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ON THE MEASUREMENT OF THE ORIENTATION DISTRIBUTION OF
LINEAL AND AREAL ARRAYS*

BY
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Introduction. In certain areas of technology it is desirable to have means of
specifying the orientation distribution of lineal and areal elements in space. It has been
suggested by Hilliard [1] that the orientation distribution of a two-dimensional lineal
array be defined by a density function, LA(6), where LA(6)d6 is the total line length
per unit area to which tangents have angles in the range 6 ± dd/2 with respect to a
given reference direction. It will be assumed that the sense of a line element is inde-
terminate; thus La(9) has a periodicity of 7r; i.e., LA(d + nir) = LA{6) for any integral
value of n. The line length over any finite range of 6 is given by the integral over that
range; in particular, the total line length per unit area, LA , is

La f La(6) d6. (1)
Jo

For the special case when the lineal array is the perimeter of a closed convex figure
of area A, the density function is also related to the radius of curvature, p. By definition

LA(9)dd — ds/A, (2)

where ds is the differential of arc length. Thus

La(6) = p/A. (3)
Equation (2) can be written in parametric form:

y(X) = f La{6) cos d dd
(0 < X < tt) . (4)

= [ La(6) sin 6
Jo

dd

These equations can be used to construct a lineal array having a given orientation dis-
tribution. Since any element of the array can be translated without changing the
orientation distribution (a translation corresponds to a change in the lower limit of
integration in Eq. (4)) there are an infinite number of arrays satisfying a given distribution
function.

Hilliard [1] has also defined density functions for the orientation distribution of
three-dimensional lineal and areal arrays in terms of a spherical coordinate system;
the orientation of a line segment is denoted by 0 and d, the longitude and co-latitude
of its tangent, and the orientation of an areal element by the angles w and \j/ of its normal.
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The orientation distribution of a lineal array is specified by the function Lv(<t>, 8), where
Lv(<i>, 8) sin 0 dcf> dd is the total line length per unit volume in the range <t> ± dtf>/2 and
8 ± dO/2. The areal distribution can similarly be defined by the function Sv(^, ").
The sense of a line or areal element will be assumed indeterminate; hence, all angles
specifying orientation will be confined to a hemisphere having the range 0 < (6, co) < 2ir
and 0 < (<j>, ip) < 7t/2. The line length over any finite interval of 8 or <£, or the boundary
area over any finite interval of co and \p, will be given by the integral over the range;
in particular, the total line length per unit volume is

L
f* 2 ir r* ir / 2

v = I / Lv(<t>, 8) sin <f> d<t> dd, (5)
Jo Jo

and the total boundary area per unit volume is
/» 2 T f* 7r/2

Sy = / SM, co) sin ip d\p dcc. (6)
•' 0 *'0

Measurement of the orientation distribution of two-dimensional lineal arrays. In
principle, LA(6) can be found by dividing the lines in the array into equal segments short
compared to the radius of curvature, and then measuring the number of segments as a
function of orientation. However, this procedure is infeasible except for a simple array.
An alternative procedure is based on the additional number of intersections created when
a "test" array of known orientation distribution, co), is superimposed on the lineal
array defined by LA(6); the angles 8 and w are referred to separate reference directions
in the two arrays.

Hilliard [1] has shown that the expected number of intersections per unit area,
PA (n), created when the two arrays are superimposed randomly with respect to transla-
tion but with a specified angle n between their reference directions is given by

/» 7r n ir

Pa(m) = / La(8)L'a(gS) |sin (ji + 8 — a) \ d8 da. (7)
Jo «'o

A solution for LA{8) in terms of the measured function PA(n) has been obtained [1] to
this equation when the test array is a grid of parallel lines. We will now derive a general
solution for a test array of any form.

Let us expand each function in Eq. (7) in a Fourier series. Since the functions have
a period of ir, only even terms will appear in the expansion. We can therefore write

La(9) = J2 cL exp (i2n8), (8)
n = — co

where the coefficients c®„ are given by

cL = (l/it) [ La(8) exp (-i2n8) do. (9)
Jo

We can similarly expand La (to) and PA{ti) in Fourier series having coefficients c2"n and c"2n.
The Fourier expansion for the absolute value of sin Cu + 0 — co) is

|sin (n + 8 - co) 1 = X) c2» exp [i2n(ji + 8 - co)],

where c2„ = 2/tt(1 — 4n2). On substituting these expansions into Eq. (7) and applying
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the multiplication theorem with respect to 6, we obtain

CL = [2tt/(1 - 4n2)Kct2n ; (10)

or, in terms of sine (b2„) and cosine (a2„) Fourier coefficients,

aL = [*/(l - in2)] (a2nal + b2nbl) (n)

V2n = [r/(l - 4n2)] (62>L - a2nbe2n)

If a two-fold symmetry with perpendicular mirror planes (known as (2mm) in crystal-
lography) is present in the lineal array [i.e., LA( — d) — LA{6)] the be2n coefficients will
vanish when the reference direction is chosen coincident with one of the mirror axes.

The procedure for determining the orientation distribution, LA(d), of a lineal array
is thus as follows. An array having a known distribution, LA (co) is applied at a series
of different orientations ix. A count of the number of intersections between the two arrays
yields the function PA (p.) from which can be computed a2n and b"n . Substituting these
coefficients in Eq. (11) together with the known a2n and b2"n coefficients, one obtains the
coefficients of the function LA (9).

It is interesting to consider a set of test arrays for which the coefficients of the orien-
tation distribution satisfy the condition

a2„ = 0 except for n = fc, .
(12)

b2n = 0 for all n,

where fc is a given integer or 0. For fc > 0, an array satisfying Eq. (12) will consist of
equal lengths of what may be regarded as positive and negative segments. For fc = 0
all segments of the array are positive. When such arrays are applied to an unknown array
at n = 0, it follows from Eq. (11) that the expected net number of intersections per unit
area (defined as the number of intersections on positive segments less the number on
negative segments) is given by

pA _ |^/2)a"a?, , for fc = 0, ^

i[jr/(l — 4fc2)]a2ia2* for fc > 0.

This can be rewritten in terms of the number of intersections per unit length of the test
array. We first note that the total length (disregarding the signs of the segments) of the
test array is, according to Eq. (1),

La
f (1/2)cio du = (71-/2)do , for k = 0,

(14)
f o2t |sin 2fcw| dco = 2a",

Jo
for fc > 0.

Thus, dividing Eq. (13) by (14), we obtain for the expected net number of intersections
per unit length of the test array

PL = la° f°r k = °' (15)
[[•n-/2(l — 4k2)]a2k for fc > 0.

Thus, by the use of the appropriate test array, it is possible to determine directly any
given Fourier component of the orientation distribution of the unknown array.
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'Q2

Fig. 1. The perimeters of these figures have orientation distributions satisfying the relationship LA'(u) =
LAcos'2kw with k = 0, 1 and 2. When applied to a lineal array, the net number of intersections is directly

proportional to the fctli Fourier coefficient of that array.

It follows from Eqs. (4) and (12) that one possible test array for a"0 is a circle. The
higher-order arrays in the form of closed convex figures can be constructed from the
parametric equations

z(X) = [sin (1 - 2fc)\ + cos (1 + 2fc)X]/2(l - 4fc2), ^ fc > Q ^
y(\) = —[cos (1 — 2k)\ + cos (1 + 2fc)X]/2(l — 4fc2)

Test arrays for k = 0, 1, and 2 are illustrated in Fig. 1.
The following are some of the properties of these special test arrays:

(1) For any given coefficient, there are an infinite number of possible figures since,
as previously noted, any element can be translated without changing the orientation
distribution. For example, possible test arrays for LA(co) = LA cos 2co are illustrated in
Fig. 2.

(2) There exist a second set of arrays for estimating the sine coefficients, b"2k . These
are of the same form as the cosine arrays but are rotated by (jr/2k).

(3) Test arrays for k > 0 in the form of closed convex figures consist of 2k curved
arcs of alternating signs. The curvature of the arcs decreases with increasing k.

Fig. 2. Three of the possible test figures having perimeters with the orientation distribution LA'(co)
La cos2w.
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(4) The figures are orthogonal in the sense that the expected net number of inter-
sections is zero if two figures with different coefficients are superimposed.

Measurement of the orientation distribution of three dimensional lineal and areal
arrays: general case. Let us consider an imaginary experiment in which an areal and
a lineal array are "superimposed" on one another. The two arrays will interact to form
point intersections. We will first derive an expression for the number of intersections
per unit volume and then show how this quantity can be used to determine the orientation
distribution of one of the arrays. The first step in the derivation has been given else-
where [1] but, for the convenience of the reader, it will be summarized here.

Let Lv(<t>, 6) and SV^P, ") be the orientation distribution of the lineal and areal arrays
(as defined earlier) and let the orientations in the two arrays be referred to the same set
of axes. We wish to determine the expected number, Pv, of point intersections per unit
volume generated when the two arrays are superimposed randomly with respect to
translation. Without any loss in generality, we can assume that the line length in the
range <f> ± (d4>/2) and 9 ± (dd/2) occurs as a single segment of length Lv{<j>, 6) sin<f> d4> dd
in a unit volume. We can similarly consider an element of area Sr(ip, «) sin \p d\p du> in
the areal array. For the line segment to intersect the areal element its center must fall
within the solid figure generated by the line segment as its center is traversed around
the circumference of the areal element. Therefore, if the line segment is randomly
located within a unit volume, the probability of it intersecting the areal element is just
equal to the volume of the solid figure; namely,

Lv(<p, 6) Sv(tp, w) sin 4> sin ^ |cos yu[ dxf> dd dip dw,

in which n is the angle between the line segment and the normal to the areal element and
is given by

cos /i = sin 4> sin ip cos (6 — co) + cos <f> cos ip. (17)

The expected total number of intersections per unit volume is found by summing over
all orientations in the two arrays. Thus

e* ir/2 p2 x r*ir/2 /»2x

Pv = d<t> / d9 I d\p / Lv(4>, 9)Sv(\p, w) sin cf> sin ip |cos^|rfco. (18)
J o t/Q Jo Jo

A solution to this equation for Sv(\p, o>) or Ly(<p, 6) in terms of Pr has been given [1] for
special cases. We will now consider the general solution.

The first step is to expand |cos jli| in a series of Legendre polynomials. Thus

|cosm| = X) a2»f2„(cos m), (19)
n = 0

where a2n are coefficients given by

a2n = (4n + 1) / (cos ai)P2„(cos h) d{cos m),
^0

(20)

which yields aa = 1/2, a2 = 5/8 and

= (— l)"+1(4n + 1) •' •' • (2ft + 2) f°r n = 2' 3; ''' " (21)

We next expand Lr(4>, 8) in a series of spherical harmonics
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eo

Lv(<t>, 6) = £ YU<t>, 0), (22)
n = 0

in which
2 n

Y'in = Yj yL.hPin (cos tj>) exp (z'/i0;, (23)
h = —2n

where PJn are associated Legeudre polynomials and y%„.h are coefficients defined by

72.,» = (^4ni+ ^ ^ ^ exp (t'A0) (/6> ̂ Lr(4>, 0)Pl(cos <t>) d(cos<t>). (24)

The function <Sv(^, to) can similarly be expanded in a set of harmonics Y2sn(\p, o). Substi-
tuting these series in Eq. (18), we obtain

Py=f d<t> [ " d0 I" d* I" <Z [Yt(<t>, 6) sin *] Z «) sin
^0 ^0 ^0 «^0 U-0 n = 0

• it [a2„P2„(cos n)]\ dw. (25)

The coefficient P2»(cos n) is a Laplacian. Thus
pzir t*Tr/Z

/ dd / Y^'(4>, 0)(sin <t>)P2„(cos n) d4> =
^0 •'O

0 for n' ^ n,
[2x/(4n + 1)]F2„(^, <o) for n' = n.

The remaining cross products vanish on integration of Eq. (25) because of the ortho-
gonality of the spherical harmonics. Hence,

Pv = Z E 2x
L(4n + 1).

(2w + h)\
L(2n -A)!. a2n72n,fi72»,/i • (26)

This equation will yield the orientation distribution of an areal array using a lineal
array of known orientation distribution. By superimposing this array on the areal
array at a sufficient number of different orientations and counting the number of inter-
sections produced, it is theoretically possible to determine by use of Eq. (20) the coeffi-
cients of the areal array up to any required degree. Conversely, it is possible to determine
the orientation distribution of a lineal array by use of an areal array of known distribution
as the test element. It is apparent, however, that a considerable amount of experimental
and computational work will be necessary if a high degree of resolution is required in
the estimation of the unknown orientation distribution. Fortunately, in practice,
certain symmetries are often present which greatly simplify the analysis. We will now
consider two such cases.

Measurement of orientation distribution of areal array with (mmm) symmetry.
Processes such as forging and rolling on a sample containing internal boundaries can
be expected to produce an orientation distribution with a two-fold axis of symmetry
and three perpendicular mirror planes. In crystallography this symmetry is described
by the notation (mmm). If the f axis is set parallel to the intersection of two of the
mirror planes, then

Svtt, co) = &>#, (tt — «)] = SA4>, + «)] = Svli, (2ir — «)].

Under this condition the coefficients „ h vanish for odd values of h and yL.k = yL.-*
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for all values of h. Thus the number of coefficients required to describe the orientation
distribution is reduced by a factor of four.

Measurement of orientation distribution of an areal array having an axis of sym-
metry. Deformation by wire drawing, extrusion, etc. results in an areal array having
an axis of symmetry. Such symmetry is also often found in nature. If the \p axis is
chosen coincident with the axis of symmetry, the orientation distribution will be inde-
pendent of «. Thus Syty, oj) = Sv(ip)/2ir. Under this condition, the associated Legendre
polynomial coefficients vanish from the expansion of Sv(^, w), and Eq. (26) reduces to

Pv = £ [2*7(4n + l)}2a2n*L2n*l , (27)
n = 0

in which
Jr* 2 ir /*1

dee / Sv(f, co)P2n(cos if) d{cos \f),
0 ^0

and a2n is similarly defined with respect to the function Lv{^>, 8). The unknown coeffi-
cients a2n can be determined from an application of a two-dimensional lineal array to a
single section taken through the areal array parallel to the axis of symmetry.

As in the two-dimensional case, it is possible to derive test figures for which the
intercept density will be directly proportional to a given Legendre polynomial coefficient
of the areal array. Such a test figure satisfies the condition

l \Lv/2tt if n = k, (k = 0, 1, 2 • • •),«2» = < (28)
[0 if n k,

in which Lv is the total line length of the test figure per unit volume. If this test figure
is applied to a section parallel to the axis of symmetry, then Eq. (27) reduces to

Py = 2ir a2ka2skLv/[±k + l]2,

which can be rewritten

a2sk = [4k + I]2 Pr/2ira2h , (29)

in which Pv is the expected number of intersections per unit length of the test figure.
It follows from Eqs. (22) and (24) that the lineal test figure for determining the 2/cth
coefficient will have an orientation distribution given by

Lr(<t>, 6) = LvP2k{cos <t>) 8 (0) sin </>.

The test figures can be constructed from the following pair of parametric equations:

z(A) = / P2ji(cos 4>) cos <p sin <j> d<j>
[0 < X < (71-/2)]. (30)

y(\) = / P2k(cos <£) sin2 4> d<t>
J()

Examples of the figures for determining the as0 , as2 , and ast coefficients are shown in
Fig. 3. It should be noted that these figures have properties identical to those of the
Fourier figures with respect to signs on the individual arcs, translation of the arcs, and
orthogonality.
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a0

Fig. 3. The perimeters of these figures have orintation distributions satisfying Eq. (30) with k = 0,
1 and 2. These can be used to determine the corresponding Legendre polynomial coefficients of an areal
array having an axis of symmetry. The figures are applied to any section parallel to axis of symmetry.

Applications of the analyses. There are several obvious applications of the foregoing
results to the analysis of the microstructure of materials. The distribution functions in
three dimensions provide a specific description of the anisotropy of lineal features such
as dislocations and of areal arrays such as grain boundaries and magnetic domain walls.
The orientation distribution of lineal arrays in two dimensions can be applied to the
analysis of dislocation networks as seen by electron transmission microscopy.

A further application is the determination of plastic strains produced by mechanical
deformation. By comparing the orientation distribution of grain boundaries before and
after deformation, it is possible to estimate strains through the interior of the material [2],

Procedures for optimizing the analyses and an estimate of the sampling errors in the
Fourier or spherical harmonic coefficients will be given elsewhere [3],
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