetric crack-tip stresses of the scattered waves can be derived
from Eqs. (13) and (28) which, when substituted into Eqs. (4), yield the expressions

<r%[x, y) = - ^ f" {(# + hal) exp

+S/32 exp(-/322/)[^)]}[sC;

V) = ~ fo j(s2 - £«') exp (-fry)

+sfr exp ( — 02y)

<ril\x, y) = I {,fr exp

cos (sx)
sin (sx). ds,

Ai(s)
.BM

(53)

A2(s)
-B,(8) J

cos (sx)
sin (sx). ds,

For ail examination of the singular behavior of the stress components, it suffices to con-
sider in A j($) and /?,■(.$) (j = 1, 2) the dominating terms

u ,(«)"| = r§ - (S/«2)2
L42(s)J L sffi/al

and

Bl(s)
BM J

■I + {s/a2f
2

s/31/a.2

(—1)' VP,a , /1X T , N ,
ft(l - k2)S A(1)Jl(sa) +

which contribute to the divergence of the improper integrals in Eqs. (53) at x = ±a,
y = 0. This divergence is due to the behavior of the corresponding integrands as s —» °°.
Hence, asymptotic expansions of the integrands appearing in Eqs. (53) for large values
of s lead to
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y) = a,a / (sy - 1) exp (-sy)
*'0

y) = <rta / (sy + 1) exp (sy)
Jo

<r*v(x,y) = -<r,a / sy exp ( sy)
Jo

A(l)
-T(1)J

-A(l)
L T(l) J

cos (sa')./,(sa)
sin (sx)Ju(sa)_

cos (sx)Ji(sa)
_sin (sx)J0(sa)_

ds,

ds, (54)

A(l)
T(l).

sin (sx)J1(sa)
.cos (sx)J0(sa).

ds

where a,- = (—1)'2(j = 1, 2). The foregoing integrals can then be evaluated in closed
elementary form by means of the well-known Bessel integral identities [1G]

[

/;

exp (-sy)
cos (sx)

.sin (Sx)_T0VO^ (r,r2y
J0(sa) ds

s exp (sy)
cos (sx)

_sin (s.r)_
J0(sa) ds = —

sin l(B1 + 02)
cos 1(0! + 02)_

 cos [0 — §(0! + d2)]
(rir2)3/' Lsin [0 - |(0, + 02)].

r

etc. The polar coordinates (r, 0), (r,, 00, and (r2, 02) have the meaning shown in Figure 1.
In the limit as r2 —> 2a, r —> a, and 92 = 0 —;► 0, the unbounded contributions to the total
stress field near x — +a, y = 0 are precisely equal to those of the scattered waves since
the stress field of the incident waves are nonsingular. Carrying out the limiting process
just mentioned yields

= m^T/2 cos (|0,)[1 - sin (|0,) sin (§0,)] + 0(1)(2 r,Y

Jh
(2r.)1/2 cos (§00 [1 + sin (|0j) sin (f 0,)] + 0(1) (55)

<Tzy = (2n77' cos sin cos +

where

fci = A(l)
T(1)J (56)

It is apparent that the same angular distribution in 0i and the characteristic inverse
square-root singularity, rf1/2, at the crack tip are observed in both the statical and dy-
namical stress solutions. In the dynamic case, however, the strength of this stress singu-
larity, measured by , fluctuates in time and is proportional to the circular frequency,
amplitude of input wave, angle of incidence, etc. Adopting the criterion in the theory
of brittle fracture [17], k, may be regarded as a dynamic stress-intensity factor the critical
value of which is a function of material property and can be measured experimentally
to determine the point of incipient fracture.

The influence of fluctuating loads upon the fcx-factor can be brought out more clearly
by a plot of Ifci/o^a | versus normalized wave number axa at normal incidence, vt =
7r/2, such that the crack is excited by P-waves only. In this case, T in Eq. (56) is zero.
Referring to Fig. 2, the static solution is given by fcj = which corresponds to w = 0.
Here, <rx represents the magnitude of the static tensile stress applied in the direction
normal to the crack plane. As o> increases from zero, the requisite numerical results are
obtained by solving the integral equation for A on an electronic computer for values of
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v * 0.10

V *0.25

GENERALIZED PLANE STRESS

0.2 0.4 0.6 0.8

Fig. 2. P-waves at normal incidence (ci = 90°).

Poisson's ratio v — 0.10 and v = 0.25 under the conditions of generalized plane stress.
Note that for v = 0.10 the maximum value of \k1/cr1a1/2\ is 1.31 at o^a ~ 0.51 and beyond
this point the curve declines quickly. The peak of the |/c1/o-1a1/2|-curve for v = 0.25 is
slightly lower and occurs at ava ~ 0.48.

2. Case B. By a similar procedure, the local stress distribution for the skew-sym-
metric case may be obtained by taking

"c.fr)] = r
Lc2(S) J Li

</32/a2

(s/a2)\
(-1 )'-VQ,.q
ft(l 2, $(l)J!(sa) +

and

r dm i
ln2(s)]

— sP2/otl
\ + (s/a2r

(— l)'~VQ,a
ft(l - x2)s-2^r2 -"(1)*/0(sa) +

Without repeating the details, the singular stresses are found to be

k2

k2

(Or p5 sin (H)[2 + cos (H) cos (§0i)] + 0(1),

T72 sin (|0,) cos (Idi) cos (f^) + 0(1), (57)" (2ri)

= J?)~y72 cos (|£»i)[l - sin (£0,) sin (§0,)] + 0(1).

The parameter /c2 is

h = $(1)
.0(1) J Tja > (58)

where t, = (— 1)'2^Q,-, and it has the same physical meaning as fcl. At normal incidence,
Vj = ir/2, and = 0, the static solution of k2 = r2a1/2 is recovered as u —> 0, and r2 may
be interpreted as the uniform shear stress at infinity.

Let the crack be excited by SV-waves and consider a state of plane strain. As is evident



210 G. C. SIH AND J. F. LOEBER [Vol. XXVII, No. 2

from Fig. 3, the variation of |fc2/r2a1/2| with a2a, the normalized wave number for shear
waves, follows the same trend as that of the |fc1/o-1a1/2|-curves in Fig. 2. It is seen that the
peaks of the curves in Fig. 3 become progressively lower as the Poisson's ratio is increased

Fig. 3. SV-waves at normal incidence (c» = 90°).

from v = 0.10 to v = 0.40. At v = 0.10, the peak occurs at a2a ~ 0.9 and is approximately
20.5% greater than the static value.

Further insight into the effects of different types of input waves on the intensity of the
dynamic stresses may be gained from Fig. 4, which depicts the absolute value of the

0.4 0.8 1.2
NORMALIZED WAVE NUMBER - a2a

Fig. 4. Near-field stress solutions for three types of input waves.

dimensionless stress-intensity factor as a function of a2a for v = 0.25. The greatest am-
plification of the stress-intensity factor corresponds to the P-waves, and the lowest to
the SV-waves. Between these two lies the curve for the SH-waves producing anti-plane
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type of deformation at the crack tip. The data for this curve were taken from the work
of Loeber and Sih [9] for the purpose of comparison.

Discussions. As remarked earlier, if a medium containing a crack is subjected to
fluctuating loads, the crack-surface displacement may alternate in sign depending upon
whether the incident field is tensile or compressive. Consequently, the relative displace-
ment of the upper and lower surfaces of the crack can be negative in the compressive
case which causes the opposing crack surfaces to come into contact. When this happens,
the tractions and displacements are continuous across the line crack invalidating the
original assumption of a traction-free crack. To avoid this situation, an additional tensile
field must be added onto the crack to keep the crack surfaces separated. The requisite
tensile field can be estimated from the displacement solution of the original problem of
scattered waves.

For tractions that are applied symmetrically to the crack plane, the quantity of
interest is the normal displacement

A©
£1/2 di( l)'a(l K>„(s, 0) = _ (x/a)2]i/2A(1) _ r1 ^ _ (a./a)2]

J Jx/a

j di+£. si""(|){'"r(s d(+ COS Vj

x\ < a. (59)

The numerical calculation of Eq. (59) will be carried out for the case of normal incidence,
uj = tt/2. Fig. 5 displays the deformed shapes of the crack for a,a = 0.0, 0.3, 0.5, and 0.7.
In order to satisfy the zero traction condition, the crack opening shown by the curves
in Fig. 5 should at least be doubled so that sufficient clearance is provided to prevent the
crack surfaces from closing on the compression cycle. As expected, the maximum value
of [a(l — k2)uv(x, 0)/Pi| ~ 1.25 occurs at a,a ~ 0.5, the normalized wave number at
which the dimensionless crack-tip stress-intensity factor |kl/ala1/2\ is also a maximum.

- a,a = 0.7

1.25

o 0.75

* 0.50 -

0.25

1.00

Fig. 5. Transverse displacement of crack surface.
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To recapitulate, it should be mentioned that except for certain angles of incidence, the
general input wave of the type in Eq. (5) or Eq. (7) will produce scattered waves compos-
ing both F- and SV-waves. A complete solution of the diffraction problem, therefore,
necessitates both the symmetric (Case A) and skew-symmetric (Case B) treatments
outlined in the paper. Only in the particular situations of normally incident waves does
it suffice to consider only one part of the solution, namely Case A or Case B. To be noted
further is that by superimposing a number of input waves, it is possible to generate other
initial states of stresses which reduce, for low wave numbers, to familiar static problems.
For instance, the sum of two compressional waves at normal and grazing incidence
given by

4><,) = 4>o [exp ( — ia{y) + exp ( — iaix)] exp ( — iut), ypU) = 0

and

<t>(,) = <f>0[exp (— iotxy) — v exp ( —fa1.r)] exp ( — iut), \p'" = 0

produces dynamic stress-states which reduce to the biaxial stress state

<r*r = <7y,, = (1 + "Vl

and the uniaxial stress state

C** = 0, (Tyy = (1 — f2)<T,

respectively in the static limit.
Although the diffraction problem heretofore considered was that of a single incident

wave which gave rise to sinusoidal type of boundary conditions on the line of discon-
continuity, i.e.,

<rll\x, 0)
ojj

COS (otjX COS Vj) I , „
, |:r| < a,

_sin (ctjX cos

the method of solution may be generalized to cover response to an arbitrary periodic
disturbance by expanding the boundary function (s) in Fourier series as follows:

'IKx, 0) = £ e„ .. (mrx\ , TJik . (mvx\A* cos I ■— I + B* sm J x < a.

The symbol takes the value unity for n = 0 and two for n > I. The coefficients in the
Fourier series are obtainable from the familiar integrals

.4* = J- f al:\x, 0) cos ("") dx, n = 0, 1, 2, ■ • •

B"= kLa<;-)(x'0)sin('T)th'! n = 1'2'---

and B* = 0. Similar expressions for the tangential traction <rrxu(x, 0) can be written down.
It is evident that the present method can also be employed to solve a number of other

problems dealing with the reflection of electromagnetic or acoustic waves by a finite
line of discontinuity.
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