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ON THE INVERSION OF THE CAUER-ROUTH MATRIX*

BY

W. H. INGRAM

Introduction. The Cauer-Routh matrix is defined and its application is described to
the calculation of branch currents and node voltages in networks whose branches and
nodes are so numerous that the inversion of the network impedance matrix is numerically
intractable, to systems of networks interconnected by tie-lines, and in particular to cases
where Biickner's formula can be applied with advantage.

1. Review of elementary network theory. Electrical network theory may be said
to be the union, legitimized by Lagrange, of two lines of scientific thought. One began
with Kirchhoff and has a line of development through von Helmholtz, Poincare and
Veblen and the other may be said to have begun with Ohm and has a line of development
through Faraday, Ampere and Maxwell. The first is characterized by its concern with
the topology of electrical networks and the second by its concern with the laws of equilib-
rium of electromotive force, i.e., with the equation of a given driving e.m.f. to components
which sustain current, charge and acceleration of current in any resistor, capacitor, or
inductor, respectively, or combination of such in cyclic series with the source of said
e.m.f. If we call any linear, as distinct from cyclic, series of one or more of these four
elements a simple dipole then, when a set of simple dipoles is connected up to form a
network, Lagrangian forces of the "first kind", i.e., forces of constraint, are thereby
brought into existence and have to be taken into account in the e.m.f. equation. The
Lagrangian formula for forces of the "second kind" is known to account for the mechani-
cal forces and torques in any case where the inductances of network inductors are func-
tions of position.

Let 91 be a connected and nonseparable network1 of simple dipoles whose graph g
consists of b branches and V vertices. The set of branch charges being represented by Q,
branch currents by Q, the electromotive forces by E and the forces of constraint by F,
the e.m.f. equation of the network is

E(t) = F + [Z]Q + [r]Q + [s]Q. (1)
All the coefficients are assumed to be constants.

It is necessary to recall how the forces of constraint are expressed by means of the
Veblen-Poincare directed-branch-on-vertex incidence matrix II and the connected
Lagrangian theory. First we construct a sagittal or directed graph g by arbitrarily assign-
ing direction to each branch to give a direction basis for E and Q. The equation HQ = 0
expresses the Kirchhoff condition at the V vertices.

A most elementary theorem tells us that only V — 1 rows of IT are linearly independ-
ent. This being so, it is economical to call one vertex a ground point and the others, say
Vl , V2 , • • • , Ff_i , nodes. For the nodes, then, Kirchhoff's current condition may be

* Received April 25, 1968.
'A network is connected if there is a continuous path (possibly partly through the ground) from any

first vertex in the graph of the network to any second and nonseparable if two such paths exist having
no intermediate point in common.
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written

HQ = 0 (2)

where II is II with the last row deleted.
By Lagrangian theoiy, a row-vector X of multipliers exists such that

XII = Ft , (3)
and, because the elements of II are dimensionless, X is a set of n forces, or potential
differences, to wit: the set of node potentials Vi , F2 , • • • , Vn above the potential of the
ground-point.

Let i represent the set of root-mean-square values, element by element, of the periodic
particular solution of "1" for Q, such periodic particular solutions being assumed to
exist when E(t) is a set of sinusoids with a common period. Let e and V have the same
r.m.s. relation to E(t) and F, respectively. Then instead of "1" and "3" we have

Z IIx

n o _
(4)

I call the niatric coefficient here the Cauer-Routh matrix [1, p. 4G], [2, p. 91]. As in
classical dynamics, we assume that that the velocities (or analogue thereof) and internal
stresses have functional dependence on the driving force e and not, as here, the other
way around: we assume that the Cauer-Routh matrix has an inverse and, moreover,
that Z has an inverse.

Let

[z IIT~|~l = \a b ]

Ln o _ _ c - a j
= Y, <y = [nYiix] = b~l .

Obvious calculations give

A = y - rnTanr, b = ynTa, c = anY,
and so

i = Ae, V = Ce. (5)

The number of nodes does not have to be very large for the inversion of to be very
laborious to calculate numerically and the inversion of Z, since there are almost always
more branches than nodes, ma}r be expected to be even more laborious. The analysis
of this case is the concern of the next section.

2. Networks interconnected by tie-lines. Suppose we have a number of networks
quite isolated from each other except that some of the nodes of the zth network are con-
nected with some of the nodes of the jth, possibly all i ^ j, by tie-lines which are dipoles
having possibly mutual impedance with other tie-lines but not with any branch elsewhere
in the system.

Let Z be the branch-impedance matrix for the set of networks and z the matric set
of tie-line impedances. After directing the tie-lines arbitrarily, let K represent the tie-
line-on-node incidence matrix. For currents i' in the branches of the set of networks and
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i" in the tie-lines, co-directed with the branches in the sagittal graph of the system,
Kirchhoff's node condition is

IK' + Ki" = 0, (6)

and the vector force of constraint is

rx(n, K) = fT. (7)

For co-directed e.m.f.s e' in the networks and e" in the tie-lines, the equation of force
is

Z 0 II,

0 2 K e" ■ (8)

Lll K OJLFj LoJ
The matric coefficient here is the Cauer-Routh matrix with impedance matrix [(Z, 0)/
(0, z)] and constraint matrix (II, K).

Let
Fz o nTl_1 VA B C 1

L:
0 z Ki

n k o
D E F

G II - aj
then, because the product of the inverse of the first by the second is a partitioned identity
matrix, we find that

A = Y - FIItG, B = - YlljII, C = FIItS,

D = —yKrG, E = y — yKTH, F = yKTd,

G = 311F, H = dKy, 3 = 'JT1,

•y = [nFnx + KyK T].

The set of branch and tie-line currents and the set of node potentials thus are

i> = [Y - FirT all F]e' - FnT hKye",

i" = —yKrdll Ye' + [y — yKT<>Ky]e",

V = dlLYe' + dKye".

We have exchanged the generality of Sec. 1 for this particularity by imposing zero
mutual inductance between the tie-lines and the branches of the networks which they
connect. We consider now the case where the total number of branches and nodes is so
great that the inversion of Z and of n FII x , required above, are intractable numerically.
We cope with this situation by imposing zero mutual inductance between any one net-
work and another and we number the branches of the first network first, the branches
of the second network second and so forth and get Z diagonalized in blocks. To cor-
respondingly diagonalize II Fn T , we number the vertices in the same way. But the ith
block of IlFnT , H,F,If,T , is not invertible unless the rows of II, are linearly independent
and so it is necessary, and also sufficient, to require that one junction point of 91, be
grounded, for all i.
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Assuming the calculation of y, by inversion of z, to be possible without too great
difficulty, the final quantity required for the calculation of A, B, • ■ • , Ii and hence of
i', i" and V is In cy we have a two-term matrix the first term of which we have assumed
to be diagonalized in blocks and so invertible without too great difficulty; but, not having
■y itself so diagonalized, our problem is to find a way to take advantage of the fact that
one of its terms has this property in order to accomplish the inversion.

Biickner's formula for the inversion of (B + KyKr), where K is an n X t, t < n,.
matrix of rank t and y is a t X t invertible matrix, is

(.B + KyKT)_1 = B-1 - B-'Kiz + KrB~'K)'1 KTB~l.

This is a labor-saving substitute for any ordinary method of inversion of a two-termed
matrix of this kind when t « n and is then most valuable when n is too great for any
ordinary method of inversion to be economical. But its virtue diminishes to zero as t —> n.

3. A numerical case. We consider now what is about the simplest example that
exhibits the various circumstances that aid or hinder the numerical inversion of a Cauer-
Routh matrix. We consider a system of three grounded networks, 91; , 9l2 , SJl3 , inter-

Fig. 1.

connected by three tie-lines, the network branch arid tie-line impedances being purely
resistive and purely diagonal:

Hi =
1 1 0n

nnir =
-2 3 0 0

0 0 10

K =

Z = [1,2, 1; 1; 1), z = [1,1,1).

3-2 0 0
i ,

0-1 1

n2 = [l],

n3 = [l], L o o o l
l o o-i
0 1-10

0-1-1 0-1 2-1

1 o 1, -1 0-1 2

-10 0

0 1 0 KyK J = •y =

4-2 0-1

2 4-10

0-1 3-1

1 0-1 3.

Inversion of *y in this one-term form by partitioning requires 36 multiplications and 34
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additions. For inversion by the two-term formula we have

8 -2 5
-2 8 5

5 5 10

KTB'lK = \
5

(z + KTB~lK)~l = ~

B~lK[z + KvB-'KVKvB-1 =

JT1 = 125 X 69

1035 690 0 0

690 1035 0 0

34 11 -15

11 34 -15
-15 -15 33.

310 265 -250 -325

265 -170 -325 -250
-250 -325 925 -350

-325 -250 -350 925.

29 17 10 13

0 0 1725 0

0 0 0 1725.

3 = -169
17 29 13 10

10 13 32 14

13 10 14 32.

Inversion of 'y by this method requires 88 multiplications and 47 additions.
4. Networks with activated nodes. By such I mean a network of two parts: (1) a

principal part consisting of a connected network 91 whose graph Q has V vertices one of
which is a ground vertex, and (2) a subsidiary part consisting of a set of k, 1 < k < V — 1
= n, active dipoles each grounded at one pole and connected to a node of 31 at the

other, the k dipoles being in one-to-one correspondence with fc nodes.
Given the set of e.m.f.s, e, in the branches of 31 and the set of e.m.f.s,«, in the branches

of the subsidiary network, assumed to be directed to 31, we want to know the branch
currents, i, in the principal part and the currents t in the subsidiary part. For simplicity,
we assume that the first k nodes of 31 have this outside connection.

Let J be an n X n identity matrix with all columns deleted except the first k. Kirch-
hoff's node condition is

m + Ji = o.
The e.m.f. equation, with 3 the branch-impedance matrix of the subsidiary network, is

r,;1

0.

z o nT
0 z J i

IT J 0 _

On the pattern of Sec. 2, the branch currents and node voltages are

i = (F - ynT3HF)fi - YErdJyt,

i = -yJTdUYe + [y ~ yJTdJy\e,

V = ZIlYe + dJyt,

<y = [nFnT + JyJi] = y1;

we note that the impedances to e when e = 0 and to e when e = 0 are
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[Y - riixMiF]-1 = z + nT(7j/JT)_1n,

hj ~~ yJi%Jy\ 1 = 2 + JT(n 1 nT) 1 </,

respectively.
Of special interest is the case 2 = 0. The governing equations are

Zi -}- nTF = e,

JTV = e,

IK + = 0.

By simple manipulations, we find F and t in terms of e and i:

v = (nniT)_1nFe + (nynT)"Vlf

i = Ye - YU-rV.

Because t = J TV we get the equation

« - jT(nynT)_InFe = JT(nFnT)_1Jt

which tell us that when the left member is zero the subsidiary network has no effect on 31.
This being true for all values of J, we see that

(nFnT)_1IlFe

is the Lagrangian vector force of constraint V.
Let V = V0 and i = i0 when J = 0. Then

F„ = (nFnTr'nFe,
to = (F - FnT(nFnT)"'nF)e.

The increase of the node voltages, SV, and the decrease in the currents in the branches
of 31, di, in the case J ^ 0 are easily found to be

5F = (nFnT)_1Ji,

Si = YIItSV,
and so the e.m.f. equation may be written

e — nT(F0 -I- SF) = Z(i — Si).

Recalling Cauer's equations for 31 with J = 0,

t0 = Ti', e' = Txe, e' — rTZri',

and Veblen's identity, IIT = 0, the following algebraic chart epitomizes the topological-
dynamical theory.

The gap at the bottom is closed when and only when SV = 0 and the gap at the top
is closed when and only when e = 0. For both gaps to be closed at the same time we must
have a network 31 with no current injected at any node and no current flowing in any
branch- indeed a reductio ad absurdum!

5. Relation to Diakoptics. When c = 0, then V = (II FIIt)~\/i, as we have seen.
Kron's problem, according to Biickner [4, p. 57] and, primarily, the "Diakoptic" problem,
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- M nT -n sv e-nr v rT e#

(jjYnry nrn z y nzr (,rTzr•)"

-ji

according to Braae, [5, Eq. 11.11] is to solve the equation

Y'V = i
for V when Y' is an invertable matrix imperfectly diagonalized in blocks.

Buckner's analysis of a problem of this kind is to consider the simultaneous system

Ax = f, Bx = g,
where A is a n X n matrix imperfectly diagonalized in blocks and B is the same matrix
with the spoiling elements replaced by zeros. Obviously (.4 — B)x = / — g = / — Bx
and so

Bx = f — (A — B)x.
Now (A — B) is an n X n matrix of rank r < n and, at this stage in his analysis, Biickner
makes use of the fact that this difference can always be represented by the product of
any n X r matrix K of rank r and any r X n matrix L also of rank r.

It is not our purpose to reproduce Buckner's derivation of his formula, nor to attempt
to follow Kron's thinking except to note that Biickner finds that, in effect, Kron has a
"connection tensor", C, where he, Biickner, has K and CT where he has L. But the ap-
plication of this tensor thinking to the tie-line problem has been thought to require an
extensive defense in the literature. The explanation of this is that no directed-circuit-
on-branch incidence matrix r, or "connection tensor C", is appropriate to the diakoptic
problem. On the other hand, our directed-branch-on-node incidence matrix K of Sec. 3
is quite appropriate and reduces the tie-line problem to a question of the efficiency of
Buckner's formula.

Addendum. In a private communication, J. L. Synge has supplied still another and
most simple proof of the Biickner formula. Let /„ and 7, be identity matrices of n and t
rows respectively and let P and Q be arbitrary except that (/„ + QP)~l and (I, + PQ)~l
must exist. Then, obviously

P(h + QP) = (L + PQ)P,
(7, + PQ)~lP{In + QP) = P,

Q(It + PQ)~lP{In + QP) = QP = (In + QP) - ln,

:.Q{It + PQY'P = In - (7, + QP)'1,

(In + QIT1 = In~ Q(I. + PQY'P.
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This is the essence of the Biickner formula. To obtain the form used in Sec. 3, let

P = yKT, Q = B~XK,

and then multiply through on the right by B~l.
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