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ON THE FORMULATION OF CONSTITUTIVE
EQUATIONS FOR LIVING SOFT TISSUES*

By WILLIAM PRAGER1 (University of California, San Diego)

Abstract. Soft living tissues deform freely under negligible stresses until a certain
strain level is reached at which their stiffness increases sharply. Constitutive equations
are developed that describe this kind of mechanical behavior and include Hooke's law
as a limiting case. It is shown that, similar to Hooke's law, these constitutive equations
assure uniqueness of solution for a broad class of boundary value problems. Possible
extensions of the theory are briefly indicated.

1. Introduction. The most striking feature of the mechanical behavior of soft
living tissues is the occurence of significant strains before measurable stresses develop.
Fig. 1 shows the results of a tension test performed by Fung [1] on a specimen excised
from the mesentery membrane of a rabbit. It is seen that measurable stresses develop
only after the specimen has been elongated to slightly more than twice its relaxed length.
From this point on, however, stresses increase rapidly with further elongation.

To some extent, this behavior resembles that stipulated in the theory of ideal locking
materials [2], This remark raises the question whether this theory cannot be modified
to correspond more closely to the type of mechanical behavior that is illustrated by
Fig. 1. For infinitesimal strains, a simple modification of this kind is explored in this
paper.

As is clearly indicated by Fig. 1, the restriction to infinitesimal strains is not realistic
for soft living tissures. It appears nevertheless worthwhile to explore the new concepts
(and their more immediate consequences) within the domain of infinitesimal strains
before attempting to extend them to the realm of finite strains. By itself, this extension
should not present insurmontable difficulties, though it will, of course, greatly complicate
the solution of specific problems.

2. Models of locking materials. Two types of locking materials have been investi-
gated in the literature. Their mechanical behavior is represented by the following simple
models. A particle with the position vector x is restricted to a plane, strictly convex
domain D, which is bounded by a smooth, rigid frame. When the particle is not in
contact with the frame, it is either free (ideal locking material [2]) or experiencing the
elastic restoring force — cx (elastic, perfectly locking material [3], [4]). When the particle
is in contact with the frame, it experiences, in addition, a reaction from the frame. Since
there is to be no friction between particle and frame, this reaction has the direction of
the interior normal to the frame at the point of contact. When the components of the
position vector of the particle are interpreted as typical strain components, and the
components of the resultant force acting on the particle as the corresponding stress
components, these models respectively represent the mechanical behavior of ideal
locking materials and elastic, perfectly locking materials.
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Fig. 1: Tension of strip of rabbit mesentery (according to Fung [1]).

To represent the behavior illustrated by Fig. 1, the model of the ideal locking material
may be modified as follows: the rigid frame is removed, and the exterior of the convex
domain D is filled with a substance into which the particle can penetrate against some
elastic resistance, whereas it can move freely inside the domain D.

3. Constitutive equation. The first step towards a constitutive equation for the
mechanical behavior described by the new model is the specification of the "free" domain
D, that is the specification of the states of strain that are associated with negligible
stresses.

The infinitesimal strain tensor will be denoted by e,f , where the subscripts i and
j have the range 1, 2, 3. The free domain D will be assumed to correspond to nonpositive
values of some function /(en , e12 , e13 , «2i , e22 , e23 , «3i , 632 , *33), which will be abbrevi-
ated by /(e). Note that symmetric components of strain, such as e12 and e2i , are formally
treated as independent arguments of the function /, which is supposed to be symmetric
in these components. Moreover, / will be assumed to be a convex function of its argu-
ments in the sense that

(«„ - e*.)df/deti > /(«) - /(«*), (1)

where e,,- and e * are any two states of strain and a repeated letter subscript indicates
summation over the range 1, 2, 3 of this subscript. The derivatives of / in (1) are to
be evaluated for the state e,-,- , and the equality sign is to hold only if = e* (strict
convexity).

The general role of convexity assumptions of this type in solid mechanics has been
stressed by Hill [5]. In the present context, the convexity of the free domain D in strain
space directly follows from the assumed convexity of the function /. Indeed, since this
domain is to correspond to nonpositive values of /, its boundary B has the equation
/ = 0. If the states of strain e,and are respectively represented by points P and P*
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on this boundary, /(e) = /(e*) = 0 and (1) reduces to

(e,,. - e*)dj/dt{l > 0. (2)

This inequality states that the vector from P* to P cannot make an acute angle with
the direction of the exterior normal to B at P, and thus expresses the convexity of B.

The simplest constitutive equation with the required properties is

on = 2(f)df/de,i , (3)
where o-i(- is the stress tensor and

(/) = 0 if / < 0,
= / if / > 0. (4)

Note that Hooke's law is obtained as a special case of (2) when / is taken as

/ = / = (KXe,-+ 2ntij€ij)}1/2, (5)

where X and n are Lamp's constants. Indeed, the radicand in (5) is the strain energy U,
which is positive for nonvanishing strain. Accordingly, the angle brackets can be omitted
in (3) and this constitutive equation reduces to

g11 = 3(/2)/de<,- = dU/diu . (6)

Returning now to the general discussion of the constitutive equation (2), note that
the rate at which the stress tr,-,- does work on a strain increment cZe,,• is given by

or a den = 2(f) df = 0 for / < 0,

= d(f) for / > 0. (7)
It follows that the constitutive equation (3) defines a material that is elastic in the sense
that the total work for any closed cycle of strain is zero.

Next to (5), which leads to Hooke's law, the most obvious choice of / is

/ = / - k, (8)
where / is given by (5). From (3) and (8), it follows that

<Ta = (f ~ k){(\ekh Sn + 2fieij)//}. (9)

Here, the expression in braces may be regarded as a normalized Hooke stress for the
strain , while (/ — k) is a cut-off factor, which reduces this normalized Hooke stress
to zero whenever f < k. For k — 0, the constitutive equation (9) reduces to Hooke's law.

4. Uniqueness. As is well known, Hooke's law assures uniqueness of solution for
the basic boundary value problems of the classical theory of elasticity. It will be shown
in this section that a similar statement can be made for the constitutive law (3).

The following boundary value problem will be considered. A material with the
constitutive equation (3) occupies the simply connected volume V with the regular
surface S. The body force (per unit volume) is given throughout V] on the part ST of
the surface S, the surface traction T{ is prescribed, and on the remainder Sv of S, the
(infinitesimal) surface displacement m, is given. The prescribed surface displacements are
not supposed to be compatible with a rigid body motion of the material in V.

To investigate the extent to which these data uniquely determine the stress field
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a a and the displacement field u( in V, assume that the boundary value problem admits
two solutions with the displacement, strain, and stress fields ut , e,,- , <r, ,- and u*{ , e* , v* .
Since each stress field satisfies the equations of equilibrium in V and the boundary
conditions on ST , and since each displacement field satisfies the boundary conditions
on SL,, it follows from the principle of virtual work that

/ (<7,-,. - a *)(«,-,■ - * *■) dV = 0. (10)

To prove uniqueness, we show that the integrand

I = — «*) (11)

in (10) is positive unless «;,• = e* .
According to the constitutive equation (3), we have

/ = 2(6,-,. - e *) {</) dj/de,,- - </*) df/de*}, (12)
where / = /(e) and /* = /(«*). Using (1) and the relation obtained from it by inter-
changing starred and unstarred quantities, we obtain

I >2(f- /*)«/> - </*», (13)
where the equality sign holds only for ei(- = e* .

In discussing (13), we assume at first that e<, ?== €,* and hence use (13) as strict
inequality. The following cases may arise at the point where I is to be evaluated:

(a) / > 0, /* > 0: neither one of the solutions predicts vanishing stress, and (13)
reduces to

I > 2(f — I*)2 > 0;
(b) / > 0, /* < 0: only the starred solution predicts vanishing stress, and (13) takes

the form

I > 2(f - /*)/ > 0;
(c) / < 0, f* > 0: can be shown to furnish I > 0 by the same kind of argument as

under (b);
(d) / < 0, /* < 0: both solutions predict vanishing stress, that is, a-,-,- = <r,* = 0 and

hence 7 = 0.

It follows from this discussion that, to satisfy (10), we must either have case (d) through-
out V or abandon the assumption that eit ^ e *■ . In either case we have a , = <r * through-
out V.

The considered boundary value problem thus defines a unique stress field. The
strain field obviously need not be unique where both solutions predict vanishing stresses,
but elsewhere it is, in fact, unique.

5. Generalization and conclusion. For brevity, only a single, though fairly general,
type of boundary value problem has been investigated. The uniqueness proof, however,
is readily extended to the other boundary value problems considered in the classical
theory of elasticity. For example, only the sheax-ing components of the surface traction
may be given on ST together with the normal component of the displacement.

Another manner in which the present investigation could be extended is the use of
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the inequality (1) to establish extremum characterizations of the solution of the con-
sidered boundary value problem.

Finally, more general constitutive equations could be discussed, for which the free
domain D is specified by a set of functions /i(e), /2(«), * • • , /»(«)> all of which must be
nonpositive if the considered state of strain is to be associated with negligible strains.

The fact that a comprehensive and consistent theory can be developed in this manner
for infinitesimal strains is encouraging and therefore seemed worth reporting. It should
be kept in mind, however, that this theory will have to be extended to finite strains
before it can become useful in treating the deformations of soft living tissues.
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