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Abstract. A short-time solution for two-dimensional change-of-phase problems for
a half space is developed. The problems are such that melting starts at a point of the sur-
face and spreads both along the surface and towards the interior of the body. Heating is
applied by an analytic but otherwise general heat input.

It is found that the shape of the melt interface is, when normalized, a universal func-
tion, i.e. independent of both the applied heat input and the material properties. Initial
melt propagation normal to and along the surface is proportional to y3/2 and yu~ re-
spectively, where y is the nondimensional time measured from the start of melting.

1. Introduction. Numerous studies have been undertaken in the field of heat
conduction including changes of phase since the early investigations of Lam6 and
Clapeyron [1], Neumann [2] and Stefan [3];2 the large majority of these has been restricted
however to one-dimensional problems, usually in rectangular coordinates, though cylin-
drical and spherical one-dimensional problems have also been considered. The present
study constitutes what is believed to be the first exact short-time analytical solution of
a truly two-dimensional problem; that is, one in which a spread of the melting interface
occurs in two dimensions.

An analytic study of two-dimensional change-of-phase problems was previously car-
ried out in [5], where such problems were classified according to the behavior of the
liquid-solid interface. Referring, to be specific, to a body which starts to melt at some
points of its surface, the problem was there said to be of Class I if the unmelted portion
of the surface remained unchanged for all times. If, on the other hand, the melted portion
of the surface was initially finite and not vanishing and increased with time, then the
problem was categorized as of Class II. Finally, if melting started at a point and then
spread along the surface (as well as into the interior), the problem was said to be of Class
III. [5] presented a complete method of solution for problems of Class I; the development
of a starting solution for problems of Class III is, as has been mentioned, the object of
the present study.

The method of solution employed here makes use of the "embedding technique,"

* Received December 26, 1967; revised version received April 9, 1968. The work described here was
supported by a grant of the Office of Naval Research, and formed part of a dissertation toward the Eng.
Sc. D. degree at Columbia University.

Present address: Cornell University.
2 An interesting discussion of this early work, as well as extensions and indications of some important

unsolved problems, was given by Brillouin [4],
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which was introduced for one-dimensional problems in [6],3 and employed in [5] for prob-
lems of Class I. In this approach, the melting or solidifying body of changing dimensions
is mathematically extended to occupy the space filled by the actual body before change of
phase. An unknown fictitious heat input is applied at the boundary of the extended
body, whose magnitude is then determined in such a manner as to satisfy the actual
boundary conditions on the moving liquid-solid interface. The principal advantage of this
technique is that it allows an explicit expression for the temperature to be written in
terms of the fictitious heat input. A general one-dimensional starting solution was con-
structed by this method in [9],

The solution presented applies equally to the melting of an initially solid body and to
the solidification of an initially liquid mass; for simplicity therefore only the former of
these possibilities will in general be discussed.

Problems of melting may be classified according to the behavior of the liquid phase,
that is, depending on whether the liquid is allowed to remain stationary upon formation,
is ablated in a prescribed manner or is instantaneously removed. The latter case will be
considered here, but it should be remembered that in one-dimensional problems the
starting solution is independent of the rate of ablation [11], including the limiting cases
of zero rate (stationary liquid) and infinite rate (instantaneous removal). It may be sup-
posed on physical grounds that a similar statement can be made for two-dimensional
problems: if that is the case, the present solution can be taken to apply regardless of the
behavior of the liquid.

The solution presented here is restricted to short times after the start of melting; it
allows for arbitrary heating conditions prior to that time, but is restricted to heat inputs
which vary smoothly in the neighborhood of the time of melt initiation. An analytic
solution valid for somewhat longer values of the time could be obtained by the technique
here employed, but for longer times yet the present technique would probably be more
conveniently employed in conjunction with a numerical analysis.

The starting solution, such as the one developed here, is interesting because it can
provide some basic insight into the early stages of the solidification or melting process.
It is however useful also in other respects: it has been conveniently employed as a start
of a numerical solution (e.g. [6]), or as a start of an approximate analytical solution (e.g.
[12]) or as a check on the accuracy of approximate solutions (e.g. [13]). Furthermore, it
is hoped that the work presented here will eventually lead to a more accurate though
macroscopic study of the process of nucleation and of the early growth and morphology of
dendrites and cellular clusters. The work which has been done in this area4 has considered
two-dimensional heat conduction under several simplifying assumptions; significant
among these was the assumption of the shape of the growth, while the determination of
such a shape is one of the principal aims of the present approach. A further discussion
of this aspect of the problem will be found in the last section of the paper.

The problem under consideration is formulated in Sec. 2. Its solution is formally
carried out in Sec. 3, where it is shown that all the conditions of the problem are satisfied
on the basis of certain assumptions, a uniqueness theorem insuring that the only solution
has thus been found. The actual solution is then obtained in Sec. 4; the results are sum-
marized in Sec. 5 and discussed in Sec. 6.

'For a further discussion see [71; this and [8] contain comprehensive bibliographies.
4[14] — [17], for example; [4] may be consulted for an exhaustive bibliography.
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2. Formulation of the problem. Consider the half space z > 0, initially solid, to be
heated on the boundary z = 0 by a heat input Q(x, t), giving rise to a temperature
T(x, z, t). Assume that at a time t = tm , the temperature reaches for the first time the
melting temperature Tm of the material, and that it does so at a point on the boundary5
which may be taken without loss of generality as the origin; thus

5P(0, 0, Q = Tm . (1)
The determination of the temperature for t < tm is a straightforward problem in the
theory of heat conduction and need not concern us here; it will be found useful to recall,
however, that it can be written in terms of Q and of the initial temperature T:(x, z) at
t = t0 as [18], [19]:

-o-i £ /: ■ -> *
, f" r T lr exp [~(x - xtf/Mt - to)]

+ Jo L. A l ' 4Mt~t0)
•[exp [-(z - Zif/^it - i0)] + exp [—(z + z^f/^t - «„)]] dxx dz1 . (2)

The heat input Q(x, t) continues to be applied after tm , and the body continues to
melt, so that, for any t > tm , the solid will occupy a region smaller than the original half
space and will in fact be bounded by the curve (Fig. la):

z = kx, t), \x\ < x0(t)

To, \x\ > x0(t)
where the unknown quantities s and x0 satisfy the condition

s(zo ,0=0, x0(tm) = 0 (3a)

and where it has been assumed (as will be done for simplicity in the remainder of this
paper) that the problem is symmetrical about x = 0. The liquid, which would occupy

7777777 7^777777*

s(*,t)~1-*(*>■

(0) REPRESENTATION OF THE (b) REPRESENTATION OF THE EXTENDED
PROBLEM PROBLEM
(Q applied on

Fig. 1

The time tm is the time of start of melting, criteria for which are given in [5], [9j.
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the region 0 < z < s(x, t), |a;| < xa(t), is assumed here to be instantaneously removed
upon formation.

The mathematical formulation of the problem after the start of melting consists of
the Fourier heat conduction equation:

K{d"T/dx2 + d2T/dz2) = dT/dt, (4)

the initial condition:

T = T(x, z, tm) at t = tm (5)

and the moving-boundary conditions:6

T(x, s, t) = Tm |x| < x0(t), (6)

■k 1 + ^(*>)■]\dxJ _

riT1
— k —- = Q(x, t) for la;I > xo(0 on z = 0, (7a)

az

= Q(x, t) — pi ^ for |a;| < x0(t) on z = s(x, t), (7b)

as well as conditions (3a). Note that the right-hand side of Eq. (5) is a known function,
obtained from the premelting solution. The conductivity k, the diffusivity k, the density
p, and the latent heat I are taken to be constants.

It can be shown that the solution to the above boundary-value problem is unique.
Indeed, it was proved in [20] that not more than one solution exists if Q(x, t) and its
integral over the moving portion of the boundary are prescribed; that proof is readily
extended to the case in which (as in the present problem) Q and the total heat input over
the entire boundary are prescribed.

3. Formulation in terms of the embedding technique. To obtain a solution to the
problem formulated in the preceding section, we extend mathematically the temperature
so as to be defined in the entire half space z > 0, and to satisfy throughout that region
Eq. (4) and, at t = tm , Eq. (5). The boundary condition on 2 = 0 is already prescribed
by Eq. (7a) for the region |a:| > x0 , while for \x\ < x0 it may be arbitrarily prescribed,
since the boundary is there fictitious. It is convenient to introduce a fictitious heat
input Q'(x, t) to be applied over this fictitious portion of the boundary, and to express
the boundary condition as

— k(dT/dz) = Q*(x, t) + Q'(x, t) t > tm , |a;| < x0(t) (8)

where Q*(x, t) is the analytic continuation of the premelting heat input Q. A representa-
tion of the extended problem is shown in Fig. lb.

The extended temperature can now be immediately expressed by means of Eq. (2) as

T{x, z, t) = !T*(x, z, t) + T'(x, z, t), (9)

where

T'(x, z, t) = | f' Q'(Xi , r) 6XP [~(0C ~2^(f Z^)/(4K(< ~ T))] dx^ dT (9a)

6A derivation of the heat flux interface condition (7b) can be found in [5]; it assumes that the re-
sultant of the heat flux vector is in the z-direction.
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and therefore (since Q' has been applied only in |z| < x„)

dT'/dz = 0 on z = 0, [.t| > x0 . (9b)

Note that the temperature T automatically satisfies Eq. (7a), in view of (9b), and because
the temperature T* is that caused by the heat input Q* which is here taken to be equal to
Q for \x\ > x0 . T* is therefore the analytic continuation of the premelting temperature
given by Eq. (2) and can thus be expressed in terms of the temperature and its derivatives
at tm as

T*\ JT*
T* \T ) yid
k<*'Z'v)-1+y*+2i 8y>

+ Z dZ + y dZ dy + + 2! l~ 0Z^~ + +

^ 2!

r
^ 4!

©ax' ' " ex" a# ' ' " ax' az
' ' m / | \ m ' | | rr  NX vn' |

' y H~Vr2™ll77 ' ' ' ' ' 3 V2 „r, ~r

r) <¥)m | '-*• m' | | ry m'

' ^ a¥4 a,, ' /v av' 'ex4 1 » dX* dy ' ' dX4 dZ + ■■■ (10)

where all derivatives of T* must be evaluated at X = Z = y = 0. The dimensionless
variables

y = (t- X = x/2{dm)U2 Z = z/2(dmy/2 (11a)

have been used; with the further dimensionless notation7

v , , Xo_ t n _ kT\ (t_\/2 _ -r1/2cTm _ Qo (L)1/2
0^ 2(kO'/2 ' 2(kL)1/2 ' Qo 2 LtJ ' m 21 pi \k )

(lib)
the temperature (9) assumes the form

rp /TT*

f-(X, Z,y) = (X, z, y)

+ f P " V ) Q'(Xl 'o ~ Vl) 6XP [_(A" ~ Xl)2/Vl] dXl dVx ' (12)
J0 y 1 J-X, (u-u,) Vo

Equation (12) gives the temperature throughout the body after melting in terms of
the three unknown functions £(X, y), Q'(X, y) and X„(y). These unknowns will be found
from the interface conditions (6) and (7b), as well as another condition to be discussed
later (i.e. Eq. (39)].

Equations (6) and (7b), when put in dimensionless form, become respectively

'The reference heat input Q0 has the following physical meaning: if a constant heat input of magni-
tude Qo is applied uniformly along x on the free surface of a half space, then the relation between the
melting time tm and Qo is that given by the third of Eqs. (lib).
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fV -e/vi nX.{v-vx) (~)/(Y v _ v \ T*

/ h^T / 'n— exP - Z')2/2/1] dX, dlh = 1 - ~r (X, £, 2/),
J0 |/l J-X^y-Vr) VO -< »>

r /y*\ (13a)
J- l~i a. M21 d\?V _ t r e~tVl"
w1/2 L W JL dZ ( J0 7Tl/2yf Ax.(.-„,

, y - y.)
Qo

•exp [-(X - ZOVy,] ^ dVl Q(X,2/) 2
—Qr~-mYy{X>y) (13b)

for |X| < X0(y), on Z = $(X, j,).
These two integro-differential equations will now be solved under the assumption that

QV^y) = £ 4:iI'\(y)X2i, |Z| < X0(y). (14)
VO i=0

Substitution of this expression into (12) gives the temperature as

(X, Z, y) = (X, Z, y) + £ ['" e~z'""IW) dyx (15a)
J m I m i-0 Jo U1

where

Ij(X, X0 , ?/]) = Ij[X, X0(y J/i), 2/i] (15b)

= rVI> x; exp [-(x - x,)2/^] rfx,.
J-Xo(v-Vi)

Expression (15a) gives the temperature at all points of the body.
(a) Consideration of the Interface Condition T = Tm , Eqs. (6) or (13a). Expand the

function /(2,) in (15a) in powers of X, only even powers appearing because of symmetry,
and use the result to rewrite Eq. (13a) as

f, X2! A r 4'/<Y(?y - y.) -t./.,ra"/<»nl
S (2i)! S I '2ir,/2y1 V dX2i \x,0dyi ( 6)

where the functions 7<2l) and their even derivatives can be expressed as

- I<2''
dX2<

= ^-<+1/V.-,(%] (17)
M/l

where

•'C;"5) ~ 4V,/2Z>t+1.#+1 erf

-YVi-* WMi+V (2z + - 2w+ 1)-'! feY(i+i"""i>tl
2, (1 «<+,.,-1)7-(*) 2'(2i + 2j - 2n - 2k + 1)!! Vj/i/2/

(17a)

and

/ *\  (2i + 2j — 2n + 3)!!  /"i7h\
1 + 1 •, +1 7»W ^ _f_ 2j — 2n + 3)2'+'~"+1 v.1'"/
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and where
(—l)n_14'~"+1(2i)!

7"W (n — 1)! (2* - 2n + 2)! (18)
are the coefficients appearing in the even Hermite polynomials [21]

#2.(z) = £ 7.(tV(<""+1>. (18a)
n= 1

Note that •/,, contains no error function term when j < i since D,, = 0 for these cases,
demonstration of which is given in Appendix B.

Equation (17a) has been derived with the aid of successive integrations by parts of
the integrals

dX2i .

i
O 

ax27 exp -[(X - X,)2/?/,]/A0 kV-Vi ) XI'
-Xo(v-vi)

/Xo(v-vi) ( Y~ \xiiHJ^syx''/" dxl
■Xo(v-vi) \yi '

dXl , i, j > 0
A' = 0

= y\ 1+1/2

n= 1

S2A±2j-2n + m^ erf \2,+'~n+1(2i + 2j - 2n + 3) Clt Vz/l'V ( )

_ n - * ^ "v" (2t + 2; - 2n + 1)!! (X0 y«+'—«« _ZiV„"|
u di+<z. 2*(2i + 2j _ 2w _ 2k + 1)n ^1/2^ e J

where u = Xi/y\/2 .
Primary interest is centered here on developing a starting solution, for which only the

lowest-order terms on the right-hand side of Eq. (16), expanded by means of (10), need
be kept. If this is done, and if coefficients of like powers of X on both sides of the equation
are matched, the following infinite set of simultaneous integral equations for the functions
Fj is obtained:

£ /j = o Jo

" 4'F:(y - Vi) „-!■/».
2tt1/2?/i

d ^(2/)
ax2* diji

x=o

4-
- dy

H-_\t,
ax2*

y «l (20)

t = 1,2,

The first three of these equations are given explicitly in Appendix A.
It is now necessary to reduce the left-hand side of this equation to an expression valid

for small values of y. It is shown in [9], [6], [23] that, for y « 1, the exponential e~£Vl"
may be replaced by unity, provided that

lim = 0 (21)
,-o y

and that
11 - f''i(y - V\)/Fj(y)\ « 1 for Vl - 0. (22)
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It will be assumed here, and verified a posteriori, that (21) holds. Thus, using (17), the
first of Eqs. (20), i.e. for i = 0, becomes8

t f4'^- y-> yr/2J0i&) dyi = -y
,„0 Jo -1" \?/l /

y« i, (23)L dy

Clearly the left-hand side will be of the correct form (i.e. proportional to y) if

F,(y) = Ai + i/y'~U2 and X0(y) = AyU2 (24)

where A ,• and A are constants, since it then reduces to

y 4-- 4 f (-9 1/2 ^J+l / ll
,'_0 -7T J0 \1yi:^mAi+1/ U^-y)' (25)

where

F = T/i/.V- (26)

Assumption (24) will represent a solution of the problem only if the constants Aj
can be adjusted so as to satisfy all of Eqs. (20), for short times, while the constant A
will be chosen later so as to satisfy the required conditions of continuity. The function £
will be found by use of the heat-input boundary condition (13b). All equations of the
problem are then satisfied, and the uniqueness theorem insures that this is indeed the
solution.

Consider first Eqs. (20). Substitution of (24) into (20) and use of transformation (26)
shows, in a manner analogous to that just employed for i = 0, that only integrals of the
type (25) arise, proportional however to y°, y~l, y'2, • • • for i = 1, 2, 3, ■ • • . The first of
these powers is the same as that required by the right-hand side of Eq. (20), while the
others are smaller; hence the right-hand sides for i = 0, 1 must be taken from (20), while
for i > 2 they must be set equal to zero. The constants A, are therefore obtained from the
infinite set of linear algebraic equations

i: Iij(A)A j = (-l)'C,- , * = 1, 2, 3, • • • (27)

where

T*\ JT
d\T~ d\r

C\ = >0; C2 = -
dy _jo,o,o oJC

> 0 (27a)
0,0,0

C, =0, i > 9

and where

4'~i rl KI '-1/2 ( (l - Y\1/2\
/,i = 2?75./0 n -)•)•• " 'Vll r ) )dY- (28)

This completes the formal consideration of the first interface boundary condition,
and we proceed to an examination of the second interface condition. It is clear, however,

•Recall that Xo = X0(y — yi).
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that solution of Eqs. (27) presents a difficult problem because of the complicated depend-
ence of the coefficients on the parameter A. The solution of these equations, alternate
expressions for , and the determination of A are discussed in Sec. 4.

(b) Consideration of the Heat-Balance Interface Condition, Eqs. (7b) or (13b). We
now turn to the heat-input boundary condition, Eq. (13b); with the aid of (14) and (15b),
and expansion of the functions IW) , it can be rewritten as

(Y _ Q{-x'y) = 1
mdy Q0 t/: 1 + il_Y

dXj

T•w - t B /: § wh */■ «
Substitution of (17) and (24) results in the following integrals whose evaluation to first-
order terms is shown in [23], under condition (21), to be

 = "W"r
Thus Eq. (29) finally becomes

+J_
1/2 * (30)

1 d_l Q(X, y) - Q*(X, 0) _ A •
m dy {X' V) ~ Q0 h <+1 2/' 1/2 ' V<< (31)

Note that

(32)
V0 V=0 £/

With the condition £(X, 0) = 0, Eq. (31) can be integrated to obtain £(X, ?/). If

= 0 (33)lim -t/2
y—»0 2/

Q(*. v) - (?*(*, o)
Q0

as assumed here, the melt depth is

£(Ar, t/) = -m 3 A_ 2i Ai+1 ^572 (34a)

£(X, ») - -f (34b)
Equation (34b) gives the form of the melting interface, in terms of the coefficient A,
which appears both explicitly and implicitly in the coefficients Ai(A)-, the latter are as-
sumed to have been found from Eqs. (27) in the manner discussed in the following section.

This completes the formal consideration of the heat-balance interface condition; it
only remains to establish the equation for the determination of the parameter A, which
will now be examined.

It will first be proved that the condition

«(X„ ,y) = 0 (35)
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is already identically satisfied. Indeed the temperatures , y), y], T[X+0 , 0, y]
and T[X+0 , £(-X"„ , y), y] are all equal to Tm : the first because it was set equal to Tm in
Eq. (16); the second because it happens that the expression obtained by setting z — 0
in Eq. (15a) is identical with that of Eq. (23), resulting from (16) after use of the short
time approximation (21) and since 7, is a continuous function of X; the third for con-
tinuity9 of temperature across X = X0 at Z = £(X~0, y). The last temperature listed is,
however, also given by

Tm - Q(X°k,y) ,y)-, (36)

hence Eq. (35) holds. In other words, it has now been proved that Eqs. (27) and (35)
cannot be independent; it will be indeed verified in the next section that this is the case
(cf. Eq. 46). In other words, condition (35) which can be rewritten as

5 5~^2i = 0 (3?)
will also result from Eqs. (27)

The temperature T[X~0 , 0, y] is, however, also equal to Tm by the same reasoning
used in conjunction with T[X+0 , 0, y\; hence, it is necessary that

~ (Xo , 0, y) = ~ (X„+ , 0,y) = -Q(Xnk ' V)- (38)

Substituting into Eq. (7b), and omitting the term (ds/dx)2 in accordance with the de-
velopment of Eq. (30), we obtain the desired equation for the determination of X0(y) as

g = 0 at X = X0(y). (39)

This of course implies that
Q'[Xo(y), y] = 0 (39a)

and can be written explicitly from Eq. (31) or (34) as

=o. (40)t = i
The determination of the constants 4, and A must now be effected from Eqs. (27)

and (40); this is done in Sec. 4.
Note that the total derivative of %[X0(y), y] with respect to y is zero or

I + ifi = ° ■" x-x^>- <4«
With (39), this implies that

d£/dX = 0 at X = X0(y). (41a)

The quantity dQ'/dX is not necessarily zero at X = X0(y).
4. Solution. In order to complete the solution of the problem, it is now necessary

to determine the constants A< and A from Eqs. (27) and (40). Once these constants are

Continuity in the interior of the body is assured in the solution by use of the Duhamel formula (9a)
because of the lack of internal heat sources; even a discontinuous surface heat input will not result in
interior temperature discontinuities [22].
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TABLE I
Coefficients Iij for i, j = 1,2, 5

f7±U(A)-
iAeA2El(A2)] (A5-f)eA2El(A2))

-4a*+18a+

l8l(A)+(i(A5-6A}+

9A)eA2Ei(A2)]

15 o«+7^[ -1iA5+^A5-75A-

75I(A )+(l4A7- 1QA5+25A5-

|^)eA2Et(A2)]

-29»on+^l-^+f^
+105A+105I(A )+(Sa9-!(A7+

lltA5-35A3+^5A)eA2El(A2)]

~7aA
A2eA E1(A2)]

-7^[A+2I(A)-ItX

(AJ-A)eA2Ei(A2)]

-U8n+^[ -A^+6A+

6i(A )+(a5-2A5+

JA)eA2Ei(A2)]

720n+^~[-2A +10A -45A-

45I(A )+(2A7-5a5+15A5-

^A)eA2Ei(A2)]

-l5WO„+^[-A7+fA5-^3 n 2 5
+105A+105I(A )+(A9-l4A7+

)eA2Ei(A2) ]

7^ A 5
^ ."I
7; A }fA 614.4 5

 *

8 -3,. 6x
7n (1"^) ^AX^> -^a<4£>

19a. -l._ 20 1(2,"7TA (}-}72+IIf)J? A(^ i072 .3/, 20 2l0v-JL A:>(1 )

known, the melted thickness £ is obtained from Eq. (34b), X0 from Eq. (24), Q' from Eqs.
(14) and (24), and the temperature from Eq. (15a).

Two equivalent procedures for the evaluation of these constants will be outlined:
the first consists in obtaining a numerical solution of Eqs. (27) and (40) directly, while
the second requires first a reduction to a more convenient set of equations and variables.
Before proceeding, it should be noted that the coefficients can be written as:

jor i = 1, 2 and j = 1 see the entries in Table I

for i = 1 and j ^ 1
1/2 r7T A.

4

= (—l)'(2j - 3)(2j - 3)!! 3/2 _ _ _1_ , n _ . . 'fi (-l)*(2j - 3)!!
2, + 1A2,_1 [ ( ^ 2^42 2,) ^ 2k(2j - 2k - 1)!!

1 k — Z k-m-3 i —2 (n+ m + 2)

^ - (1 - Z (1 - «-.*-.) Z 2)!

Jc — m — n — 2 ^ ^3.*-•»-») Z 3JI
(-!)'+' ^2 _ ' y,"3 (2j- 3)!! A"2"'+m+2)

2'"1 .4^ (2j - 2m - 2n - 5)0" ~ m - n - 3)!

' [2^ - 2m - 2n - 5 + (1 ~ a».'—-») 2 m _ „ _ t _ 3]
(—l)'(2j — 3)11 , ri _ , N V (-1)^' - 3)1! k- A2- 1~|

2'j h 2k"(2j -2k - 1)U .4" J
(42a)

+ \eA"Ei{A2) 1 2i-lA2U-»
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for i = 2 and j ^ 1

xi/2/2). 1 , (-l)'(j - 1)(2j - 3)!!, 3/2
4'_4=»-s - —2 ^ 2' A2'~* ^ ~~ 4/(^4)]

+ ^eA'Ei(A2)
i (_ A -2(4-2) ~|

A — j + 1 - (1 - 52,)(j - 1)(2> - .;)!! £ 2t-3(2j - 2fc + 1)!tJ

7-3

to = 0

2A"
_(2; — 2m — 5) (j — m — 3)!

(i - g3.,-J^"2'",+1>  L + 2'' t ~ M-(2j - 2m - 5)(; - m - 3)1 fo j - m-n- 3j ' £3 2*(2j - 2fc + 1)!!
*-4 -2(m + l) r * —* fc _ m _ 3

_l v1  
— m — 3)! ^
+D r~ to—

£S(k - m- 3)(fc - m - 3)! L1 + (1 ~ 54 i-m) § fc - m - n - 4j

for i > 3

iri/2Iii  _ /_im _ s /*\ y* (i — 3)! .A
4i+,-2A2,-6 2, ( 1) (1 5,>n(i) 2. (z- _ 3 _ m)! m!

(42b)

(2t + 2; - 2n - 3)!! (z + m - n - fc)!
Ho 2*+T(2i + 2j - 2n — 2/c — 3)!!

- HO - 3) D„< E  
* = 0 fc! (* - 3 - fc)! (2j -2fc - 5)0" - fc - 3)!

1~2/-/Q' - fc - 3) _ , '"f3 //(; - fc - m - 2)
' L 2j - 2fc - 5 + (1 53''-l) j - k - m - 2 J

+ g 2^ r _ g (,- - 3)1 (r
+ h (2j -2fc - 5)!! |_^(* 4) (t - 3 -

-fc - 1)!
r)! r! A2

3, + <^3,™-.+2> (i _ gtr)(-i)*-f(j - 3); yi H(fc - r - m + 1)
r \ (fc — r)! (i — 3 — r)\ A2r k — r — m + 1_ (42c)

where 1(A) is defined in Eq. (44) and where

a„{i) = (-lr^-'^i - 1),

n - V/_ir' g\ (2i + 2j-2n-l)\l
hi 2i+i'"~\2i + 2j - 2n - 1) '

a,, = I1, * = h (43)
L0, i ^ j,
Jo, i < 0,
ll, i > 0,

(2n - 1)!! = 1-3-5 • ■ ■ (2n- 1)

m =

where 7„(i) was defined in Eq. (18).
These expressions are derived from (28) by successive integrations by parts in [23].
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Explicit expressions for the coefficients in the first five columns and rows are shown in
Table I. It may be verified that these coefficients enjoy the following properties:

1. The coefficients of the first two rows are expressible in terms of polynomials in A
(with positive powers except for I21), of the tabulated functions eA' and Ei (A2), and of
the integral

3/2 1/2 ,i erf (aI1 Y) ) r / \
I(A) = Y - YI (F(i - f))i/2 dY s Ie""'arctan (i)du (44)

which represents a bounded monotone decreasing function of A (see Fig. 2). Expressions
for the coefficients Iu and I2, valid for large values of A are collected in Table II and
discussed further in Sec. 5.

2. The coefficients in the rows beyond the second (i > 3) are polynomials with posi-
tive and negative powers of A.

3. Note that /;,• ^ .
(a) First method oj solution. The solution of Eqs. (27) can be formally represented as

Ai = -CJ'KA) + C\n(A) (45)
where I~\ , are elements of the matrix [J;,]-1, inverse to [/<,]. The coefficients were
calculated for several values of A, and the inverse coefficients I~) were then obtained by
numerical inversion of the matrix. In this work, matrix sizes from 3 X 3 to 9 X 9 were
employed. The resulting values of A{ , in terms of C\ and C2 from Eq. (45), were then
substituted into Eq. (40), which could be directly solved for (C2/Ci) for each particular
value of A. Plots of A against (Ci/C2) are shown in Fig. 3; two curves are given, using

1.4-

1.2

1.0-

1(A) J-IT3/2 <= 1.39208

I 2 3

A

Fig. 2. Representation of 1(A) = Jo e~tan-1 (u/A)du.
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TABLE II
Asymptotic expressions for coefficients for i = 1, 2, j = 1, 2, . .5

i 1, 1 i.
it 7!t ̂ 5 ^5+

it 2,2

16/4 6 ^♦7^75+—>

$jl^~4A)+l50«

2ii iSZ i+7^( a+73+-")

256,A5 1»ff^-y+\.SA)-29kO«

16,1152 ^00 ,
^ A

a*
, b, 6 20^n*7~v7 ?+yit a ^3

Qk ,

U&n

22,10 lit ,

^2(A5-10A)+720it

128, 42 72 >+zr("T v+-"^

)-ljMtOn

1024,108 220
~A l3+"*)

either these variables or their reciprocals, so as to indicate clearly the behaviors near
A = Ci/C2 = 0 and near A = Cj/Cz = ro.

Once the relationship between A and (C\/C2) is established, the values (A ,/C'i) can
be calculated from Eqs. (45). The solution is now complete.

Plots of (Ai/Ci) and (A2/Ci) against (C2/C0 are shown in Fig. 4. It is of interest to
note that the coefficients A, decrease rapidly with increasing i (Fig. 5) and do not change

dx JX'i» y = o

Fig. 3. Variation of A and 1 /A with ratios of initial temperature derivatives.
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Jll./ 3T ]
& x2/ d y J

x=E=y=o

Fig. 4. Variation of Ai/Ci and At/Ci with the ratio of initial temperature derivatives.

I 234 56789 10
I

Fig. 5. Variation of coefficients Ai for values of i = 1, 2, ,9.
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TABLE III
Coefficients Ai/Ci resulting from increasing matrix sizes; A = 10, i = 1, 2, 3

Matrix size A\/C\ At/C, (4,/Ci) X 105

-1.27737
-1.27697
-1.27680
-1.27670
-1.27664
-1.27659
-1.27656

.002129

.001915

.001824

.001773

.001741

.001718

.001702

.266

.160

.137

.127 a/jT

. 121 Cv =

.117

.115
dy\Tm, x=o).

0

v=0

radically with increasing size of matrix (Table III). Such numerical indications of con-
vergence hold throughout the work presented here (e.g. Fig. 6 or Eq. (5(5)). A further
check is provided by comparisons with the expressions valid for large values of A, de-
veloped in Sec. 5. In that section, some approximate results are also given.

(b) Second method oj solution. Inspection of Table I reveals that the coefficients
shown in the third row are

_ 3(4;M2'-5
hi ~ (2j - 5)tt17"' (46)

These are proportional to successive terms of the series in Eq. (37); hence, the equation

23456789
i

Fig. 6. Values of Ki for i — 1, 2, • • • , 9.
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corresponding to i = 3 is identical with (37) and thus, as was to be shown, Eqs. (27) and
(35) are not independent.

It can now further be noticed that the first term listed in Table I for Ii: is equal to
( — 2/3,■), while the first term of I5i is (1213j). Also, the ratio of the second term of I5i to
the second term of /4, is (—4) for all j. If it is assumed that similar relationships hold for
all values of i > 3 and j, then linear combinations of the equations for i > 3 can be written
so that each coefficient has only one term, namely the last term of each polynomial.
Furthermore, coefficients pertaining to neighboring values of j in each of the resulting
equations are proportional to powers of A differing by 2. It follows that Eqs. (27) for
i > 3 can be reduced to

i I'iiB, =0, i = 3, 4, 5, • • • (47)
7=1

where the new variables

Bi = (48)
have been introduced.

It is important to note that the coefficients I'u are independent of A. Thus a solution
of Eqs. (47) will give Z>, for i > 3 as a linear combination of and B2 . However, Eq.
(40) becomes, in terms of the new variables,

£ 4'_15, = 0 (49)
7=1

and therefore, by combining (49) and (47), one can determine all 5, coefficients for i > 2
in terms of B1 , namely

B< = KiBl . (50)
Clearly Kx = 1 and Al = B, . This calculation was performed by the procedure just out-
lined and, alternatively, by calculating the values of K, (which again are independent of
A) from the equation

Ki = Aw~"At/Ai (51)
on the basis of the coefficients At obtained by the first method of solution for several
values of A. Since it was found that, in this latter calculation, the coefficients K< were
indeed independent of the particular value of A used, it was concluded that the previous
conjecture concerning the behavior of the coefficients was correct. Values of Ki are
given in Fig. 6. The coefficients A ,• are obtainable immediately from this information since

A< = ff4A1/Aa"-,>. (52)

There now remains to obtain the values of A! and A: these must be obtained from the
equations corresponding to i = 1, 2 in Eqs. (27). These can now be written as

A: ± KjIli(A) = -C, , A, £ K,I2i(A) = +C2 . (53)
i-1 7=1

Thus the relation between A and (C2/C1) is

= zr-. K,iai(A)
c> Z'U KJu{A)

which has already been plotted in Fig. 3. Similarly

(54)
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A, 1
c» £r-. K,IU(A)

which leads to the plot of Fig. 4.

(55)

5. Summary of results and approximations; behavior for large A. The starting
solution of the problem formulated in Sec. 2 may now be summarized as follows. The
thickness of melted material is given by Eqs. (34b), (52) and Fig. 5, or

XS(X,y) = -mAiy3/2
X0(y)_\

— A ,,3- 3 Aiy
(56)

1 - 1.600(0 + ,43l(|)* + .078(|)"

+ ,033(|)' + .019(|)'" + .013(|)" +

Of course, f = 0 for |X| > X0(y), where the extent of the melted material along the surface
is given by

X0(y) = Ayl/2. (57)

A plot of the melted thickness is shown in Fig. 7. The parameters A and Ai are given

X/X0(v)
0 .2 .4 .6 .8

•4
f(x,y)

yV23 -6

Fig. 7. Melt depth shape.

respectively in Figs. 3 and 4.
The fictitious heat input Q' is given by Eq. (32), or

AlVl

(58)

1 - •533l|) - -144(|) - "078(f0

.054&-Y - .044^Y° - .039^\XJ \X0/
A plot of this equation is shown in Fig. 8.
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O'(x.y) 'G
QoA.y"2

.4 .6

x / x„ (y)
Fig. 8. Fictitious heat-input shape.

Some approximations to the above exact results can be obtained from the following
considerations of the behavior for large values of A. Table II gives the coefficients of the
first two (i = 1, 2) of Eqs. (27), obtained by means of asymptotic expansions of the
transcendental functions appearing there. Comparison of the terms in Table II with
those of Eqs. (27) for i > 3, given in Table I, shows that all the coefficients of negative
odd powers of A vanish, so that the first two equations of (27) become, from Eqs. (42):

t £ ( —1)'2'~3(2; - 3)(2j - 3)!! K.A2^ = -CJAx ,
(59)

x £ (—1)'2'(; - l)(2j - 3)!! KjA211'" = Ci/A1 ,
1= 2

which are valid only for A 1. If the coefficients K, previously found are employed, these
two equations can be solved simultaneously for the two unknowns A and (Ai/Ci) as
functions of (Ci/C2). Thus

v 3/2

A~i{~K2c) + J (: + 6 !j)\/~a'2 ci+°(^) (60)

or, approximately, keeping one term only,

A = d( — K —— I 9 (dT*/dy)q,0,0 /ROn"!
\ 2cJ V (d2T*/dX2) o.o.o' ( }

It may be verified that the latter expression actually fits the curve of Fig. 3 quite well
for all values of A10, provided that K2 is guessed to be ( — J).

The corresponding expressions for (Ai/Ci) is then obtained by substitution into the
first of (59) as

f')+ °(i>)
10The authors are indebted to the reviewer of this paper for pointing out to them the validity of the

last of approximations (60a) for the parameter A and of (62) for the shape of the melt line.
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or, with (60a) and independently of the value of K2 ,

AJCX = -(4/tt)(1 + CysC,)- (61a)

It may be noticed that this equation fits well the curve of Fig. 4 in the range plotted
there; for larger values of C2/C1 , larger errors arise.

It may furthermore be noticed by inspection of Fig. 7 that the equation

(XJL
"b 4 3

-3 Axy
1 - X, (62)

is a good approximation to the shape of the melt line.
6. Discussion of the solution. The following remarks may be made concerning the

solution presented in the preceding section:

1. The solution depends, when put in dimensionless form, upon two dimensionless
parameters, namely Cx = d(T/Tm)/dy and C2 = —d\T/Tm)/dX2, both evaluated at
X = Z = y = 0.

2. Equation (56) indicates the remarkable fact that, for very short times after the
start of melting, the shape of the melt depth is independent of the physical parameters of
the problem. The magnitude of the melt depth of course does depend on these parameters;
however, as Fig. 4 and Eq. (61a) show, it is insensitive to variations in C2 and is roughly
proportional to Ci .

3. Equation (60) and Fig. 3 show that, as C2 —> 0, A —> <*> and therefore X0 —> °°.
This means that only the first term of the expansion in Eq. (56) is then significant for
any finite value of X; hence in this case the solution reduces (with Eq. (61a)) to

T'

in exact agreement with the known starting solution to the analogous one-dimensional
problem [9].

4. It is interesting to note that melting progresses much faster, for short times at
least, along the surface of the body than into the interior. Indeed the distance traveled
by the melt depth along the surface is initially proportional to (t — tm)l/2, while the pene-
tration into the body is proportional to (t — tm)3/2. This implies that two-dimensional
effects have a tendency to decrease with time. To obtain an experimental verification of
the present results, a much more refined time scale would have to be used than in the
corresponding one-dimensional problem. A meaningful experiment would have to be
designed so that the ratio (C2/C1) is large so as to emphasize the two-dimensional effect;
at the same time C1 should be adequately large to produce significant melting in a
reasonable time.

5. The solution presented here has been restricted to the case in which Eqs. (21) and
(33) hold; it reduces, as has been noted above, to the one-dimensional solution appropriate
to these conditions, which, in particular gives £ « y3/2 as in Eq. (63). It may be conjec-
tured that the behavior will also be similar, in the two-dimensional and one-dimensional
cases, if the above restrictions are removed. If that is the case, then a finite jump in the
applied heat input should lead to £ <* y, while an infinite jump (corresponding to a sudden
finite jump in surface temperature) should lead to £ oc yW2.

6. It was mentioned in the Introduction that it was hoped that the present type of
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analysis would point the way to possible applications to the study of dendritic growth.
Examination of published shapes of dendritic clusters ([14], [16], [17]) shows that much
flatter growths are observed than would be expected from Fig. 7. Indeed, from some ap-
proximate calculations in [16], it is expected that the average height of the growth would
occur at about X/X0 m 0.9 rather than at X/X0 0.6 as in Fig. 7. That such a dis-
crepancy should occur is not surprising, since the present solution does not really dupli-
cate the conditions of dendritic formation. It is known ([14], for example) that dendrites
only form in the presence of supercooling which would imply (according to the conjecture
under item 5 above) that £ yl/2. It may be pointed out, however, that a more "pointed"
shape than that often assumed [14] would lead to more accurate comparisons with ex-
perimental data on velocity of growth propagation, and that the parabolic shape assumed
in [15] for dendritic growth is not too dissimilar from that of Fig. 7.

Appendix A

Explicit form of Eqs. (20) for i = 1, 2, 3:

/. Fo(y - ^ Iyr erf (f1)dyi

+

+ 4

[ Fi(y ~ Vi)e £v"*2/i/2 erf  T75 ttts e Xo'/v' I dy1
Jo L \Vi 1 v Vi J

r „, , 3/2[~3 ((xa j (0xi _x0\
/ ^2(y Vl)e Vl 9 er^ L 1/2 ] 1/2 3/2 3 1/2 )e

h _2 \y 1 / TV \ y 1 yx /
dyi +

: -y

- 2

+ 4

rp*

T~
dy +

0,0,0

fo Fo(y - yd ^2 X0e~x°'/Vt dyi

/>,(,- erf (|,) - 4. (fj

I" FJy -

+ H-yJ
XoWvx

+ 16 I F2(y - 2/i)e~fVl"| 3y\/2 erf fe) _ 4s [2 ? + 3Z0 +

dyi

dyi

H£)l +
dX2 0,0,0

+ JAI 1/2
7T

32

fv / y2\
F„(y - 2/,) -j- (3 - 2 ^)X0e-x°''- dy,

^o i/i \ U i'
I' , , <r(xi x:\I F,(* ~ y'} ~W \J, ~ W d"

[ F2(y - yi)Jo

e-£v»,
6y\/2 erf &

\y i

- -1. U *o
tti/2 \ y\

•y 5 X7-3

+ -I + 4^ + 6X0 )e~
Vi Ih

c?2/i +

Tm
dX4 +

0,0,0
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Appendix B

Reduction11 of the expression Di{ /or j < i:

Expressions (18) and (43) render in the form

n - ( —1)'(2^ - 2)! ^ (—l)*(2j + 2fe — 1)!I
•' ~ 22i+i'3 (t - h - 1)! (2j + 2k - l)(2fc - 1)!! Jfc! (Bl)

( 1) (2i 2)! y-> (1) r/07.y'-l I 7j 7.J-2 I t 7.1-3 | | ft 1- - ^7-3 2. (t- _k_l)]kl m) +b2k + b3k + + bj\

where k = i — n and

(2/c)! = 2*(2/c — 1)!! /c!. (B2)

The definition of the quantity

fT\ _ (-1)'^ - 2)! « (-1)^+2/0-1)!!^ 
lj"{x> 22i + '~3 (t - k - 1)! (2j +2jfc - l)(2fc - 1)!! fc! ^ ;

is such that

/)., = dj,(D- (B4)
It will now be shown that

/ / \ (-l)'(2t - 2)! ^ u-„-!7);,(a:) =   2^ (1 - x) (Bo)
^ m = 0

so that only positive powers of (1 — x) appear for j < i and thus Z>',( 1) = 0.
Hence Du = 0 for j < i. On the other hand if j = i, only the term for m = ; — 1 will
be different from 0 at x = 1 and then

Z)„ = 41_'(2t - 2)! (B6)

where ax will be shown from the last of Eqs. (B13) to be

a, = - j)l (B7)

There remains to prove (B5), or, in other words, that a„ exist.
For i > j = 1, clearly

(—l)'(2t- 2)! ^ (~1)D,i(x) = E k

22 f0{i ~ k - \)\k\

(—1V(2i - 2)! _
2"~ (i - 1)! 1 ' '

X

(B8)

For larger values of j < i, we proceed as follows. Using the binomial expansion

,-a _ ,v-— = *yl 1)1
* ( ' h (i-m-r- 1)! r! (Bg)

^ (-!)*-(* - m - 1)! (fc + l)(fc) • • • (fc - m + 1) *
to (i — fc — 1)! fc! (fc + 1) *

1IThe authors are indebted to Sara R. Boley for the proofs comprising the whole of Appendix B.
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where k — r + m, the following linear combination of functions is formed:

D[,(x) = ~( 2)! £ 1 - a?)'-™-1
^ m = 0

(— l)'(2t - 2)! (-l)V pr . , ,
^2i + j—3 ^   Jj J J) " i CL\ , d2 , * j dj-i)

(BIO)

where is the coefficient of the sth power of k in the polynomial

k(k - 1 )(/c - 2) • • • (fc - j + n + 1) (Bll)

so that

P(i, j, k, a, , a2 , ■ ■ ■ , a,-,)

= (* - 1)! a,- + £ fc' £ (-1 )'""(« — j + n — I)! anbn,,-. . (B12)
«=1 n=1

Equating coefficients of like powers of a; in (B3) and (BIO), we obtain a system of equa-
tions from which we get a„ , namely

-i», (B13)

£ (—— j + n — 1)! anbn,i-t = , for 1 < s < j — 1.
n= 1

Clearly this system is triangular; further, the main-diagonal coefficients are not 0 and
therefore a solution exists. In particular for j = i, a} = (—1)'_12'_I and hence

Du = 41_,(2i — 2)1 for j = i and D,, = 0 for j < i. (B14)
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