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THE IMPULSIVE STARTING OF A SPHERE*

By CHANG-YI WANG** (California Institute of Technology)

Abstract. A sphere is started impulsively in an incompressible viscous fluid of
infinite extent. The Reynolds number is assumed to be large. The time of investigation
is assumed to be small. The Navier-Stokes equations, written in spherical polar coordi-
nates, are then iterated using the method of inner and outer expansions. Uniformly valid
solutions are obtained to second order. The drag is also predicted.

1. Introduction. The boundary layer on an impulsively started sphere has been
studied by Boltze [1] in his Gottingen thesis. Following Blasius [2], he iterated the planar
boundary layer equations by assuming a balance between the unsteady acceleration
forces and the viscous forces. However, Boltze's solution is valid only to the zeroth
order. By applying the planar boundary layer equations to a curved surface, the higher
order solutions obtained by him are incorrect in three respects: (i) The solutions are
independent of Reynolds number due to the neglect of the curvature of the sphere, (ii)
The slope of the inviscid 'outer' flow is not taken into consideration. This can be shown
to have decisive effects on the shear stresses on the body, (iii) The effect of the boundary
layer on the outer flow cannot be determined; consequently the pressure drag indicates
zero. These effects are discussed by Wang [3].

The mutual interactions between the boundary layer and the inviscid 'outer' flow can
be analyzed by the systematic application of the method of inner and outer expansions,
as in the case of a circular cylinder [3]. Spherical polar coordinates will be used.

2. Solution. We can normalize the variables in the Navier-Stokes equations by
the velocity of the sphere , the radius a, and the time (ea/U„). Here e is a small
number, since we concentrate our attention on the initial instant of starting where the
sphere has moved only a fraction of the radius. We also assume large Reynolds numbers
such that

R = U„a/v = 1/ta » 1, (2.1)

where a is a constant of order unity. This method contains both a parameter expansion
in Reynolds number and a coordinate expansion in time (Wang [4]). Then the Navier-
Stokes equations become
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The initial conditions are

Mr, 9,1) = 0, t < 0, (2.4)
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1 • , J 2 1i(r, e,0+) = 2 sin2 ^r2 - -)■ (2.5)

On the body r = 1, the velocities are zero.
Equation (2.2) poses a singular perturbation problem. A direct expansion in

the boundary layer thickness e shows that the outer flow field is potential. Using the
method of inner and outer expansions, a uniformly valid solution for the stream function
is found:

\f/ = 2 + 0(t)

+ t(3a1/2tl/2 sin2 9)[t~1/2 exp (-f2) — f erfc f]

+ e2(3a/sin2 d)[f erfc f + \ erfc f — tt~1/2 f exp (-f2)]

+ e2(ia,/2t3/2 sin2 6 cos 6)gU) + 0(e3), (2.6)

where

f = Hr - l)(at)~U2/e,

and

17(f) = 3ir~1/2 exp (-f2) erfc f - 23/V1/2 erfc 21/2f - f erfc2 f

- """(I+£)exp (-f2) + +1}erfc r

+ f (-fr ~ l)[f3 erfc f - ir~1/2f2 exp (-f2)] + | tt'1/2 erfc f. (2.7)

Fia. 1. The effect of Reynolds number on separation time.
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Notice that only the last term in Eq. (2.6) corresponds to Boltze's inner solution. The
function can be identified as the uniform flow over a sphere, Eq. (2.5). ^ and are
induced outer flows, which are due to the displacement effects of the boundary layers:

1J/1 = —3ir 1/2(at)1/2 sin2d/r, (2.8)

♦, - - 1 + £)«"<"■ Si"' Vs ' - I at (2.9)
\ 97rl r 2 r

The terms which are proportional to sin 6 cos 6 come from the nonlinear transport of
vorticity. They give rise to the recirculating eddies or wake behind the sphere.

The separation time for each position d is

rp i~(WRY/2 - W/R - 4(3 - 2U) cos e}W2\2
7 = I 2(3 - 2A) cos e / ' (2-10)

where T is the actual time normalized by (a/Ua), see Fig. 1. Only in the limit of infinite

Fig. 2. The pressure distribution on the sphere.
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Reynolds number does separation time reduce to Boltze's first order value T = .423.
For finite Reynolds numbers the separation time (at 6 = x) is in general increased.

Taking the outer induced flow into consideration, the uniformly valid pressure dis-
tribution is found to be

fer) - ^ "3 *9 (> ̂ i?)+ ? (2 - ?)
+1+ + 9.2,„ _ 15)(|)"- 0^2) + (Wt4>

A 1/2

+ 9^j sin" f erfc f - 2f erfc f + 2tt /_ exp (—f")(l — erfc f)

1/2

+ - erfc 2 f 0(a2). (2.11)

This is plotted in Fig 2.
It is found that the pressure drag is just half the shear drag. The total drag for im-

pulsive start is

CD = x r% 2 = l2*-u\TRYxn + 12R'1 + 0(e). (2.12)
2P<J „ira

This is plotted against time in Fig. 3, which also shows the experimental steady state
values. However we must keep in mind that the solution is valid only for small times and
cannot be extended to interpret the steady case. Notice that the time-independent term
in Eq. (2.12) is the Stokes drag. This is because at small times the flow is essentially
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Fig. 3. The total drag coefficient versus time.
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diffusive in nature. To the order considered the nonlinear convection affects only the
stream function and the pressure, but not the drag.

The higher order corrections can be found, in principle, to any order. The process
becomes increasingly tedious, since analytic solutions for each order must be obtained.
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