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ON THE CLASSICAL STABILITY CONDITIONS FOR A SPINNING SHELL*

BY

P. C. RATH AND DAULAT RAM

Institute of Armament Technology, Poona, India

1. Introduction. Nielsen and Synge [1] for the first time enunciated a set of necessary
and sufficient conditions for the stability of a spinning shell. These conditions were further
examined by McShane, Kelley and Reno [2] and separately by Murphy [3] and one of
the authors [4] under less stringent conditions of motion. McShane and others have
applied some of these conditions to plane yawing, motion of bombs and Murphy and
Bolz [5] to slow-yawing motion of missiles. Rankin [6] has given similar conditions of
stability for rotating uncontrolled rockets. All these only show the importance of Nielsen
and Synge's stability conditions and the important role they play in modern exterior
ballistics.

In this paper we have derived the classical conditions of Nielsen and Synge from the
will-known Routh-Hurwitz theorem. In doing so we have proved that one of the three
conditions of Nielsen and Synge is superfluous. Thus there are only two independent
conditions which reduce to only one effective condition in the absence of cross-Magnus
effects. A mathematical lemma due to Brull and Soler [7] is used to provide logical founda-
tions for certain assumptions of Nielsen and Synge while formulating their stability
condition.

2. Certain mathematical preliminaries. We have the following lemmas to start with:

Lemma 1. Given a polynomial f(Z) for which f(iZ) = (b0Z" + blZn~l + • • • + bn) +
i(a0Z" + • • ■ + a„), (a0 ^ 0), where the polynomials a0Zn + • • • + an and b0Zn + ■■•+&»
are relatively prime (V2n 9* 0) then the number of roots of the polynomial f{Z) lying in the
right half of the complex plane of Z is given by

k = 7(1, V2, V«, V„) (2.1)

where

d0 ' • 0/2])—I

b0 b\ ' • • J?2p—i

0 a0 • • • &2p-2

0 b() • • • &2P-2

V 2p — (2.2)

(p = 1, 2, • • • , n, am = bm = 0, if m > n).

If, however} some of the determinants (2.2) vanish, then for each group of successive zeros,

(V2A 7^ 0), V2A+2 = ••• = V2A+2P = 0 (V2&+2P+2 7^ 0) (2.3)
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in the calculation of (2.1) we must set

sign V2h+2i = (-1),!,'-1)/2 sign V2* (j = 1, 2, , p). (2.4)

In the above lemma F( ) signifies the number of changes in sign in the determinantal
expressions contained in the parentheses.

Lemma 2. A linear differential equation (with a small parameter t) which can be
written as

u" + f(x, e)u = 0 (u' = du/dx) (2.5)

f(x, e) = g0(x) + G(x, e) G(x, 0) = 0 (2.6)

such that

has the solution

u(x) = A jWi(x) exp [§'/ h„i(x) dxj + A2w2(x) exp t J hn2(x) dx J (2.7)

where A i (i — 1, 2) are arbitrary constants and w:(x) are the linearly independent solutions oj

w" + g0(x)w = 0 (2.8)

and the junctions

Hi(x, «) = Z hni{x)<T, (t = 1,2) (2.9)
n= 1

satisfy a Ricatti equation of the type

IV + (2\w'/w)H + H2 = -G(x, e). (2.10)
If in any specific case the series in (2.7) converges, then the solution given by (2.7) is exact
or else asymptotic for small values of e.

The above two lemmas are known results due to Gantmacher [8] and Brull and Soler
[7] respectively.

3. The linearized dynamical equations of the shell and asymptotic stability. Unless
otherwise stated the notations we shall use in our present treatment will be strictly ac-
cording to Nielsen and Synge's paper [1], which we shall refer to as N.S. hereafter. The
partially linearized equations of motion of a spinning shell according to N.S. are

i — iuT] = £X + yY + g cos 9,

V ~ iC'u>3y = a" + yY' (C' = C/A), (3

co — Wo>2 + Itoj = (F3 + F'3)/m,

a>3 GJC.
Here overhead dots indicate time derivatives; co, co3 and £, y are respectively the axial
and cross-axial components of the velocity and angular velocity vectors of the shell; the
angular coordinates 0 and <£ measure respectively the inclination of the shell axis to the
horizontal plane and the rotation of the vertical plane containing the shell axis from
a certain fixed vertical plane. C and A are the polar and equatorial moments of inertia
of the shell; g the acceleration due to gravity, and F3 , G3 and X, Y, X', Y' are the aerody-
namic forces along and normal to the axis of the shell.
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In deriving these equations it is assumed that the initial oscillations of the axis of
the shell are such that

(i) the vertical plane through the axis of the shell turns slowly (i.e. <p is small),
(ii) the angle of yaw (i.e. £/to) is small.

These are reasonable assumptions which are true in practice. While discussing rapid
oscillations of the shell one also treats co and co3 as constants and consequently X, Y, X', Y'
are also constants; cos 6 in the first equation of (3.1) is also assumed constant as the
projectile is slowly yawing. Effectively, therefore, (3.1) are two linear differential equa-
tions with constant coefficients in £ and rj. For stability of the projectile it is assumed that
initial vibrations must damp out; i.e. the cross velocity and cross-spin should not increase
but should tend to their equilibrium values. We must therefore discuss the asymptotic
stability of the system

(3.2)
_ X Y + ioi

X' Y' + tC'«a

The characteristic equation of the matrix of the system is clearly

/(X) ^ X2 - (.K, + iK2)\ + (K3 + iKt) = 0 (3.3)

where

Kt = X, + Y[ ,
K2 = C'co3 + X2+ Y'2)

K3 = -C'o,3X2 + uX'2 + Xl Y[ - X2Y'2 - X(F, + X'2Y2 ,

Kt = C'o>ax1 - wx; + x.Y', + x2y; - x;y2 - •

It may be noted that the complex quantities X, F, X', F' are of the type

X = X, + iX2 , X' = Xi + iX'2 ,

F = F, + iY2 , Y' — Y[ + iY£ ■

(3.4)

(3.5)

One may further observe that a substitution J + h and 17 + k for $ and 77 in (3.1), where
the constants h and k are given by

h = g cos 6(Y' + iC'w3)/\XY' - X'Y + i(C'co3X - «X')( (3 g)

k = -g cos 6 X'/{XY' - X'Y + t(C'<«,X - «X')},

transforms the first two equations of (3.1) to (3.2), written in vector matrix form.
Now the null solutions of (3.2) are asymptotically stable if and only if the roots of

(3.3) have negative real parts. The Nielsen and Synge stability condition must therefore
follow from conditions under which the roots of the characteristic polynomial /(X) must
lie in the left half of the complex plane of X. Since the generality of Lemma 1 is not lost
when one assumes a0 5^ 0, as otherwise one may consider the polynomial i j(Z) instead of
f(Z), accordingly we modify the characteristic polynomial (3.3) as

if(Z) = (K.X - Kt) + i(-\2 + K2\ + K3) (3.8)
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so that we have

i _ 1 v = -K> , (3.9)V2

V* =

-1 K2

0 Ki

-1 k2 k3 0

and therefore

0 K, -K< 0
0-1 K2 K,

0 0 K1 -Kl

= k,k2k4 + k\k3 - k4

= D, say (3.10)

k = V(l, — K, , D) (3.11)

which is the number of changes in sign in the bracketed expressions in (3.11). Our as-
sumption that the real and imaginary parts of (3.8) are prime to each other implies that
none of the characteristic roots lie on the imaginary axis. This gives us

D 7* 0. (3.12)

The necessary and sufficient condition of stability nowr consists in showing that k = 0
(i.e. none of the characteristic roots lie in the right half of the complex plane). The follow-
ing are obvious consequences of the Lemma:

k = 2, when K, > 0, D > 0 (3.12)

k = 1, when K, 0, D < 0 (3.13)

k = 0, when Kx < 0, D > 0. (3.14)
From the above analysis it is clear that the necessary and sufficient conditions of

stability are only

K1 < 0 (3.15)

D = K1K2Ki + K\K3 - K24> 0 (3.16)

which are the same as (7.13a) and (7.13c) in N.S. but for an additional equality sign in
the latter. This equality sign in (3.16) will be there if we stipulate, as in N.S., that X
should have a nonpositive real part, but there need not be asymptotic stability. The
additional set of conditions of N.S., i.e.

Kl + Kl + 4K3 > 0 (3.17)
(cf. N.S. (7.13b)), are naturally superfluous. This fact may also be seen from the following
elementary considerations. As we know, since the K's are real and due to (3.16),

4fttt + K]KZ - Kl) + K\ + (KJCt - 2K4)2 = K\{K] + Kl + 4Ka) > 0. (3.18)
Our contention that condition (7.13b) of N.S. is superfluous is established. This is



1969] CLASSICAL STABILITY CONDITIONS FOR A SPINNING SHELL 251

perhaps the reason why conclusions following from inequality (3.17) have been earlier
found to be contained in (3.16).1

4. Brull-Soler solution of the linearized ballistics equations in the absence of cross-
Magnus effect. Eliminating 17 and between the first two equations of the partially
linearized equations of N.S., i.e. Eqs. (3.1) of the present paper, we obtain

I - (Ki + iK,)k + (K:i + iKt)£ + • ■ • = 0 (4.1)
where

Kx = X, + Y[ +
(f,f, + M + r2)(« + f2)

Y'i + (a, + f2)2

K 2 — A* 2 ~f~ Y 2

(4.2)

F, + f,f2 - - F,y2^
(4.3)Y'i + (« + F2)2

Kt = -0X2 + XyYl - X2Y'2 + coX2' - XJF, + X'2Y2

f .V , /x, F, Y, - X2Y}Y2 - ^X2F, + (u + F2)fcX, + X2F, + X,F2)\~|
L 1 I F? + (co + F2)2 J J

(4.4)
k4 = ax, + Xiy2 + x2y{ - coXi - x'2y, - x[y2

[ V , /F.((il, + x2f, + x, F2) - (co + F,)(-coX2 + x2f. - x2f2)\1
L 2 + l F? + (« + f2)2 J J

(4.5)
and we put

Q = C"co3 . (4.6)

In (4.1) we have not shown the nonhomogeneous part of the equation as this is not
needed for considerations of stability. During the initial oscillations of the shell the terms
in the square brackets in (4.2) to (4.5) turn out to be considerably smaller than the
remaining terms.

To obtain the transient solutions of (4.1) we make the following substitution:

£ — u exp ji J (K, + iK_) (4.7)

and (4.1) is then transformed to

u + Mu = 0 (4.8)

where

M = + iK2)] - \{K\ - Kl + 2iKlK2) + K, + iK, . (4.9)

If we neglect the cross-Magnus effects we have

X2 = Y1 = X[ = FJ = 0 (4.10)

]cf. N. S. p. 218 and [2, p. 621],
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and therefore straight away

Ki = Xi + Y[ + [(« + F2)/(« + F2)] (4.11)
K2 = Si (4.12)

K3 = XjF; + uX', + x^f2 + [(« + y2)/{CO + F2) - X,] (4.13)

A'4 = . (4.14)

As before, terms inside square brackets are smaller than the rest of the terms in the
above equations. These terms are also completely negligible if we assume with N.S. that
during initial oscillations of the shell co and o>3 and therefore X's and F's are all constants.

Introducing the dimensionless aerodynamic coefficients referred to the centroid of
the shell and the small parameter

£ = pa /m, (4.15)

we may write, using (8.7) of N.S. that

M = <7o + e g, + tg2 + • • ■ (4.16)

where

g0 = Q2/ 4 (4.17)

g' = [~a 1* + + I i '*} (f) " "k7'i1'* + a f*) (4"18)

= 4 + aWk7'+ "a i9* +n*+7 .

+1 o>%2n{gt* +La (st + nn + 4 n} - o>x2(n* +1 r)(gi + ~ /i) (4.19)
and

g„ = 0 (n > 2) (4.20)

where

k, = (A/m)1/2 (4.21)

is the transverse radius of gyration of the shell.
Using Lemma 2, we proceed to solve Eq. (4.8) as follows.2 For this we consider the

two linearly independent solutions of

ci + \tfw = 0 (4.22)

in the form

wk = exp {(— \)kiQ,t/2}, (k = 1, 2) (4.23)

so that

hu = ig,/tt = — h, 2 (4.24)

2As in N. S., we assume </»'s to be constants and effectively (4.8) is an equation with constant co-
efficient.
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h21 = — g\/tf) = — h22 (4.25)

h31 = 2iQ gi(g2 <7i/^) = (4.26)

h„ = iSrs[±g\(g2 - gl/tf) - tf(g2 - g2/ti2)2] ^ 2~

= hi2

and the solution of (4.8) up to fourth order in e is therefore

n(t) = Aj exp (t'fi/2 + e/t„ + t~h2i + thu + eVi41)^

+ yl2 exP (— z'0/2 -j- «/li2 + th22 -f- e'3A32 + e4A42)/

using (2.7). For this degenerate case, (4.28) could also have been obtained by solving
Eq. (4.8) with constant coefficients and then expanding the solution in powers of e up
to four. Now the final solution in £ up to this order may be written as

£(/) = A{t) exp + $Jt + B(t) exp {—■ - $jt (4.29)

where A(t) and B(t) are bounded functions of t,

</> = e<7i2/fi -f- 2e g^gn/Sl "I" 2e g>i2(0 g2 -(- gi2 3gu)/Q

+ ±e4gugl2{5(g2u - g\2) - 3V2g2}/tf
(4.30)

Ki = X, + Y! = — tauk~t2(g[* + La (gt + ft*) + K 1l) (4.31)

aad gu , gi2 are the real and imaginary parts of gi and therefore given by

gu = -co2k;2U* + T- j* j (4.32)

S2
g 12 — 9 a^r2 g'l* + f- (fff + n*) + -2n> - ^n (4.33)

Noting that

kf = fcl + 72 (4.34)
by the theorem of parallel axis, we may write (4.29) up to first significant term in e as

W) = Mi) exp -eauk, \g[* + - (g* + /'*) + ^ f* t + B(t) exp t.

(4.35)
Now the stability of this solution and therefore of the Brull-Soler solution in general
depends on the following conditions:

ft > o, (4.36)
g[* + I {gt + ]'*) + ̂  ft > o.

The second condition of (4.36) is an assumption of N.S., i.e. Y[ < 0 (cf. N.S. (8.14)). The
two conditions (4.36) together give rise to the condition (3.15), but (3.16), where the pins
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of the projectile is reflected, is not brought out by the Brull-Soler solution, perhaps be-
cause of its approximate nature.

5. Conclusion. The classical conditions of stability of a spinning projectile due
to McShane and others [2] were established from an approximate solution of the ballistic
equations.3 Naturally, therefore, these conditions need not be exhaustive and that they are
not is clear from the fact that they do not explain a certain basic phenomenon known as
"Magnus instability". It is well known [9] that a projectile with a hemispherical base
shape cannot be spun fast enough to stabilize it dynamically, as a very strong negative
Magnus force will be acting on the hemispherical base. The coefficients of Magnus mo-
ment for such projectiles have been found to be positive, unlike conventional projectiles.
The linear theory of stability due to Kelly and McShane should therefore indicate that
for a positive Magnus moment coefficient it would not be possible to stabilize a projectile
by high spin, which it does not. Perhaps it would be logical if it were possible to derive
the stability conditions from the ballistic equations themselves and not from their solution
which could at the most be approximate in character.
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