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ON STRESS-STRAIN RELATIONS FOR ISOTROPIC RIGID
PERFECTLY PLASTIC SOLIDS*

By J. L. DAIS (University of Minnesota)

Abstract. Sufficient conditions under which principal directions of stress and strain
rate must coincide are established rigorously. It is the coincidence of these directions
which permits a proper interpretation of principal strain rate components in principal
stress space.

Introduction. A rigid perfectly plastic solid is characterized by a "yield" or "limit"
surface /(<r,-,) = 0 in stress component space which encloses allowable stress states. The
strain rate tensor must vanish if <ju is inside the surface and, if strain rate component
coordinates are superposed upon stress component coordinates, must be normal to the
surface if a,,- is on the surface.

If the yield surface is that of Mises (that is, if /(<^,) = h^'a^'a > where a',- is the stress
deviator tensor) then normality requires that for some scalar X, ei; = X(3//3o-i,) = XaJ,- ;
coincidence of principal directions of stress and strain rate is then immediate since the
principal axes of the stress and stress deviator tensors coincide.

More generally, if / is a function of stress invariants which is differentiable in the
components of cr,, then the principal directions of cr,,- and d//d<r,,- conicide; by normality,
then, the axes of <r,-; and coincide. Alternatively, a stress-strain rate equation of the
form i = f(d) can be postulated and the material taken to be isotropic if and only if for
all orthogonal transformations s the equation s i s'1 = Xf(sds_1) holds, where s~l is the
inverse of s. From this definition of "response symmetry", coincidence follows from a
well-known theorem [1],

Hill [2] and Shield [3], among others, have taken coincidence for the rigid perfectly
plastic Tresca material on the premise of material isotropy but did not supply a proof.
Neither of the results quoted above are applicable since the first requires a differentiable
yield function and the second a unique correspondence between the tensors of stress and
strain rate or their deviators. Moreover, coincidence does not hold for an isotropic fric-
tional material [4], which obeys the verbal hypotheses upon which coincidence for the
Tresca material is generally taken.

In Sec. 1 a pictorial description of the rigid perfectly plastic Tresca material is given
and it is explained why coincidence does not hold for the conceptually similar frictional
material. In Sec. 2 it is shown that coincidence must hold for a rigid perfectly plastic
material if the question of "whether or not a stress state represents yield" is to be in-
dependent of the relative orientation of material and principal stress directions.

1. The Tresca and frictional materials. The relation between the tensors of stress
and strain rate for the Tresca material is explained in Fig. 1(a) if the principal stress
components are ordered as <Ji > cr2 > c3 . Deformation occurs by simple shearing in the
direction of the shear stress vector T if the magnitude r of T reaches a critical value k.
Since the planes of maximum shearing, called slip planes, are orthogonal, the simple
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Fig. 1(a). Rigid perfectly plastic Tresca material
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Fig. 1(b). Frictional material; jangle of internal friction

Figure 1. Configuration of a block before and after a small homogeneous deformation. Displace-
ments are chosen so that block center remains stationary and one of the sets of zero extension does

not rotate.

shearing occurs simultaneously on both sets of slip planes; the first order difference in
the deformed configurations of Figs, (ii) and (iii) is in rigid rotation only.

Should two principal stresses be equal, say o-j = <r2, then r reaches the value k simul-
taneously on all planes with normal inclined at ir/4 to the <r3 direction; deformation can
occur by simple shearing along any of these mutually perpendicular sets of planes.
Deformations other than plane are achieved by successive simple shears on different
mutually perpendicular sets of planes. The strain rate tensor is then taken as a suitable
time average of the successive simple shears. The directions of a3 and e3 thus remain
coincident.

The relation between the tensors of stress and strain rate for plane motions of a fric-
tional material is explained in Fig. 1(b). Deformation occurs once again by simple shear-
ing on a slip plane but slip planes and planes of maximum shear stress do not coincide.
Neither set has a material preference for shearing, so the principal axes of strain rate



1969] NOTES 265

can be inclined either as in Fig. (ii) or in Fig. (iii). For this material, strain rate is not
normal to the limit surface.

2. Coincidence for isotropic rigid perfectly plastic materials. No regularity as-
sumptions on the yield surface are necessary for the following proof of coincidence. The
notions of isotropy and normality will not be made precise; rather, necessary conditions
for their satisfaction are stated.

A seemingly reasonable necessary condition for a perfectly plastic material to be
isotropic is the following: if <r°,- is an arbitrary point on a yield surface, then o-<,- is on the
surface also if <r,, differs from a",- in principal directions but not principal values.

Say that at a point on a hypersurface there are one or more hypercurves on the sur-
face with uniquely determined tangent directions. The hypersurface itself need not be
regular there. A seemingly reasonable necessary condition for a vector to be "normal"
to the hypersurface there is that the inner product of the vector with uniquely deter-
mined tangent directions should vanish.

Without loss of generality, take Xi , x2 , and x3 axes to coincide respectively with the
directions of , and al as shown in Fig. 2. The hypercurve defined by

Ml =
! 0*11 °"l2 0*13

012 0*22 0*23I
.013 0*23 0*33-

<7° -f- (ci — c") COS" a 0 (u" — COS a sin a

0 erS 0

L(cr" — <t2) COS a sin a 0 a" — (a" — a") COS" a_

(1)

is generated by the rotation of principal directions of Fig. 2 and thus lies on the yield

^3>°3 <r5

Figure 2. Principal stress directions in physical body before and after rotation about axis.

surface. The direction of the tangent vector to the hypercurve is given uniquely by
dau/da; thus if the strain rate tensor e°,- at o-J,- is normal to the yield surface, then {dan/

= 0 there.
However, it follows from differentiating Eq. (1) that

— 2(<7i — cr°) COS a sill a 0 (c-j — CsXcos2 a — sin2 a)1

i \d(ja '
da 0 0 0
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and since a = 0 at cr,-,- = a",- that

(,i<Ta/da)e°,- = 2(<r? - «rS)i?, .

If ei3 ^ 0, a contradiction has thus been attained provided a° 5^ o-° . Similarly, by
considering hypercurves consisting of stress points cr,, which are rotated versions of a",-
about the a" and c" axes, the possibilities of e12 5^ 0 and e23 ̂  0 can be ruled out provided
respectively that a° 7^ u°2 and <y\ 5^ <r° . Thus, as was shown pictorially for the Tresca
material in the previous section, the principal axes of stress and strain rate coincide if
all three principal stress components are different.

In the degenerate case of equality of two principal stress components, say <rn2 = <j°3 ,
then e", = e?3 = 0 follows as before. Thus, the direction of <j\ is also a direction of principal
strain rate and the directions of el and el,' lie in the plane of <?2 and . Coincidence in the
sense that the directions ofand €3 can be arbitrarily labelled as directions of <j°2 and <j"
is attained. Coincidence in this sense was obtained for the Tresca material by the pictorial
description of the previous section.

In the coincidence proof, curves lying on a yield surface were generated by rotating
two of the principal stress directions about the third; more generally, curves lying on the
yield surface can be generated by arbitrary rotations of the principal stress directions.
It is interesting to note that all such curves correspond to a single point of principal
stress space.

For the Mises material, normality implies further that the components of the strain
rate tensor are proportional to the components of the stress deviator tensor. This con-
clusion is of course not valid for the Tresca material.
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